2. To determine the $gcd(2^4 \cdot 3^2 \cdot 5 \cdot 7^2), 2 \cdot 3^3 \cdot 7 \cdot 11)$ take the **lowest** power of each of the **common** factors: 2, 3², 7 and multiply them.

The answer is: $2 \cdot 3^2 \cdot 7$.

To determine the lcm, take the **highest** power of **each** factor: 2^3 , 3^3 , 5, 7, 11, and multiply them.

Then answer is $2^3 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11$.

9. If a and b are integers and $n \ge 0$ prove that a mod $n = b \mod n$ if and only if n divides a - b.

Proof: Assume that $a \mod n = b \mod n$.

This is equivalent to saying that $(a - b) \mod n = 0$. By definition, we can write $a = nq_1 + r_1$ and $b = nq_2 + r_2$. But by assumption,

$$(a-b) = n(q_1 - q_2) + (r_1 - r_2) \equiv 0 \mod n.$$

So $r_1 - r_2 = 0$ and n divides a - b.

Conversely, Assume that n divides a - b. By definition of "divides", we know that a - b = nq for some integer q. But this is equivalent to saying that $(a - b) \equiv 0 \mod n$, which is equivalent to saying that $a \mod n = b \mod n$.

Therefore, amod $n = b \mod n$ if and only if n divides a - b.

11. Let n be a fixed positive integer greater than 1. If $a \mod n = a'$ and $b \mod n = b'$, prove that $(a + b) \mod n = a' + b'$ and $(ab) \mod n = (a'b')$.

Proof:

Given that $a \mod n = a'$ and $b \mod n = b'$, we know that $a = nq_1 + a'$ and $b = nq_2 + b'$ for some integers q_1, q_2 . Then, $a + b = n(q_1 + q_2) + (a' + b')$.

Similarly,

 $ab = (nq_1+a')(nq_2+b') = n^2q_1q_2 + nq_1b' + nq_2a' + a'b' = n(nq_1q_2+q_1b'+q_2a') + a'b'.$

14. Show that 5n + 3 and 7n + 4 are relatively prime for all n. We apply Theorem 0.2, and the Euclidean Algorithm to show that

$$gcd(5n+3, 7n+4) = 1.$$

Follow the example on page 7.

Given that : 7n + 4 = 1(5n + 3) + (2n + 1); 5n + 3 = 2(2n + 1) + (n + 1); 2n + 1 = 2(n + 1) - 1Now, 2n + 1 = (7n + 4) + (5n + 3)(-1); n + 1 = (5n + 3) + (2n + 1)(-2) = (5n + 3) + (2n + 1)(-2) = (5n + 3) + (-2)(7n + 4) + (2)(5n + 3) = (3)(5n + 3) + (-2)(7n + 4); -1 = (2n + 1) + (-2)(n + 1) = (7n + 4) + (-1)(5n + 3) + (-2)((3)(5n + 3) + (-2)(7n + 4)) =(5)(7n + 4) + (-7)(5n + 3)

So 1 = (-5)(7n+4) + (7)(5n+3).