\(\mu = \beta \)

If \(X \sim \text{exp}(\beta) \) same as \(X \sim \text{Gamma}(1, \beta) \)

\[
f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}} \quad x \geq 0
\]

The time between equipment breakdowns at a factory follows an \(\text{exp} \) with mean 20 days.

What is the prob a month goes by without a breakdown?

\(X \sim \text{exp}(20) \) \quad \text{month} = 30 \text{ days}

\[
P(X > 30) = \int_{30}^{\infty} \frac{1}{20} e^{-\frac{x}{20}} \, dx
\]

\[
= \left[-e^{-u} \right]_{1.5}^{\infty}
\]

\[
= e^{-1.5} = 0.2231
\]

\[
1 - F(30)
\]

\[
\text{normalcdf}(a, b, \mu, \sigma)
\]

\[
P(X > x) = \text{normalcdf}(x, \infty, \mu, \sigma)
\]

\[
1 - \text{normalcdf}(\infty, x, \mu, \sigma)
\]

\[
x \sim N(\mu + 0.3)
\]
For \(X_1, \ldots, X_n \) \(\text{iid} \ N(\mu, \sigma^2) \)

\[
E(\overline{X}) = \mu \quad \text{Var}(\overline{X}) = \frac{\sigma^2}{n}
\]

\(\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \)

In General:

Thm Central Limit Theorem

If \(X_1, \ldots, X_n \) \(\text{iid} \) from a distribution with mean \(\mu \), and variance \(\sigma^2 \),

\[
Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}
\]

follows a \(N(0,1) \) distribution as \(n \to \infty \)

even for \(n \geq 30 \) the distribution is approximately normal

If distribution was "bellshaped" to begin with, \(n \) can be even smaller.

\(\overline{X} \ \text{approx} \ N(\mu, \frac{\sigma^2}{n}) \)
If the diameter of ball bearings follows a normal dist. with $\mu = 3$ mm, $\sigma = 0.1$ mm, what is the prob that a single ball bearing is more than 3.2 mm wide?

$$X \sim N(3, 0.1^2)$$

$$P(X > 3.2) = \Phi(3.2, 0.1)$$

$$\approx 0.02275$$

Take a sample of 10 ball bearings. What is the prob that $\bar{X} > 3.2$?

$$\bar{X} \sim N(3, \frac{0.1^2}{10})$$

$$\sigma_{\bar{X}} = \frac{0.1}{\sqrt{10}} = 0.0316$$

$$P(\bar{X} > 3.2) = \Phi(3.2, 0.0316)$$

$$\approx 0.0$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$