More Probability Problems

- Using the Inclusion-Exclusion Rule to calculate Probabilities (Venn Diagram 2 Areas)
- At a grocery store customers were surveyed: 25% use coupons, 43% bring their own bags, and 12% do both.
- Making a Venn Diagram helps visualize what's going on

Making the Venn Diagram

- $P($ Coupon $)=25 \%, P($ Bag $)=43 \%$, $P($ Coupon \cap Bag $)=12 \%$
- Start with the intersection

Making the Venn Diagram

- $P($ Coupon $)=25 \%, P($ Bag $)=43 \%$, $P($ Coupon \cap Bag $)=12 \%$
- Then work your way out

Making the Venn Diagram

- $P($ Coupon $)=25 \%, P($ Bag $)=43 \%$, $P($ Coupon \cap Bag $)=12 \%$
- Lastly calculate the \% outside the circles

Answering Questions based on the Venn Diagram

- What is the probability a random shopper:
- Uses coupons but does not bring a bag
- Uses coupons or brings a bag
- Doesn't use coupons or bring a bag

Answering Questions based on the Venn Diagram

- What is the probability a random shopper:
- Uses coupons given that he brings a bag?
- Brings a bag given that he doesn't use coupons
- Are these two events (using coupons and bringing a bag) independent?

Answering Questions based on the Venn Diagram

- $\mathrm{P}(\mathrm{C} \mid \mathrm{B})=$?
- Use the formula $P(C \mid B)=P(C \cap B) / P(B)$
$-\mathrm{P}(\mathrm{C} \mid \mathrm{B})=.12 / .43 \approx .279$

Answering Questions based on the Venn Diagram

- $\mathrm{P}\left(\mathrm{B} \mid \mathrm{C}^{\mathrm{C}}\right)=$?
- Use the formula $\mathrm{P}\left(\mathrm{B} \mid \mathrm{C}^{\mathrm{C}}\right)=\mathrm{P}\left(\mathrm{B} \cap \mathrm{C}^{\mathrm{C}}\right) / \mathrm{P}\left(\mathrm{C}^{\mathrm{C}}\right)$
$-\mathrm{P}(\mathrm{C} \mid \mathrm{B})=.31 / .75 \approx .413$

Answering Questions based on the Venn Diagram

- Are bringing a bag and using coupons independent?
- If they are independent, then you can check 3

$$
\begin{aligned}
& \text { ways: } P(C \cap B)=P(C)^{\star} P(B), P(C \mid B)=P(C) \text {, } \\
& \text { or } P(B \mid C)=P(B)
\end{aligned}
$$

$$
-\mathrm{P}(\mathrm{C} \cap \mathrm{~B})=.12
$$

$$
-P(C) * P(B)=.1075
$$

- They are NOT independent.

