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THE CELLULARIZATION PRINCIPLE FOR
QUILLEN ADJUNCTIONS

J. P. C. GREENLEES anD B. SHIPLEY

(communicated by Daniel Dugger)

Abstract

The Cellularization Principle states that under rather weak
conditions, a Quillen adjunction of stable model categories
induces a Quillen equivalence on cellularizations provided there
is a derived equivalence on cells. We give a proof together with
a range of examples.

1. Introduction

The purpose of this paper is to publicize a useful general principle when comparing
model categories: whenever one has a Quillen adjunction

F-M_—_———"""N:U

comparing two stable model categories, we obtain another Quillen adjunction by cellu-
larizing the two model categories with respect to corresponding objects. Furthermore
we obtain a Quillen equivalence provided the cells are small and the derived unit
or counit is an equivalence on cells. In this case, the cellularization of the adjunc-
tion induces a homotopy category level equivalence between the respective localizing
subcategories. The hypotheses are mild, and the statement may appear like a tau-
tology. The Cellularization Principle can be directly compared to another extremely
powerful formality, that a natural transformation of cohomology theories that is an
isomorphism on spheres is an equivalence.

This result was first proved in an appendix of the original versions of [4], but the
range of cases where the conclusion is useful led us to present the result separately
from that particular application.

The paper is layed out as follows: in Section 2 we give the statement and proof of
the Cellularization Principle, and the following sections give a selection of examples.
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2. Cellularization of model categories

Throughout the paper we need to consider models for categories of cellular objects,
thought of as built from a set of basic cells using coproducts and cofibre sequences.
These models are usually obtained by the process of cellularization (sometimes known
as colocalization or right localization) of model categories, with the cellular objects
appearing as the cofibrant objects. Because it is fundamental to our work, we recall
some of the basic definitions from [8].

Definition 2.1. [8, 3.1.8] Let M be a model category and K be a set of objects in M.
A map f: X — Y is a K-cellular equivalence if for every element A in IC the induced
map of homotopy function complexes [8, 17.4.2] f.: map(A, X) — map(4,Y) is a
weak equivalence. A cofibrant object W is KC-cellular if f,: map(W, X) — map(W,Y)
is a weak equivalence for any K-cellular equivalence f.

One can cellularize a right proper model category under very mild finiteness
hypotheses. To avoid confusion due to the dual use of the word “cellular” we recall
that a cellular model category is a cofibrantly generated model category with small-
ness conditions on its generating cofibrations and acyclic cofibrations [8, 12.1.1].

Proposition 2.2. /8, 5.1.1] Let M be a right proper, cellular model category and
let K be a set of objects in M. The K-cellularized model category K-cell-M exists:
it has the same underlying category as M, its weak equivalences are the KC-cellular
equivalences, the fibrations the same as in the original model structure on M, and
the cofibrations are the maps with the left lifting property with respect to the trivial
fibrations. The cofibrant objects are the K-cellular objects.

Remark 2.3. Since the K-cellular equivalences are defined using homotopy function
complexes, the IC-cellularized model category KC-cell-M depends only on the homotopy
type of the objects in K.

It is useful to have the following further characterization of the cofibrant objects.

Proposition 2.4. [8, 5.1.5] If K is a set of cofibrant objects in M, then the class of
K-cellular objects agrees with the smallest class of cofibrant ojects in Ml that contains
K and is closed under homotopy colimits and weak equivalences.

Throughout this paper we consider stable cellularizations of stable model cate-
gories. Say that a set K is stable if for any A € K all of its suspensions (and desus-
pensions) are also in K up to weak equivalence. That is, since the cellularization only
depends on the homotopy type of elements in K, if A € I, then for all i € Z there
are objects B; € K with B; ~ X?A. In this case, for M a stable model category and
K a stable set of objects, IC-cell-M is again a stable model category; see [1, 4.6]. In
this case, one can use homotopy classes of maps instead of the homotopy function
complexes in Definition 2.1. That is, a map f: X — Y is a K-cellular equivalence
if and only if for every element A in K the induced map [A, X]. — [4,Y], is an
isomorphism; see [1, 4.4].

Proposition 2.5. If M s a right proper, stable, cellular model category and IC is
stable, then K detects trivial objects. That is, an object X is trivial in Ho(KC-cell- M), if
and only if for each element A in K, [A, X]. = 0, and this group of graded morphisms
can equally be calculated in the homotopy category of M.
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Proof. By [9, 7.3.1], the set of cofibres of the generating cofibrations detects trivial
objects. In this stable situation, a set of generating cofibrations is produced as follows
in [1, 4.9]. Define a set of horns on K by

AR ={X ® 0A[n]y+ - X ® Aln]+In >0, X € K}

where here ® is defined using framings (see [1], [9], or [8]). If J is the set of gener-
ating acyclic cofibrations in M, then J U AK is the set of generating cofibrations for
K-cell-M. Since K is stable, the cofibres of these maps are either contractible or are
weakly equivalent to objects in K again. O

Under a finiteness condition K is also a set of generators. An object K is small in
the homotopy category (from now on simply small') if, for any set of objects {Y,},
the natural map @ [K,Y,] — [K,\/, Y.] is an isomorphism.

Corollary 2.6. [12, 2.2.1] If M is a right proper, stable, cellular model category and
IC is a stable set of small objects, then K is a set of generators of Ho(K-cell-M). That
is, the only localizing subcategory containing K is Ho(KC-cell-M) itself.

Our main theorem states that given a Quillen pair, appropriate cellularizations of
model categories preserve Quillen adjunctions and induce Quillen equivalences.

Theorem 2.7. (The Cellularization Principle.) Let M and N be right proper,
stable, cellular model categories with F: M — N a left Quillen functor with right
adjoint U. Let Q be a cofibrant replacement functor in Ml and R a fibrant replacement
functor in N.
1. Let K ={A.} be a set of objects in M with FQK = {FQA,} the corresponding
set in N. Then F' and U induce a Quillen adjunction

F: K-cellM = FQK-cell-N : U

between the KC-cellularization of M and the FQK-cellularization of N.

2. If K={A.} is a stable set of small objects in M such that for each A in K
the object FQA is small in N and the derived unit QA — URFQA is a weak
equivalence in M, then F and U induce a Quillen equivalence between the cel-
lularizations:

K-cell-M ~¢ FQK-cell-N.

3. If L={Bg} is a stable set of small objects in N such that for each B in L
the object URB is small in Ml and the derived counit FQURB — RB is a
weak equivalence in N, then F and U induce a Quillen equivalence between the
cellularizations:

URL-cell-M ~¢ L-cell-N.

Proof. Using the equivalences in [8, 3.1.6], the criterion in [8, 3.3.18(2)] (see also [10,
2.2]) for showing that F' and U induce a Quillen adjoint pair on the cellularized model
categories in (1) is equivalent to requiring that U takes FQK-cellular equivalences
between fibrant objects to K-cellular equivalences. Any Quillen adjunction induces

1 . .
some authors use ‘compact’ for this notion
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a weak equivalence map(A,URX) ~ map(FQA, X) of the homotopy function com-
plexes, see for example [8, 17.4.15]. So f: X — Y induces a weak equivalence f,:
map(FQA, X) — map(FQA,Y) if and only if U f,: map(4,URX) — map(A,URY")
is a weak equivalence. Thus in (1), U preserves (and reflects) the cellular equivalences
between fibrant objects. Hence, U induces a Quillen adjunction on the cellularized
model categories.

Similarly, U f,: map(URB,URX) — map(URB,URY) is a weak equivalence if
and only if f,: map(FQURB, X) — map(FQURB,Y) is. Given the hypothesis in (3)
that FQURB — RB is a weak equivalence, it follows that U f, is a weak equivalence
if and only if f.: map(B, X) — map(B,Y) is. Thus, it follows in (3) that U preserves
(and reflects) the cellular equivalences between fibrant objects. Hence, U induces a
Quillen adjunction on the cellularized model categories. Note that the stability of M,
N, K and £ was not necessary for establishing the Quillen adjunction in (1) or (3).

We establish (2) in the next paragraph. One can make very similar arguments for
(3) or one can deduce (3) from (2). To deduce (3) from (2), consider (2) applied to
K =URL. The hypothesis in (3) implies the hypothesis in (2) and thus produces
a Quillen equivalence between U RL-cell-M and FQU RL-cell-M. The hypothesis in
(3) also implies that FQU RL-cell-M and L-cell-M are the same cellularization of M.
Thus, (3) follows.

We now return to the Quillen equivalence in (2). Since M and K are stable, IC-cell-M
is a stable model category by [1, 4.6]. Since left Quillen functors preserve homotopy
cofibre sequences, FQIC, and hence also FQK-cell-N, are stable. The Quillen adjunc-
tion in (1) induces a derived adjunction on the triangulated homotopy categories;
we show that this is actually a derived equivalence. Both derived functors are exact
(since the left adjoint commutes with suspension and cofibre sequences and the right
adjoint commutes with loops and fibre sequences). As a left adjoint, F' also preserves
coproducts. We next show that the right adjoint preserves coproducts as well.

Since K = {A,} detects K-cellular equivalences, to show that U preserves coprod-
ucts it suffices to show that for each A, € K and any family {X;} of objects in N the
natural map

[Aa,\/UXi] = [Aa, U(\/ X;)]

is an isomorphism. Using the adjunction and the fact that each A, is small, the source
can be rewritten as

[Aq, \/ UX;) = @PA.. UX] = PIFQA., Xi].

3 (2

Similarly, using the adjunction, the target is isomorphic to [FQA.,\/; X;]. Since
FQA, is assumed to be small, the source and target are isomorphic and this shows
that U commutes with coproducts.

Consider the full subcategory of objects M in Ho(K-cell-M) (or respectively, N
in Ho(FQK-cell-N)) such that the unit QM — URFQM (or respectively, the counit
FQURN — RN) of the adjunction is an equivalence. Since both derived functors are
exact and preserve coproducts, these are localizing subcategories. Since for each A
in K the unit is an equivalence and K is a set of generators by Corollary 2.6, the
unit is an equivalence on all of Ho(K-cell-M). It follows that the counit is also an
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equivalence for each object N = FQA in FQK. Since FQK is a set of generators for
Ho(FQK-cell-N), the counit is also always an equivalence. Statement (2) follows. [

Note that if F' and U form a Quillen equivalence on the original categories, then
the conditions in Theorem 2.7 parts (2) and (3) are automatically satisfied. Thus,
they also induce Quillen equivalences on the cellularizations.

Corollary 2.8. Let M and N be right proper, stable cellular model categories with
F: M — N a Quillen equivalence with right adjoint U. Let QQ be a cofibrant replace-
ment functor in M and R a fibrant replacement functor in N.

1. Let K ={A,} be a stable set of small objects in M, with FQK = {FQA,} the
corresponding set of objects in N. Then F and U induce a Quillen equivalence
between the KC-cellularization of Ml and the FQIK-cellularization of N:

K-cellM ~q FQK-cell-N.

2. Let L ={Bg} be a set of small objects in N, with URL = {URBg} the corre-
sponding set of objects in N. Then F' and U induce a Quillen equivalence between
the L-cellularization of N and the U RL-cellularization of M:

URL-cell-M ~q L-cell-N.

In [10, 2.3] Hovey gives criteria for when localizations preserve Quillen equiva-
lences. Since cellularization is dual to localization, a generalization of this corollary
without stability or smallness hypotheses follows from the dual of Hovey’s statement.

3. Smashing localizations

We suppose given a map §: R — T of ring spectra (or DGAs). This gives the
extension and restriction of scalars Quillen adjunction
0. : R-mod T-mod : 6%,

where 6, N =T Ar N. We apply Theorem 2.7 with M = R-mod and N = T-mod.
The category of T-modules is generated by the T-module T', and we use that as the
generating cell. The following uses the ideas of the Cellularization Principle.

Corollary 3.1. If T AT =T is an equivalence of R-modules, then the Quillen
pair
0, : T-cell-R-modules ———= T-modules : 6*
induces
1. a Quillen equivalence if 0*T is small as an R-module, or

2. in general, an equivalence of triangulated categories
T-loc-Ho(R-modules) ~ Ho(T-modules)
where loc denotes the localizing subcategory.

Proof. In the first case with 6*T small, this follows directly from Part 3,Theorem 2.7
with M = R-modules and N = T-modules, taking T" to be the generator of N. In the
second case, we again apply Part 3. Here the hypothesis shows that the counit is a
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derived equivalence on cells. However the complication is that 6*7T will not usually
be small as an R-module.

Nonetheless, the counit is still a derived equivalence for the R-module T'. It remains
to argue that the derived counit gives the stated equivalence. For this we note that
the right adjoint preserves arbitrary sums: this is obvious if we are working with
actual modules, but in general we may use the fact that 6* is also a left adjoint (with
right adjoint the coextension of scalars). It follows that we have an equivalence of the
localizing subcategories generated by 7" on the two sides. O

For the first example, we take R and T to be conventional commutative rings or
DGAs and T' = £~ ! R for some multiplicatively closed set £. The condition is satisfied
since ETR®p ETTR =2 7R and we find

E71R-loc-Ho(R-modules) ~ Ho(£ ! R-modules).

Ezxample 3.2. Tt is worth giving an example to show that we do not obtain a Quillen
equivalence between T-cell- R-modules and T-modules in general. This shows that the
smallness hypothesis in the Cellularization Principle is necessary.

For this we take R = Z and T' = Z[1/p]. We note that any object M in the localizing
subcategory of T-cell- R-modules generated by T has the property that M ~ M][1/p].
Accordingly M = Z/p™ is not in this localizing subcategory. On the other hand M
is not T-cellularly equivalent to 0 since Hom(Z[1/p], Z/p>) # 0.

More generally any smashing localization of module spectra behaves in a similar
way (see [7] for related discussion). We first suppose that R is a cofibrant S-algebra
spectrum in the sense of [3], where S is the sphere spectrum; see also Remark 3.4
below. We next suppose given a smashing localization L of the category of R-module
spectra. By [3, VIIL.2.2], there is a ring map 6: R — LR so that we may apply
the above discussion with "= LR. The smashing condition states that we have an
equivalence LN ~ LR Ar N for any R-module N.

Proposition 3.3. Suppose given a cofibrant S-algebra spectrum R and a smashing
localization L on the category of R-modules. We have a diagram

R-modules — LR-modules

L

L(R-modules)

of left Quillen functors where L(R-modules) is the localization of the model category
of R-modules. These induce a Quillen equivalence

L(R-modules) ~q LR-modules,
and triangulated equivalences
LR-loc-Ho (R-modules) ~ Ho(L(R-modules)) ~ Ho(LR-modules).

Proof. The ring map 0: R — LR =T gives the top horizontal left Quillen functor
.. The vertical map is the identity on underlying categories, which is a left Quillen
functor by definition of the local model structure. The diagonal map is again 6., and
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it exists because L is smashing so that L-equivalences are taken to equivalences of
LR-modules. This gives the diagram of left Quillen functors.

To see the diagonal is a Quillen equivalence we apply Part 3 of the Cellulariza-
tion Principle. The LR-module LR is a small generator of LR-modules, and the
smashing condition means that L(R-modules) is generated by the single object LR,
and the universal property together with the smallness of R shows LR is small in
L(R-modules).

We apply Corollary 3.1 to obtain the statement about localizing categories, since
the smashing condition applies to the generator N = LR to show the hypotheses hold.

See also [3, VIII.3.2] and [12, 3.2(iii)]. O

Remark 3.4. For an arbitrary S-algebra spectrum 7', consider a cofibrant replacement
f: R — T in S-algebras and consider the relationship between smashing localizations
of R-modules and T-modules. More precisely, suppose given a bifibrant T-module E
so that Lg (localization with respect to the E-equivalences as in [3, VIIL.1.1]) is a
smashing localization on T-modules. In this case there is a corresponding R-module
F, giving a smashing localization Lr on R-modules such that the localized model
categories are Quillen equivalent,

Lp(R-modules) ~¢ Lg(T-modules).

In fact one can take F' to be the cofibrant replacement in R-modules of 6* E. Since
0: R — T is a weak equivalence, the functors 6, and 6* induce a Quillen equivalence
between the categories of R-modules and T-modules. Using the criteria in [10, 2.3]
for when localizations preserve Quillen equivalences (dual to Corollary 2.8 above),
one can show that the localization model category of R-modules with respect to
the F-equivalences is Quillen equivalent to the localization model category of T-
modules with respect to the 8, F = T Ag F-equivalences. Since 0, F and F are weakly
equivalent cofibrant T-modules, the 8, F-equivalences agree with the E-equivalences,
so we have

Lp(R-modules) ~¢g Ly, p(T-modules) & Lg(T-modules).

In this situation one can show that there is a weak equivalence T'Agr LpR ~ LgT.
Using this, one can then show that if Lg is smashing, then L is also a smashing
localization. Note here though that [3, VIII.2.2] only applies to R. So although LrR
is constructed as an S-algebra, LgT is only constructed as a T-module.

Perhaps the best known example in the category of spectra is when we consider
the localization of S-modules with respect to E,, the nth p-local Morava E-theory.
We denote localization with respect to any spectrum weakly equivalent to FE, by
L,,. Following the remark above, we consider R = ¢S, the cofibrant replacement of
the sphere spectrum S and see that L, (S-modules) and L, (c¢S-modules) are Quillen
equivalent. Proposition 3.3 then shows that

L,,(S-modules) ~¢ L, (cS-modules) ~¢ (L,,cS)-modules

and the homotopy categories of these are equivalent to (L,,S)-loc-Ho(S-modules).
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4. Isotropic equivalences of ring (G-spectra

We suppose given a map 6: R — T of ring G-spectra. This gives the extension
and restriction of scalars Quillen adjunction

0. : R-mod T-mod : 6* .

We apply Theorem 2.7 Part 2 with Ml = R-mod and N = T-mod. If G is the trivial
group, then R generates R-modules and the Cellularization Principle shows we have
an equivalence if 0 is a weak equivalence of R-modules.

If G is non-trivial, we get a somewhat more interesting example. The category
of R-modules is generated by the extended objects G/Hy A R as H runs through
closed subgroups of G and the unit is the comparison G/Hy A 6. If F is a family
of subgroups, we say 6 is an F-equivalence if G/H; A6 is an equivalence for all
H in F. Define F-cellularization of R-mod to be cellularization with respect to the
set of all suspensions and desuspensions of objects G/Hy A R for H in F. Then
the Cellularization Principle shows that if 6 is an F-equivalence we have a Quillen
equivalence

F-cell- R-module-G-spectra ~ F-cell-T-module-G-spectra.

5. Torsion modules

Let R be a conventional commutative Noetherian ring and I an ideal. We apply
Theorem 2.7, with N the category of differential graded R-modules and M the category
of differential graded I-power torsion modules. There is an adjunction

R-modules : 'y
with left adjoint 4 the inclusion and the right adjoint I'; defined by
Ly(M)={me&M|INm=0for N>>0}.

i: I-power-torsion- R-modules

Both of these categories support injective model structures by [9, 2.3.13], with cofibra-
tions the monomorphisms and weak equivalences the quasi-isomorphisms. For torsion-
modules, one needs to bear in mind that to construct products and inverse limits one
forms them in the category of all R-modules and then applies the right adjoint I'y;
see also [5, 8.6]. With these structures the above adjunction is a Quillen adjunction.

We now consider the Cellularization Principle with M the I-power-torsion-R-
modules and N the R-modules. If I = (21, 22, ...,2,), we may form the Koszul com-
plex K := K(x1,xa,...,x,) as the tensor product of the complexes R 2 R, noting
that it is small by construction and therefore suitable for use as a cell. Since the
homology of K is I-power torsion, K is equivalent to an object K’ in the category
of I-power torsion modules, which we may take to be fibrant. We now apply the
Cellularization Principle to give an equivalence

I'; K'-cell-I-power-torsion- R-modules ~ K’-cell-R-modules.

It is proved in [2, 6.1] that the localizing subcategory generated by R/I is also
generated by K ~ K’. By the same proof, we see that K’ =I';K’ generates the
category of I-power torsion modules and we conclude

I-power-torsion- R-modules ~ R/I-cell- R-modules.
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6. Hasse equivalences

The idea here is that if a ring (spectrum or differential graded algebra) R is
expressed as the pullback of a diagram of rings, the Cellularization Principle lets
us build up the model category of differential graded R-modules from categories of
modules over the terms. See also [6] for a more general treatment. We apply the
standard context of Theorem 2.7 with M the category of R-modules.

6.1. Diagrams of modules
To describe N we start with a commutative diagram
R $. Rl

% g

R®—— R!

of rings.

Ezxample 6.1. The classical Hasse principle is built on the pullback square
Z Q

| |

I, Zp —— (IL, Zp) ® Q.
Returning to the general case, we delete R and consider the diagram

Rl

R = lg

RCTRt

with three objects. We may form the category N = R--mod of diagrams
Ml
lh
Me¢ —— M?
where M' is an R'-module, M€ is an R°-module, M* is an R*-module and the maps h
and e are module maps over the corresponding maps of rings. That is, h: M! — g* M*

is a map of R'-modules and e: M¢ — d*M? is a map of R°modules. We will return
to model structures below.

6.2. An adjoint pair
Since R- is a diagram of R-algebras, termwise tensor product gives a functor
R’ ®g (-): R-mod — R--mod.
Similarly, since R maps to the pullback PR-, pullback gives a functor
P: R'-mod — R-mod.
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It is easily verified that these give an adjoint pair

R ®pg (-): R-mod R--mod : P .

We may then consider the derived unit
n: M — P(R* ®% M).

Since R is the generator of the category of R-modules, we want to require that 7
is an equivalence when M = R, which is to say the original diagram of rings is a
homotopy pullback. In fact, we first fibrantly replace the original diagram of rings
in the diagram-injective model category of pull-back diagrams of rings. See [9, 5.1.3]
or [8, 15.3.4]. This is discussed in more detail in [6].

On the other hand, we cannot expect the counit of the adjunction to be an equiv-
alence since we can add any module to M? without changing PM-. This is where
the Cellularization Principle comes in. We should use the image of R to cellularize
the category of diagrams of modules. In preparation for this, we describe the model
structure.

6.3. Model structures

We give categories of (differential graded) modules over a ring the (algebraically)
projective model structure, with homology isomorphisms as weak equivalences and
fibrations the surjections. The cofibrations are retracts of relative cell complexes,
where the spheres are shifted copies of R. The category R--mod gets the diagram-
injective model structure in which cofibrations and weak equivalences are maps which
have this property objectwise; the fibrant objects have v and § surjective. This
diagram-injective model structure is shown to exist for more general diagrams of
ring spectra in an appendix of the original versions of [4], see also [6], and the same
proof works for DGAs.

6.4. The Quillen equivalence

Since extension of scalars is a left Quillen functor for the (algebraically) projec-
tive model structure for any map of DGAs, R? ® g — preserves cofibrations and weak
equivalences and is therefore also a left Quillen functor. We then apply the Cellular-
ization Principle to obtain the following result.

Proposition 6.2. Assume given a commutative square of DG As which is a homotopy
pullback. The adjunction induces a Quillen equivalence

R-mod —» R--cell-R*-mod,

where cellularization is with respect to the image, R, of the generating R-module R.

Proof. We apply Theorem 2.7, which states that if we cellularize the model categories
with respect to corresponding sets of small objects, we obtain a Quillen adjunction.

In the present case, we cellularize with respect to the single small R-module R on
the left, and the corresponding diagram R~ on the right. First we verify that R- is
small. Consider the three evaluation functors from R--modules down to modules over
the rings R!, R, or R' and the associated left adjoints of these evaluation functors



THE CELLULARIZATION PRINCIPLE FOR QUILLEN ADJUNCTIONS 183

L', L¢, and L. The R’-module R~ is the pushout of the following diagram.
L'R

|

LCRC <—— Lth

Indeed, one may explicit: L'R' is R* with R® replaced by 0, L°R¢ is R* with R!
replaced by 0, and L'R* is R* with R' and R° replaced by 0. This diagram is also
a homotopy pushout diagram between objects which are cofibrant in the diagram-
injective model structure on R--modules. It follows that R- is small in the homotopy
category of R“-modules.

Since the original diagram of rings is a homotopy pullback, the unit of the adjunc-
tion is an equivalence for R, and we see that the generator R and the generator
R- correspond under the equivalence, as required in the hypothesis in Part (2) of
Theorem 2.7.

Since R is cofibrant and generates R-mod, cellularization with respect to R has
no effect on R-mod and we obtain the stated equivalence with the cellularization of
R--mod with respect to the diagram R-. O
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