2. To determine the $\left.\operatorname{gcd}\left(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2}\right), 2 \cdot 3^{3} \cdot 7 \cdot 11\right)$ take the lowest power of each of the common factors: $2,3^{2}, 7$ and multiply them.

The answer is: $2 \cdot 3^{2} \cdot 7$.
To determine the lcm , take the highest power of each factor: $2^{3}, 3^{3}, 5,7,11$, and multiply them.
Then answer is $2^{3} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$.
9. If a and b are integers and $n \geq 0$ prove that $a \bmod n=b \bmod n$ if and only if n divides $a-b$.

Proof: Assume that $a \bmod n=b \bmod n$.

This is equivalent to saying that $(a-b) \bmod n=0$. By definition, we can write $a=n q_{1}+r_{1}$ and $b=n q_{2}+r_{2}$. But by assumption,

$$
(a-b)=n\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right) \equiv 0 \bmod n .
$$

So $r_{1}-r_{2}=0$ and n divides $a-b$.
Conversely, Assume that n divides $a-b$. By definition of "divides", we know that $a-b=n q$ for some integer q. But this is equivalent to saying that $(a-b) \equiv 0 \bmod n$, which is equivalent to saying that $a \bmod n=b \bmod n$.

Therefore, $a \bmod n=b \bmod n$ if and only if n divides $a-b$.
11. Let n be a fixed positive integer greater than 1. If $a \bmod n=a^{\prime}$ and $b \bmod n=b^{\prime}$, prove that $(a+b) \bmod n=a^{\prime}+b^{\prime}$ and $(a b) \bmod n=\left(a^{\prime} b^{\prime}\right)$.

Proof:
Given that $a \bmod n=a^{\prime}$ and $b \bmod n=b^{\prime}$, we know that $a=n q_{1}+a^{\prime}$ and $b=n q_{2}+b^{\prime}$ for some integers q_{1}, q_{2}. Then, $a+b=n\left(q_{1}+q_{2}\right)+\left(a^{\prime}+b^{\prime}\right)$.

Similarly,
$a b=\left(n q_{1}+a^{\prime}\right)\left(n q_{2}+b^{\prime}\right)=n^{2} q_{1} q_{2}+n q_{1} b^{\prime}+n q_{2} a^{\prime}+a^{\prime} b^{\prime}=n\left(n q_{1} q_{2}+q_{1} b^{\prime}+q_{2} a^{\prime}\right)+a^{\prime} b^{\prime}$.
14. Show that $5 n+3$ and $7 n+4$ are relatively prime for all n.

We apply Theorem 0.2, and the Euclidean Algorithm to show that

$$
\operatorname{gcd}(5 n+3,7 n+4)=1
$$

Follow the example on page 7 .

Given that: $7 n+4=1(5 n+3)+(2 n+1)$;
$5 n+3=2(2 n+1)+(n+1)$;
$2 n+1=2(n+1)-1$
Now, $2 n+1=$
$(7 n+4)+(5 n+3)(-1)$;
$n+1=$
$(5 n+3)+(2 n+1)(-2)=$
$(5 n+3)+[(7 n+4)+(5 n+3)(-1)](-2)=$
$(5 n+3)+(-2)(7 n+4)+(2)(5 n+3)=$
$(3)(5 n+3)+(-2)(7 n+4)$;
$-1=(2 n+1)+(-2)(n+1)=$
$(7 n+4)+(-1)(5 n+3)+(-2)((3)(5 n+3)+(-2)(7 n+4))=$
$(5)(7 n+4)+(-7)(5 n+3)$
So $1=(-5)(7 n+4)+(7)(5 n+3)$.

