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Abstract. A functor is defined which detects stable equivalences of symmetric spectra. As an ap-
plication, the definition of topological Hochschild homology on symmetric ring spectra using the
Hochschild complex is shown to agree witbitedt's original ad hoc definition. In particular, this
shows that Bkstedt's definition is correct even for non-connective, non-convergent symmetric ring
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1. Introduction

The category of symmetric spectra introduced by Jeff Smith is a closed sym-
metric monoidal category whose associated homotopy category is equivalent to
the traditional stable homotopy category, see [11]. Unlike most other categories of
spectra, not all stable weak equivalences of symmetric spectra inguce
isomorphisms, that is, isomorphisms of the classical stable homotopy groups,
m, X = colim; . X, defined on the underlying prespectra. Hence, another way
to identify stable equivalences here is necessary.

To remedy this we consider a detection functbr, which turns stable equi-
valences intar,-isomorphisms. Theorem 3.1.2 shows that— Y is a stable
equivalence if and only DX — DY is am,.-isomorphism. Thus, the classical
stable homotopy groups ddX are invariants of the stable homotopy typeXof
In fact, the groupsr, DX are the derived stable homotopy groupsxofThat is,
7.DX = n,LX, whereL is a stable fibrant replacement functor, see 2.1.3.

Basically, the classical stable homotopy groupstadire not homotopy invari-
ants of X because their construction ignores the symmetric group actions on the
levels of X . The construction oD modifies the usual telescope or sequential homo-
topy colimit construction to use the extra symmetric structure. More specifically,
DX, = hocolim.; Q* f =" X, where the indexing category is the category of finite
sets and injections anfl is a fibrant replacement functor, see Definition 3.1.1. As
with any homotopy colimit, there is a spectral sequence for calculatjiyX, the
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derived stable homotopy groups Xf see Proposition 2.2.4. This functbrin fact
appears in the zeroth level of the simplicial spectrum aok&&dt's definition of
topological Hochschild homology (THH) [1]. This provides the starting point for
the comparison of various definitions of THH discussed below.

Although in general stable weak equivalences areméasomorphisms, in the
full subcategory of semistable spectra (see Definition 2.1.6), the stable weak equi-
valences are exactly thg-isomorphisms. In the even more specialized full subcat-
egory ofQ2-spectra, the stable weak equivalences are exactly the level equivalences.
This detection functor is then analogous to a localization functor; after its first
application it localizes a spectrum to give a semistable spectrum and after two
applications it produces a spectrum which is level equivalent t®-apectrum,
see Theorem 3.1.5. Thus, in model category theoretic tebAs;omposed with
level fibrant replacement is a stable fibrant replacement functor which is more
explicit than the one introduced in [11] that relies on the small object argument,
see Definition 2.1.3.

As an application of this detection functor we consider the THH of a symmetric
ring spectrum. One of the motivations for creating a symmetric monoidal category
of spectra was to provide a setting where one could easily mimic the usual con-
structions of algebra. Now that this is possible, one can verify that the classical ad
hoc construction of THH due todkstedt, [1], agrees with these simple algebraic
definitions. Due to the work of [13, 16], the verification here for symmetric ring
spectra also shows that the algebraic definition of THH agrees witistBdt's ori-
ginal definition when defined faf-algebras, functors with smash product, Gamma
rings, and orthogonal ring spectra.

In Section 4 we give two definitions based on algebra of THH for a symmetric
ring spectrum; one uses a derived smash product over the enveloping algebra, 4.1.1,
and the other mimics the Hochschild complex, 4.1.2. These two definitions are then
shown to agree under certain cofibrancy conditions in Theorem 4.1.10 and to agree
with Bokstedt's original definition of THH in Theorem 4.2.8.

Perhaps the most surprising of these results is the agreemenbkstdait’s
definition with the others without any of the connectivity or convergence condi-
tions that Bkstedt originally required. Some conditions are indeed necessary to
apply Bokstedt’s approximation theorem [1, 1.6], though the usual connectivity
and convergence conditions can be weakened to include any semistable spectrum,
see Corollary 3.1.7. For spectra which are not semistable, the model category
structure on symmetric ring spectra is used instead to prove comparison results
such as Theorems 3.1.2 and 4.2.8. Also, without any extra conditiahstéit's
original definition of THH takes stable equivalences of symmetric ring spectra to
m.-isomorphisms (see Corollary 4.2.9, Remark 2.1.12).

Symmetric spectra have also been used by Jardine in [12] to define a symmetric
monoidal model category which gives rise to the Morel-Voevodsky stable homo-
topy theory [19]. An analysis similar to the one carried out here will be necessary
to detect stable equivalences in this setting. The details of the analysis here do
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not immediately carry over to the stabié-local homotopy theory, but the broad
outline should in fact generalize.

Ouitline. In the first section we recall various properties of symmetric spectra
from [11] and define symmetric ring spectra. In Section 2.2 we define the ho-
motopy colimit of diagrams of symmetric spectra and state several comparison
results for homotopy colimits which are used in Sections 3 and 4. The fubgtor
which detects stable equivalences, is defined in Section 3. As an application of this
detection functor, in Section 4, three different definitions of topological Hochschild
homology are defined and compared.

2. Basic Definitions

In the first section, we recall the definitions and properties of symmetric spectra
which are essential to this paper. In Section 2.2, we consider the properties of the
homotopy colimit needed for Sections 3 and 4.

2.1. SYMMETRIC SPECTRA

First we recall the symmetric spectrg, K, and some properties of the cofibrantly
generated stable model category of symmetric spectra. Then we consider a subcat-
egory of symmetric spectra, the semistable spectra, between which stable equival-
ences are exactly the.-isomorphisms. Finally, we recall the definition of symmet-
ric ring spectraR-modules, andR-algebras. Throughout this paper ‘space’ means
simplicial set, except in Remark 3.1.4. We denoteShythe category of pointed
simplicial sets and by$p* the category of symmetric spectra over simplicial sets.
We first give a slightly different description of the free symmetric speEt&
defined in [11, 2.2.5] which play an important role in the model category structures
and in the later sections of this paper. lLLdie the skeleton of the category of finite
sets and injections with objeats Note that hom(n, m) = X,/ %,,_, asX,, sets.
This isomorphism gives the following proposition. The close connection between
the following free spectra and free diagrams avésee Definition 3.2.6) is the key
reason for the use df in the definition of the detection functor given in the next
section.

PROPOSITION 2.1.1F,K),, = £} As,, ., S" " AK = hom;(n, M), AS" " AK
whereS” = x forn < 0.

F, is left adjoint to thenth evaluation functorEv,: Sp* — S, where
Ev,(X) = X,. There is a natural isomorphism K Ag F,,L — F,,,(K A L).

The stable model category of symmetric spectra is cofibrantly generated by [11,
3.4]. In particular, this means that a version of Quillen’s small object argument
[14, 1l 3.4] exists. One aspect of the small object argument implies the following
proposition, see also [17, 2.1].
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PROPOSITION 2.1.2[11, 3.4.9, 3.4.1@here is a set of mapkin Sp* such that
any stable trivial cofibration is a retract of a sequential colimit of pushouts of maps
inJ.

This provides a general method for proving that the class of cofibrations or
trivial cofibrations has some property. One shows that the generating maps have
some property and that the property is preserved under pushouts, colimits, and
retracts. This method is central to the proofs in Sections 3 and 4.

Quillen’s small object argument [14, p. Il 3.4] has an analogue which allows one
to functorially factor maps whenever the model category is cofibrantly generated,
see [11, 3.2.11].

DEFINITION 2.1.3. LetL be the functorialstable fibrant replacemerfunctor
defined by functorially factoring the mayp — * into a stable trivial cofibration,
X — LX and a stable fibratioh X — . This is the factorization one defines using
the small object argument applied to the set of mapdsing J’, the generators of
the level trivial cofibrations, instead, one defin€sas the functorialevel fibrant
replacementwith X — L’X a level trivial cofibration andl’X — =« a level
fibration.

Semistable objects angd.-isomorphisms

Comparing symmetric spectra to the model category of spe§ti, defined in

[2] sheds light on the complications involved in the model category of symmetric
spectra. There is a forgetful functét: Sp* — SpN which forgets the action of
the symmetric groups and uses the structure nSapsX,, — X1,

DEFINITION 2.1.4. Letm(X) = m(UX) = colim; m;,; X;. A map f of sym-
metric spectra is a.-isomorphismif it induces an isomorphism on theskassical
stable homotopy groups

These classical stable homotopy groupsrarethe maps in the homotopy cat-
egory of symmetric spectra of the sphere intoFor examplep: FiS* — FoS°,
adjoint to the identity mag! — Evi(F,S%), is a stable equivalence but it is
not am,-isomorphism. As shown in [11, 3.1.11], though;zasisomorphism is
a particular example of a stable equivalence. Hence, to avoid confusion, we use
the termm,.-isomorphism instead of stable homotopy isomorphism and call these
the classical stable homotopy groups instead of just stable homotopy groups. In
Section 3 we construct a functap, which converts any stable equivalence into a
m.-isomorphism between semistable spectra, see Definition 2.1.6 below.

As in [2], we define a functoQ for symmetric spectra.

DEFINITION 2.1.5. DefineQ X = colim, Q"L’sh, X.
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This functor does not have the same properties as in [2]. For inst@Xds
not always ar2-spectrum and{ — QX is not always ar.-isomorphism. One
property that does continue to hold, however, is that a fhégpar,-isomorphism
if and only if Qf is a level equivalence. Als@ X is always level fibrant.

DEFINITION 2.1.6. Asemistablesymmetric spectrum is one for which the stable
fibrant replacement mag, — LX, is am,-isomorphism.

Of courseX — LX is always a stable equivalence, but not all spectra are
semistable. For instancé; S* is not semistable. Any stably fibrant spectrum, i.e.,
an Q-spectrum, is semistable though. The following proposition shows that on
semistable spectr@ has the same properties as in [2] $p".

PROPOSITION 2.1.7The following are equivalent.

(1) The symmetric spectruii is semistable.

(2) The mapX — QL’sh X is an,-isomorphism.
(3) X — QX is am,-isomorphism.

(4) QX isanQ-spectrum.

This proposition, [11, 5.6.2] witlR, there, is replaced b@ here.
Two classes of semistable spectra are described in the following proposition.
The second class includes the connective and convergent spectra.

PROPOSITION 2.1.8 [11, 5.6.4].

(1) Ifthe classical stable homotopy groupsXhre all finite thenX is semistable.

(2) Suppose thak is a level fibrant symmetric spectrum and there exists some
«a > 1such thatX, — QX,,, induces an isomorphism, X, — w1 1X,41
for all k < an for sufficiently largen. ThenX is semistable.

The next proposition shows that stable equivalences between semistable spectra
are particularly easy to understand.

PROPOSITION 2.1.9[11,5.6.9let f: X — Y be amap between two semistable

symmetric spectra. Thelf is a stable equivalence if and only if it is a,-
isomorphism.

Finally, any spectrums,-isomorphic to a semistable spectrum is itself
semistable.

PROPOSITION 2.1.10f f: X — Y is am,-isomorphism and is semistable
thenX is semistable.
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Proof. SinceLf andY — LY arem.-isomorphismsX — LX is also arm,-
isomorphism. O

Symmetric ring spectra
In this section, rings, modules, and algebras are defined for symmetric spectra.

DEFINITION 2.1.11. Asymmetric ring spectruris a monoid in the category of
symmetric spectra. In other words, a symmetric ring spectrum is a symmetric spec-
trum, R, with mapsu: R As R — R andn: S — R such that they are associative
and unital, i.e.po(u Agid) = po(id Ag ) anduo(n Agid) = id = po(id Ag ).

R is calledcommutativef p o tw = u, where tw: R Ag R — R Ag R is the twist
isomorphism.

Since symmetric ring spectra are the only type of ring spectra in this paper we
also refer to them as simphing spectra

Remark2.1.12. This description of a symmetric ring spectrum agrees with the
definition of a functor with smash product defined on spheres as in [10, 2.7]. The
centrality condition mentioned in [10, 2.7.ii] is necessary but was not included in
some earlier definitions of FSPs defined on spheres. Note, however, that there are
no connectivity (e.gF (S"*1) is n-connected) or convergence conditions (e.g. the
limit is attained at a finite stage in the colimit defining for eachn) placed on
symmetric ring spectra. These conditions are usually assumed although not always
explicitly stated when using FSPs. In particular, these conditions are necessary for
applying Bikstedt's approximation theorem [1, 1.6]. Corollary 3.1.7 shows that
a special case of this approximation theorem holds for any semistable spectrum.
To consider non-convergent spectra we use Theorem 3.1.2 in place of the approx-
imation theorem. This theorem does not require any connectivity or convergence
conditions.

Proposition 2.1.8 shows that the connectivity and convergence conditions on
an FSP ensure that the associated underlying symmetric spectrum is semistable.
Proposition 2.1.9 shows that stable equivalences between such FSPs are exactly
the.-isomorphisms. As with the category of symmetric spectra, inverting the
isomorphisms is not enough to ensure that the homotopy category of symmetric
ring spectra is equivalent to the homotopy categornAgf-ring spectra. So once
the connectivity and convergence conditions are removed one must consider stable
equivalences instead of just-isomorphisms.

We also need the following definitions &-modules andrR-algebras in later
sections.

DEFINITION 2.1.13. LetR be a symmetric ring spectrum. A (lefR-moduleis a
symmetric spectrunM with a mape: R Ag M — M that is associative and unital.
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DEFINITION 2.1.14. LetR be a commutative ring spectrum. AR-algebrais
a monoid in the category oR-modules. That is, aR-algebra is a symmetric
spectrumA with R-module mapst: A Ag A — A and R — A that satisfy
the usual associativity and unity diagrams.

Note that symmetric ring spectra are exactly #walgebras. The following
lemma is needed for Section 4 so we reproduce it for the reader’s convenience.

LEMMA 2.1.15[11, 5.4.4]Let R be a symmetric ring spectrum ai a cofibrant
R-module. TheM Ay — takes level equivalences gfmodules to level equival-
ences inSp* and it takes stable equivalences®imodules to stable equivalences
in Sp*.

2.2. HOMOTOPY COLIMITS

In this section we list some of the properties of the homotopy colimit functor for
symmetric spectra which are used in the latter parts of this paper. The most import-
ant property is that the homotopy colimit of symmetric spectra can be defined by
using the homotopy colimit of spaces at each level, see Definition 2.2.1. We use
the basic construction of the homotopy colimit for spaces from [3].

DEFINITION 2.2.1. LetB be a small category anfi: B — Sp* a diagram
of symmetric spectra. Lef; denote the diagram of spaces at levelThen
(hocolimfp2 F); = hocolimZ,_F;.

This definition makes sense because any stable cofibration is a level cofibration
and colimits inSp* are created on each level. Also, this homotopy colimit has the
usual properties of a homotopy colimit. Namely, a map between diagrams which is
objectwise a level equivalencea-isomorphism, or a stable equivalence induces
the same type of equivalence on the homotopy colimit. The next two propositions
consider the first two cases. The case of stable cofibrations could be proved by
generalizing [3, Xl 4.2] to arbitrary model categories. Instead, here we use the
detection functor developed in Section 3 to verify this property in Lemma 4.1.5.

PROPOSITION 2.2.A.etF, G: B — Sp* be two diagrams of symmetric spectra
with a natural transformation; : F — G between them. l§(b): F(b) — G(b)
is a level equivalence at each objécte B, thenhocolim® F — hocolim? G is a
level equivalence.

Proof. This follows from the dual of [3, XI 5.6]. Cofibrancy conditions are not
required here since any space (i.e., simplicial set) is cofibrant. O

Following [3, XII 5] there is a spectral sequence for calculating any homology
theory applied to the homotopy colimit of spaces. The spectral sequence is associ-
ated to the filtration of the homotopy colimit given by the length of the sequence of
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maps inB. So forF: B — S, this spectral sequence convergeg thocolim? F
and hasE?-term E2, = colimy (h, F).

We use the following lemma to go from the homology theatydefined on
spaces byr! K =m, FoK to one onSp*>.

LEMMA 2.2.3. For X a symmetric spectrur,, X = colim, 7} X,,.
Proof.Consider the lattice of spac&(Q2/L'S/ X;) indexed oveli, j) € NxN

with maps for fixedj using the adjoint structure maps@f L'/ X and for fixed

using Q‘Q/ applied to the adjoint structure mapsoffyX;. Applying homotopy

and taking colimits in the two different directions finishes the proof. In one direc-

tion, one gets colimn*Q-"L’E/'X, but each of these terms and hence the colimit is

isomorphic tor, X. In the other direction, one has colim} X;. O

So applying the homology theory,, the above spectral sequence calculates
of each level of the homotopy colimit. SinegeX = colim, 7} X, and a sequential
colimit of spectral sequences is a spectral sequence, taking the colimit of these
level spectral sequences produces a spectral sequence.

PROPOSITION 2.2.4For F: B — Sp*, there is a spectral sequence converging
to zr,khocolimgpZ F with E2-term E2, = colim}, (7, F).

This spectral sequence shows that homotopy colimits preserve objeetwise
isomorphisms.

PROPOSITION 2.2.9.etF, G: B — Sp* be two diagrams of symmetric spectra
with a natural transformation): F — G between them. I§(b): F(b) — G(b)
induces ar,-isomorphism at each objeste B thenhocolim® F — hocolim? G
induces ar,-isomorphism.

Proof.Sincen induces ar..-isomorphism between the two diagrams in question,
it induces anE2-isomorphism. Thus, it induces an isomorphism on Eie-term,
and hence, a.-isomorphism on the homotopy colimits.

In Section 3, we consider diagrams over the skeleton of the category of finite
sets and injectiond,, with objectsn. Let I,, denote the full subcategory éfwhose
objects aren wheren is greater than or equal . The following lemma states the
cofinality information relating these categories.

LEMMA 2.2.6. Let F: I — Sp* be a diagram of spectra. The inclusiau,:

1, — I is terminal, hencdocolim™ u* F — hocolim’ F is a level equivalence.
Proof. Consider the functor + m: I — I,, which induces a functor on any
under category. There is a natural transformation from the identity functor to both
u, o (—+m) and(—+m)ou,. Hence each under category is homotopy equivalent
to(i | I).But(i | I)is contractible because it has an initial objectil+~>i. The
homotopy colimit statements follow from [3, X1 9.2]. O
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Using this cofinality result we prove the following proposition.

PROPOSITION 2.2.7Let F,G: I — S, be two diagrams of spaces with a nat-
ural transformationn: F — G between them. Assume thgh): F(n) — G(n)

is a A(n) connected map, wherte(n) < A(n + 1) andlim, A(n) is infinite. Then
hocolim’ F — hocolim! G is a weak equivalence.

Proof. The map is ariV-equivalence for everyy > 0. Choose am such that
A(n) > N. Then for every objecin in I, the mapn: F(m) — G(n) is an N-
equivalence, and so we conclude that hocolim” u* F — hocolim™ G is an
N-equivalence. The proposition follows by Lemma 2.2.6. O

We also need the following proposition which shows that the homotopy colimit
of a diagram of level equivalences oueis level equivalent to its value &t

PROPOSITION 2.2.8.etF: I — Sp* be a diagram of spectra. Assume that for
each morphisny in I, F(f) is a level equivalence. Then the inclusifii0) —
hocolim F is a level equivalence.

Proof. Consider the constant functér: I — Sp* with constant value (0).
Then at each object the ma@jin) = F(0) — F(n) induced by the unique map
0 — n is a level equivalence. Hence, by Proposition 2.2.2, it induces a level
equivalence on the homotopy colimitg(0) — hocolim’ F. O

Finally, we need the following proposition due to Jeff Smith, [18]. Ldie the
category with objects = {1, ..., n} and morphisms the standard inclusions. Ho-
motopy colimits ovelT are weakly equivalent to telescopes. kebe the ordered
set of natural numbers ang be the category whose objects are the finite sets
and the setv and whose morphisms are inclusions. IgtF: I, — S, be the
left homotopy Kan extension of: I — S, along the inclusion of categories
i1 -1,

PROPOSITION 2.2.9Let M be the monoid of injective maps « — « under
composition. Given any functdt: I — S,, then

(1) hocolim! F is weakly equivalent toL, F (w)),y Where(—),, is the homo-
topy orbits with respect to the action #f, and

(2) L,F () is weakly equivalent thocolim’ F.

Proof. For the convenience of the reader we sketch Smith’s proof of this pro-
position. Sincd., F is the homotopy Kan extension, hocolid ~ hocolim’ L, F.
Next, consider the full subcategory,of 1, with just one objecty. Since the inclu-
sion of A in I,, is terminal, hocolin¥ L, F is weakly equivalent to hocolithL, F,
by [3, Xl 9.2]. Since Hom(w, w) = M, hocolim® L, F is the homotopy orbit

space(L;, F(w))nm-
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For the second statemerit, F(w) = hocolini™~2<@4®) £y, Herei is the
inclusionI — I,. The categoryl' described above is equivalent to the category
(i oa | w) for the inclusiona: T — I. This category(i o @ | w) is terminal
in (i | w), because every under category has an initial object. So by [3, XI 9.2],
L, F(w) is weakly equivalent to hocolifnF . O

3. Detecting Stable Equivalences

In this section we introduce a functadp, which detects stable equivalences in the
sense that a maff — Y is a stable equivalence if and only ##X — DY is
am.-isomorphism. Of course the stable fibrant replacement furict@.1.3, also
has this property. It even turns stable equivalences into level equivalences. The
drawback ofL is that its only description is via the small object argument. Hence
it is difficult to say much abouk apart from its abstract properties. The advantage
of the functorD is that it has a more explicit definition. In particular, there is a
spectral sequence for calculating the classical stable homotopy groups,cfee
Proposition 2.2.4. Moreover, these groups are invariants of the stable equivalence
type of X becauseD takes stable equivalencesstg-isomorphisms.

In Section 4 we see tha fits into a sequence of functors used to define THH in
[1]. We use the notatio® instead of THH because is defined on any symmetric
spectrum, not just on ring spectra.

3.1. MAIN STATEMENTS AND PROOFS

The detection functoD is a homotopy colimit over the diagram categdrythe
skeleton of finite sets and injections with objentsGiven a symmetric spectrum

X, define a functorDy: I — Sp* whose value on the objectis Q"L FyX,,.
Recall L’ is just a level fibrant replacement functor. For a standard inclusion of
a subsetr: n ¢ m the mapDy(«) is just "L’ applied to the composition of
mapsFoX, — FoQ" "X, — Q" "FyX,, induced by the structure maps &f

For an isomorphism, the action is given by the conjugation action on the loop
coordinates and oX,,. All morphisms in/ are compositions of isomorphisms and
these standard inclusions.

DEFINITION 3.1.1. Thedetection functoD: Sp* — Sp* is defined by

DX = hocolimgpE Dy.

The homotopy colimit of symmetric spectra is given by a level homotopy colimit
of spaces, see 2.2.1. Hence

(DX), = hocolinfs’ Q“L'S" X,

The next theorem states thAtdetects stable equivalences.

THEOREM 3.1.2.The following are equivalent.
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(1) X — Y is a stable equivalence.

(2) DX — DY induces ar,-isomorphism.
(3) D?X — D?Y is alevel equivalence.
(4) ODX — QDY is alevel equivalence.

Remark3.1.3. One can apply the forgetful functor. Sp* — SpN after ap-
plying D. Then, although the forgetful functor does not detect and preserve stable
equivalences, the composition of this detection functor with the forgetful functor
does detect and preserve weak equivalences.

Remark3.1.4. One could consider symmetric spectra over topological spaces
instead of simplicial sets here. Theorem 3.1.2 and all of the statements leading up
to it in this section and in Section 2.2 which do not involve the funeiohold
when the objects involved are levelwise non-degenerately based spaces. Blence,
also detects stable equivalences between symmetric spectra based on topological
spaces. More precisely, letbe a cofibrant replacement functor of spaces applied
levelwise, thenX — Y is a stable equivalence if and onlyfifcX — DcY is a
m.-isomorphism.

To modify these statements for topological spaces, note that homotopy colimits
of non-degenerately based spaces are invariant under weak homotopy equival-
ences. For the statements involviggone needs stably cofibrant symmetric spec-
tra because homotopy groups must commute with sequential colimits. But these
statements are separate from those involing

Theorem 3.1.2 considers the propertiesiofvith respect to morphisms. The
following theorem considers the propertiesiofon objects.

THEOREM 3.1.5Let X be a symmetric spectrum.

(1) DX is semistable.
(2) If X is semistable, then the level fibrant replacemenDdf, L'DX, is an
Q2-spectrum.

Since stable equivalences between semistable spectra-&s@morphisms and
between2-spectra are level equivalences, Theorem 3.1.5 shows that the second
and third statements of Theorem 3.1.2 really just say fhand D? preserve and
detect stable equivalences.

Theorem 3.1.2 shows that the classical stable homotopy groupsXoére a
stable equivalence invariant. In the next theorem we show that they are in fact the
derived classical stable homotopy groups, i.e., they are isomorphid & .

THEOREM 3.1.6Let X be a symmetric spectrum.

(1) There is a natural zig-zag of functors inducing-isomorphisms betweehX
andDX.
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(2) There are natural zig-zags of functors inducing level equivalences between
LX,D?X,andQDX.

This theorem shows that the fibrant replacement functor is determinedwp to
isomorphism byD or up to level equivalence b? or Q D. The spectral sequence
for calculating the classical stable homotopy group®af, Proposition 2.2.4, thus
calculates the derived stable homotopy growpp X = 7, LX.

COROLLARY 3.1.7. For X any semistable spectrun¥ and DX are m,-
isomorphic. MoreoverQ X and DX are level equivalent.

LX and OX are level equivalent foiX semistable, so the second statement
follows from Proposition 3.1.9(3) below.

Remark3.1.8. This corollary is a special case of [1, 1.6] where the convergence
and connectivity conditions are replaced by the semistable condition. By Proposi-
tion 2.1.8 we recover a statement with convergence conditions but no connectivity
conditions. But this corollary also applies for instance when the classical stable
homotopy groups oKX are all finite, by Proposition 2.1.8.

The proofs of Theorems 3.1.2 and 3.1.5 use the following properties of the
functor D.

PROPOSITION 3.1.9.et f: X — Y be a map of symmetric spectra.

(1) If fis a stable equivalence thddf is am.-isomorphism.
(2) If fisam,-isomorphism theDf is a level equivalence.

(3) For any semistable spectrui, there is a natural zig-zag of functors inducing
level equivalences betweé&rX and DX.

We assume Proposition 3.1.9 to prove Theorems 3.1.2, 3.1.5, and 3.1.6. The
proof of Proposition 3.1.9 is technical, so it is delayed until the next subsection.

Proof of Theorem 3.1.@y Proposition 3.1.9 (3) applied tbX there is a zig-
zag of level equivalences betwegl. X and DL X. By Proposition 3.1.9 (1) since
X — LX is astable equivalenceX — DLX is am,-isomorphism. Putting these
equivalences together with the fact tHat X is level equivalent td. X, we get a
zig-zag ofr,-isomorphisms betweehX andDX.

Applying D to the zig-zag ofr,-isomorphisms betweehX and DX shows
that DL X and D?X are level equivalent by Proposition 3.1.9 (2). Combining this
with the zig-zag of level equivalences betwekX and DL X produces the level
equivalence of. X andD?X. The equivalences fap DX are similar. O
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Proof of Theorem 3.1.8By Theorem 3.1.@X is m.-isomorphic toLX. LX is
anQ-spectrum, hence it is semistable. So by Proposition 2. D30is semistable.

For X semistable, Proposition 3.1.9 shows tisX is level equivalent ta. X,
anQ-spectrum. Hencé&’'D X is anQ2-spectrum. O

Proof of Theorem 3.1.2Proposition 3.1.9 shows that (1) implies (2) and (2)
implies (3). A mapf is an,-isomorphism if and only iQ f is a level equivalence.
Hence the second and fourth statements are also equivalent.

By Theorem 3.1.6 part Z,X and DX are naturally level equivalent. Hence if
D?X — D?Y is a level equivalence then solist — LY. But this is equivalent to
X — Y being a stable equivalence. O

3.2. PROOF OF PROPOSITION.1.9

The proof of Proposition 3.1.9 is more technical. In this subsection we first prove
the second part of Proposition 3.1.9. Using this we prove the third part. Then,
for the first part of Proposition 3.1.9 we state and prove several lemmas which
together finish the proof. The proof of the first part is the most technical and heavily
uses model category techniques. Throughout this section we use several of the
properties of the homotopy colimit developed in Section 2.2.

Proof of Proposition 3.1.9 Part.2Ve apply Lemma 2.2.9, due to Jeff Smith,
to each level ofD. Consider the zeroth level first. If is amx,-isomorphism then
hocolim” Q"L'f, is aweak equivalence, singeX = w,hocolim’ Q"L'X,,. Since
taking homotopy orbits preserves weak equivalences this shows that the zeroth
level of DX — DY is a weak equivalence, i.e., hocoli®"L’f, is a weak
equivalence.

Thekth level of DX is the Oth level ofD =% X. SinceX* f is am,-isomorphism
if 1 is, this shows that each level is a weak equivalence. O

Recall that(sh, X);, = X, [11, 2.2.12] and.’ is a level fibrant replacement
functor.

DEFINITION 3.2.1. DefineM X = hocolim! Q"L'sh, X.

Proof of Proposition 3.1.9 Part First we develop the transformations which
play a part in the zig-zag mentioned in the proposition. The inclusion of the object
0in I induces a natural majj — M X. There is also a natural transformation of
functorsD — M. The structure maps oK induce a natural map of symmetric
spectraFp X, — sh,X. Applying Q"L’ to this map induces a map of diagrams
over I, and hence a natural map of homotopy colimits. So there is a natural zig-
zagX — MX <« DX. The zig-zag mentioned in the proposition is this zig-zag
applied toL X along with the natural mapX — DLX.
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For semistableX, the mapX — LX is am,-isomorphism. S@X — DLX
is a level equivalence by Proposition 3.1.9 part 2. So we show th#tig an
Q-spectrum, then both of the mafis— M X <« DX are level equivalences.

By definition anQ2-spectrum is a level fibrant spectrum such that> Q shy X
is a level equivalence. Since both shift augreserve level equivalences (on level
fibrant spectra), each map in the diagram oVessed to define X is a level
equivalence. By Proposition 2.2.8, th&n— M X is a level equivalence.

ToshowDX — M X is a level equivalence for arfg-spectrumX, we consider
connective covers. Given a level fibrant spectrkirdefine itskth connective cover,
C, X, as the homotopy fiber of the map fraxnto its kth Postnikov stag®; X. The
kth Postnikov functor is the localization functor given by localizing with respect to
the set of map$F,0A[m+n+k+2] - F,Alm+n+k+2]: m,n>0}. Atlevel
n, this functor is weakly equivalent to th@ + k)th Postnikov functor on spaces
which is given by localization with respect to the set of mggS[m+n+k+2] —
Alm +n + k + 2]: m >0} (see also [8]). TherC,T), is n + k connected and
w; (CyT), — m;T, is an isomorphism fof > n + k. Note that any level fibrant
spectrum is level equivalent to the homotopy colimit over its connective covers.
As —k decreases, the homotopy type of each levelof X eventually becomes
constant. So hocolipC_; X — X is a level equivalence.

Because2™, L’ and F, commute up to level equivalence with sequential homo-
topy colimits and homotopy colimits commute, hocqlimMC_, X is level equiva-
lent to DX. The shift functor also commutes with homotopy colimits so
hocolim, MC_, X is level equivalent taW X. So, to apply Proposition 2.2.2, we
need to showDC, X andMC, X are level equivalent for each

In the diagrams creating these homotopy colimits, consider leatethe object
min I. The map in question Q" L'%/C,X),, — (2"L'C,X),,+;. In general the
mapx/Q'Y — Y is 2N — [ + 1 connected whekl is N connected. Hence the map
in question is 2 +m + [ 4+ 1 connected. Using Proposition 2.2.7, this connectivity
implies that(DC, X), — (MC, X), is a weak equivalence. O

The proof of Proposition 3.1.9 part 1 breaks up into several parts by using model
category theory techniques. Since any stable equivalence can be factored as a stable
trivial cofibration followed by a level trivial fibration, we show that takes both
stable trivial cofibrations and level equivalencesrieisomorphisms. For the case
of stable trivial cofibrations we split the problem further into showing thabf
any generating stable trivial cofibration isz@-isomorphism and thab behaves
well with respect to push outs, i.e., that the following two lemmas hold. Since any
stable trivial cofibration is a retract of a sequential colimit of pushouts of generating
trivial cofibrations by 2.1.2, these lemmas suffice to finish the proof.

LEMMA 3.2.2. Let j: A — B be a generating stable trivial cofibration. Then
Dj : DA — DB is am,-isomorphism.
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LEMMA 3.2.3.1If

A— X

L

B— Y
is a pushout square with — B a cofibration, then
DA —— DX

| |

DB —— DY
is a homotopy pushout square. That isPifis the homotopy colimit obB <«
DA — DX, thenP — DY is a stable equivalence. In facE — DY is a
T.-isomorphism.

Combining this lemma with the next shows thalifA — DB is am,-isomor-
phism thenDX — DY is also ar.-isomorphism.

LEMMA 3.2.4. Let

A— X

L

B —— Y

be a square ir§p* with Y ,-isomorphic to the homotopy pushout. Assume> B
is am.-isomorphism. TheX — Y is am,-isomorphism.

For a proper model category this is a standard fact, that the homotopy pushout
of a weak equivalence is a weak equivalence. But no model category on symmetric
spectra has been written down with weak equivalencesrtisomorphisms, so
we prove this below.

Proof of Proposition 3.1.9 Part 1Assuming Lemmas 3.2.2, 3.2.3, and 3.2.4,
we can finish this proof. As mentioned above, we factor a stable equivalence into
a stable trivial cofibration followed by a level trivial fibration and shdmakes
both pieces tor,-isomorphisms. A level equivalence induces a level equivalence
at each object in the diagram for definilly Hence, by Proposition 2.2.2) of a
level equivalence is a level equivalence, and thus-gsomorphism.

Next we build an arbitrary stable trivial cofibration as a retract of a sequential
colimit of pushouts of generating cofibrations by 2.1.2. Since retracts and sequen-
tial colimits preserver,-isomorphisms we only need to consider pushouts of gener-
ating stable trivial cofibrations. By Lemma 3.212,0f a generating trivial cofibra-
tion is ar.-isomorphism. Then, by Lemmas 3.2.3 and 3.224f any map formed
by a pushout of a generating stable trivial cofibration is.asomorphism. O
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The rest of this section is devoted to proving these three lemmas.

Proof of Lemma 3.2.4zactor the mapd — X as a stable cofibration followed
by a level trivial fibrationA — Z — X. Then form the pushout square as follows:

A—— 7
| |

! !

B —— P.

Since the top map is a level cofibratiah,is the homotopy pushout of this square.
SinceA — B is am,-isomorphism,Z — P is am,-isomorphism because, is

a homology theory. Sincg — X is a level equivalence, to see thét— Y is a
m.-isomorphism it is enough to know th&t — Y is am,-isomorphism. But this is
assumed as part of the hypotheses. O

Proof of Lemma 3.2.3P — DY is a m.-isomorphism, because homotopy
colimits commute. LetP" be the homotopy pushout at the objact I of D <«
D, — Dyx. Then P is level equivalent to hocolimP”. Proposition 2.2.5 shows
that a map of diagrams which ismg.-isomorphism at each object inducesra
isomorphism on the homotopy colimits. Hence, it is enough to showRhat->
Q"L Fo(Y,) is am,-isomorphism for each.

Since cofibrations induce level cofibrations akfgpreserves cofibrations and
pushoutsFy applied to each level of the pushout square in the lemma is a homotopy
pushout square. Sincé — L’X is a level equivalence it preserves homotopy
pushout squares up to level equivalence. Sitenly shiftsz, by n, it preserves
homotopy pushouts up te.-isomorphism. Hence?” — Q"L'Fy(Y,) is am,-
isomorphism. O

We are left with proving Lemma 3.2.2. This proof goes to the heart of ®Why
detects stable equivalences. Basically this is because the free symmetric spectra,
F, K, are closely related to free diagrams o¥esee 2.1.1. The following lemma
and its proof make this statement more exact and identify the stable homotopy type
of DF,,(K).

LEMMA 3.2.5. There is a2l — m — 1 connected magy;: Q"L'(S' A K) —
(DF,K),. These maps fit together to give a map of symmetric spagtra
Q"L'FoK — DF,, K which is ar,-isomorphism.

To prove this lemma we define free diagrams on the catefory

DEFINITION 3.2.6. DefineF,, K : I — S, by (F.K)(n) = hom(m, n); A K.
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Fm(—) is left adjoint to the functor froni-diagrams oves, to S, which eval-
uates the diagram at € I. Hence a natural transformation fraf), K into any
diagram ovel is determined by a map from K to the diagram evaluated.at

Proof of Lemma 3.2.5.et D}, ,: I — S, be the functor given by théth
level of the functorDr, k. Then there is a mag,: F,Q"L'(S' A K) — DlFmK
determined by the inclusion of the wedge summand corresponding to the identity
map,Q"L'(S' A K) — Q"L'(S' A hom;(m,m), A K). As the homotopy colimit
of a free diagram is weakly equivalent to the colimit (see [7, 15]), the homotopy
colimit of this map is the mag;: Q"L'(S' A K) — (DF,,K); mentioned in the
lemma.

The map of diagrams id 2 m — 1 connected at each spot. Ateack I, ¢;(n),
factors into two maps as follows,

homy, (m, n); A Q"L'(S' A K) — QL' (hom;(m,n). A S' A K)
— Q"Q"L' T (homy (m, n)4 A S A K).

The first map is 2— m — 1 connected by the Blakers—Massey theorem which
shows that a wedge of loop spacesy v QY, is equivalent in the stable range to

the loop of the wedgeQ2 (X v Y). The second map isl2- m — 1 connected by

the Freudenthal suspension theorem, which for simplicial sets concerns the map
X — QLY X. Hence the map at each spot in the diagrany) and thus the map

of homotopy colimitsy); is 2 — m — 1 connected.

To see that these levels fit together, note that we can prafgntp a functor
from symmetric spectra tdé-diagrams of symmetric spectra. Then there is a map
¢ Fu(Q"L'FoK) — Dpg,x Which on levell is given by the mapg;, above.
Hence, taking homotopy colimits, this induces a map Q"L FohK — DF, K
which is arm,-isomorphism. O

Proof of Lemma 3.2.25ome of the generating trivial cofibrations are in fact
level equivalencesF, (A![k].) — F,(A[k]4). But, D of a level equivalence is a
level equivalence. Recall from [11, 3.4.9], the other generating trivial cofibrations
are the map (¢cu, jr): Punr — Chy As Fo(Alr]:) where P, . is the pushout
below.

Fui1(SEAA[r]y) —— Fupa(ST A Alr])

l l

C)‘m As Fo(A[}"]+) — Pm,r

To show thatD of P(c,, j,) is a m.-isomorphism, it is only necessary to
show thatD of cx: F,41(St A K) — CA, As FoK is a m,-isomorphism
for K = A[r]y or A[r];. This is enough, as Lemma 3.2.4 shows that if
DF,1(S* A Alr]ly) — D(Cx, As Fo(A[r]ly)) is a m,.-isomorphism then
the pushoutDF, 1(S* A Alr],) — DP,, is also am,-isomorphism. If
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DF,1(S* A Alr]ly) — D(Ch, As Fo(Alr]y)) is also am,-isomorphism, this
implies thatD P, , — D(CA,, As Fo(Alr]y)) is am,-isomorphism.

Since FoK is cofibrant andCx,, — F,,S° is a level equivalence, the map
CinAsFoK — F,,S°AsFoK = F,, K is alevel equivalence, by Lemma 2.1.15. As
already noticedD takes level equivalences #q-isomorphisms so we can assume
thatCx,, is replaced byF,, SO in cx for both values ofK.

So we show thaDcg : DF,,.1(S* A K) — DF,K is am,-isomorphism. Note
thatF,,.1(S* A K) — F,,K is induced by hom(m + 1, n) — homy; (m, n) which,
in turn, is induced by the inclusion @ in m + 1. Now consider homotopy ap-
plied to the map of diagram®)ck . Using ther,-isomorphisms from Lemma 3.2.5
above, this map is a map of free diagrams, hom+ 1, -) ® 7., 1 S* A K —
hom; (m, —) ® n}_,, K. This map induces an isomorphism on the colimits and all
of the higher colimvanish. Hence, using the spectral sequence for calculating the
homotopy of homotopy colimits (see Section 2[2) is an,-isomorphism. One
can also see this by considering the associated map of free diagrams direcily.

4. Topological Hochschild Homology

Let k¥ be a commutative symmetric ring spectrum. [Rebe ak-algebra. Define

R¢ = R Ay R°P. Let M be ak-symmetricR-bimodule, i.e., arR¢-module. With

this set up we have two different algebraic definitions of topological Hochschild
homology, one using a derived tensor product definition, the other mimicking the
usual Hochschild complex. In Theorem 4.1.10 we see that these definitions con-
struct stably equivalent-modules. Of course, since the smash product is only
stably invariant for cofibrant spectra, the case whRrés a cofibrantk-module

is the only one of interest.

The idea to define topological Hochschild homology (THH) by mimicking al-
gebra in this way is due to Goodwillie [9]. But because a symmetric monoidal
category of spectra was not available until recently, one could not simply im-
plement this idea. 8Kstedt was the first one to define THH by modifying this
idea to work with certain rings up to homotopy. This original definition of THH
concerns the case whén= S. We restate the definition of the simplicial spectrum
THH.(R) and its realization, THKR), from [1] for a symmetric ring spectrum
(see Definition 4.2.6). Theorem 4.2.8 shows thatfoe S the new definitions
are stably equivalent to the original definition wh&nis a cofibrant symmetric
ring spectrum. As a corollary to this comparison theorem we see thlet&dt's
definition of THH takes stable equivalences $flgebras tar,-isomorphisms.
Hence it always determines the right homotopy type, even on non-connective and
non-convergent ring spectra, that is, withoutkBtedt's original hypotheses. As
noted above, the other two algebraic definitions give the right homotopy type only
on cofibrant symmetric ring spectra. To avoid these unnecessary hypotheses we use
model category techniques and the detection functor developed in Section 3.
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4.1. TWO DEFINITIONS OF RELATIVE TOPOLOGICAL HOCHSCHILD
HOMOLOGY

The first definition corresponds to the derived tensor product notion of algebraic
Hochschild homology. The second definition mimics the Hochschild complex from
algebraic Hochschild homology. As we see in Theorem 4.1.10, these notions are
stably equivalent whei is a cofibrantR¢-module.

DEFINITION 4.1.1. Define thi(R; M) by M Age R.

Letu: R Ay R — R andn: k — R be the multiplication and unit maps on
R.Letgp,: M Ay R — M and¢;: R A M — M be the right and lefR-module
structure maps oR acting onM. Let R* be the smash product overf s copies
of R,i.e.,R A --- Ar R. The following definition mimics the Hochschild complex
asin [4].

DEFINITION 4.1.2. tHH.(R; M) is the simplicial k-module with s-simplices
M A, R*. The simplicial face and degeneracy maps are given by

¢ A (idg)* ™ if i =0,
d; = 1 (idy) A (dR) LA A (dg) ™1 if1<i <o,
(¢ A (idg)* ot if i =s,

ands; = idy A (idg)! A A (idg) L.

Each level of this simplicial symmetric spectrum is a bisimplicial set. Since
the realization of bisimplicial sets is equivalent to taking the diagonal, we use the
diagonal to define the realization of this simplicial symmetric spectrum.

DEFINITION 4.1.3. Define thé-module tHH(R; M) as the diagonal of the bisim-
plicial set at each level of this simpliciatmodule. For the special caseskof S
or M = R we delete them from the notation.

Since the homotopy colimit of a diagram of symmetric spectra is determined
by the homotopy colimit of each level, the fact that the homotopy colimit of a
bisimplicial set is weakly equivalent to the diagonal simplicial set, see [3, XIl 4.3],
proves the following proposition.

PROPOSITION 4.1.4The maphocolin@;’; tHHX.(R; M) — tHHX(R; M) is a
level equivalence.

Next we show certain homotopy invariance properties of tHFirst we show
the realization of a map which is a stable equivalence at each simplicial level is a
stable equivalence.
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LEMMA 4.1.5.LetF,G: B — Sp* be two diagrams of symmetric spectra with
a natural transformatiom;: F — G between them. l§(b): F(b) — G(b)is a
stable equivalence for each objdein B thenhocolim? F — hocolim® G is a
stable equivalence.

Proof.ConsiderDn: DF — DG. By Theorem 3.1.2 this is &,-isomorphism
at each object, so by Proposition 2.2.5 the homotopy colimitsrgiisomorphic.
SinceL’, Fp and homotopy colimits commute with homotopy colimits aqtl
commutes with homotopy colimits up te,-isomorphism, hocolii DF is -
isomorphic toD hocolim? F. Hence,D hocolim® F — D hocolim® G is ar,-
isomorphism. Thus, by Theorem 3.1.2, hocdlii — hocolim® G is a stable
equivalence. O

COROLLARY 4.1.6 A map between simplicial symmetric spectra which is a stable
equivalence on each level induces a stable equivalence on the realizations.
Proof. This just combines Lemma 4.1.5 and Proposition 4.1.4 or [3, XII, 4.3].
]

PROPOSITION 4.1.7Let R — R’ be a stable equivalence betweklgebras
which are cofibrant ask-modules,M an R¢-module, N an (R’)*-module, and
M — N a stable equivalence dt¢-modules. ThetHH*(R; M) — tHHX(R’; N)
is a stable equivalence. In particulatHHX(R) — tHHY(R), tHHX(R; M) —
tHHY(R; N), andtHHK(R; N) — tHHX(R’; N) are stable equivalences.

First note that a cofibrant-algebra is also cofibrant askamodule by [11,
5.4.3], so there are many examplegedlgebras which are cofibrant &gsnodules.

Proof. Lemma 2.1.15 applied té shows thatP A, — preserves stable equi-
valences ok-modules if P is a cofibrantt-module. HenceR* — R’* is a stable
equivalence between cofibraktmodules. So bothv A, R — N A, R® and
N A R — N A, R are also stable equivalences. Thus each simplicial level is
a stable equivalence. Then Corollary 4.1.6 shows that this map induces a stable
equivalence on tHH O

To compare these two definitions of THH we proceed as in [6, IX 2]. Let
N be a leftR-module, with¢y: R Ay N — N, and M a right R-module, with
ém: M Ay R — M. We define the topological bar constructiBa(M, R, N) by
mimicking algebra.

DEFINITION 4.1.8. The bar constructioB* (M, R, N) is the simplicialk-module
with s-simplicesM A, R* A; N. The face and degeneracy maps are given by

du A (idp) "t Aidy if i =0,
di = Jidy A (dr) P A A (dg) T Aidy if 1<i <,
idy A (idR)Sil A Oy if i =s.

Let BX(M, R, N) be the realization of this simplicia-module.
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Let c.(X) be the constant simplicial object witki in each simplicial degree.
Using the identificatiol Ax R = M, the mapn: k — R induces a simplicial
k-module mapB*(M, R, N) —c.(M Ag N).

LEMMA 4.1.9. For M a cofibrant R-module, the simplicial map df-modules,
B¥(M, R, N) — c.(M Ag N), induces a stable equivalence Bf(M, R, N) —
M Ag N.

Proof. Note thatB*(M, R, N) = ¢.M Ar B*(R, R, N). Since realization
commutes with smash product8*(M, R, N) = M Ag B*(R, R, N). So, using
Lemma 2.1.15, it is enough to show th&f(R, R, N) — N is a stable equi-
valence. The mapy = k A, N — R A, N provides a simplicial retraction for
B*(R, R, N). Hence the spectral sequence for computing the classical stable ho-
motopy groups of the homotopy colimit of this simpliciaimodule collapses. So
the mapB*(R, R, N) — c.N induces ar,-isomorphism on the realizations. O

Using the bar construction we show the two definitions of THH are stably
equivalent wherd is a cofibrantR?-module.

THEOREM 4.1.10.There is a natural map ofk-modulestHHY(R; M) —
thh(R; M) which is a stable equivalence faf a cofibrantR°-module.

Proof. We show that tHHM(R; M) is naturally isomorphic td/ Az BX(R, R, R)
below. Then the map tHHR; M) — thh(R; M) is given by M Ag. ¢ for ¢:
B*(R, R, R) — R. R is always a cofibranR-module, hence is a stable equi-
valence by Lemma 4.1.9. Then Lemma 2.1.15 shows Mhat - ¢ is a stable
equivalence sincé/ is a cofibrantR-module.

We now show tHH. (R; M) is naturally isomorphic te.(M) Age B¥(R, R, R).
On each simplicial level there are natural isomorphisms

M A RS = M Age (RE Ak R®) = M Age (R Ak R® Ax R)
= M Age BX(R, R, R).

These isomorphisms commute with the simplicial structure. Hence the simpli-
cial k-modules are naturally isomorphic, so their realizations are also naturally
isomorphic. O

4.2. BOKSTEDT S DEFINITION OF TOPOLOGICAL HOCHSCHILD HOMOLOGY

We now define the simplicial spectrum THHR; M) and its realization
THH(R; M) following Bokstedt’s original definitions. Each of the levels of the
simplicial spectrum THHcan be defined for a general symmetric spectfini\

ring structure is only necessary for defining the simplicial structure. In fact, level
k of THH. can be thought of as a functor generalizibgwhich gives the correct
m.-isomorphism type for the smash produckef 1 symmetric spectra. We start by
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considering each of these levels as a functor of several variables. See Section 2.2
for facts about homotopy colimits.
Let X denote a sequence ¢f+ 1 spectraX?, ..., X/. Define a functorD/ X
from 7/+1 to Sp* which atn = (no, ... , n;) takes the value,
DIX(N) = Q"L'Fo(X° A...AX)),

ng nj

whereL’ is a level fibrant replacement functor and= Xn,, the sum of thes;.
Note thatD°(X) is Dy, the functor defined at the beginning of Section 3. To see
that D/ X is defined over/+! one uses maps similar to those describedfgr

DEFINITION 4.2.1. LetX?, ..., X/ be symmetric spectra. Define
T, X = hocolim’”™ D/X.

We now define a natural transformatignX: T;X — D(X° Ags ... As X7).
Letw: I't1 — I be the functor induced by concatenation. Then there is a natural
transformation fromD/X to *DO(XO Ag. .. Ag X7). Itis induced by the map from
X% A--- A Xi, tothenth level of X0 Ag ... Ag X7. This map isE,, x - - x Tn;
equivariant, which is exactly what is necessary ok&rt. Hence, on homotopy
colimits there is a natural map hocofil D/X — hocolim’™ w*DO(XOAs. . . As

X7).

DEFINITION 4.2.2. There is a natural transformatignX: T; X — D(X° Ag
... As X/). Itis given by the composition

hocolim’”™ DIX — hocolim™™ w*DO(X° As ... Ag XP)
— hocolim! D°(X° A ... Ag X7).

PROPOSITION 4.2.3For any cofibrant symmetric spectrX?, ..., X/, the map
¢; X is am,-isomorphism.

This proposition is proved in Section 4.3. It is used in proving the comparison
theorem between @stedt’s definition of THH and our previous definition of tHH.
As a corollary of this proposition, Tgives the correct,-isomorphism type for the
derived smash product gf+ 1 symmetric spectra. Recall that the smash product
is only homotopy invariant on cofibrant spectra, so the derived smash product is
the smash product of the cofibrant replacements. In the stable model category of
symmetric spectra, consider a cofibrant replacement fun€toanalogous to the
fibrant replacement functat.

COROLLARY 4.2.4.7,T; X is isomorphic tor, L(CX° Ag ... Ag CXY), the
derived homotopy of the derived smash product&f. .., X/.

Proof. SinceC is a cofibrant replacement functafr,.X — X is a level equi-
valence. Hence ICX°,...,CX/) — T;(X° ..., X/) is a level equivalence by
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Proposition 2.2.2, as the map is a level equivalence at each object in the diagram
defining T;. So this corollary follows from Proposition 4.2.3 sineeD(C X° A
... As CX7) is isomorphic tar,L(CX° Ag ... A¢ CX/) by Theorem 3.1.6. [

We now define THH following BKstedt’s definition in [1].

DEFINITION 4.2.5. LetR be a symmetric ring spectrum witd an R¢-module.
Define THH; (R; M) =T;(M, R, ..., R).

The functors THH(R; M) fit together to form a simplicial symmetric spectrum
THH.(R; M). Although the definition of THH(R; M) does not use the ring struc-
ture of R or the module structure ao¥f, the simplicial structure of THHR; M)
does use both the multiplication and unit maps. Ttheface map uses the functor
8;: I'*Y — IJ defined by concatenation of the sets in factoendi + 1. The
last face map uses the cyclic permutation/éf! followed by concatenation of
the first two factors. For ease of notation B{(R; M) = D/(M,R, ..., R).
The multiplication ofR and M defines a natural transformation of functors from
DJ(R; M) to §;D/~Y(R; M). Sod; is the composition

d;: hocolim’™" D/ (R; M) — hocolim’’™ §*D/"Y(R; M)
—s hocolim’’ DI=Y(R; M).
The degeneracy maps are similar.

DEFINITION 4.2.6. Define THHR; M) as the diagonal of the bisimplicial set at
each level of the simplicial symmetric spectrum THHR; M).

One can check that each level in this spectrum agrees with the definition in [1]
whenM = R.
As in Proposition 4.1.4 we have the following equivalence.

PROPOSITION 4.2.7The maphocolirr@:; THH.(R; M) — THH(R: M) is a
level equivalence.

The next theorem shows that the definition of THH which mimics the Hoch-
schild complex is stably equivalent to the original definition of THH.

THEOREM 4.2.8.Let R be a cofibrant ring spectrum. Then there is a natural
Zig-zag of stable equivalences betwédh (R; M) and THH(R; M).

Proof. The zig-zag of functors between tHH and THH is induced by a zig-zag of
maps between the simplicial complexes defining tHH and THH. First one applies

the zig-zag of functors % L > ML < pL &~ Dtoeach simplicial level of

the Hochschild complex defining tHH. Herg,is the fibrant replacement functor,

M, D, and the natural transformations are defined in Section 3, see 3.1.1, 3.2.1,
and the proof of 3.1.9 part 3. Then there is a natural gap THH ;(R; M) —
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D(M AsR’). To see that the; maps commute with the simplicial maps, one needs
to note that the multiplication maps commute with the first map in the composite
defining ¢;. This follows since the mag, A R, — R,;, iS the map on the
appropriate wedge summand of the m&m R — R which induces the map

R As R — R. The maps involving\ are similar. Putting these simplicial levels
together one gets a zig-zag of natural transformations from.tHhito THH. (—).

The zig-zag of functors between 1 afdwas investigated in Section 3. Each
functor induces a stable equivalence on each simplicial level, by Definition 2.1.3,
Theorem 3.1.2, and Proposition 3.1.9. Corollary 4.1.6 shows that they induce stable
equivalences on the realizations.

So the only part left igp.: THH.(R; M) — D(tHH.(R; M)). LetCM — M
be a cofibrant replacement af as anR¢-module. Then by Proposition 4.1.7,
tHH;(R; CM) — tHH;(R; M) is a stable equivalence. Similarly, THR;

CM) — THH;(R; M) is a stable equivalence sin€&¥ — M is a level equi-
valence and hence induces a level equivalence on the homotopy colimits used to
define THH. So we can assum¥ is cofibrant as ak‘-module.

SinceR is cofibrant as ai§-algebra, it is also cofibrant as &amodule. Since
M is cofibrant as amR¢-module andR¢ is cofibrant, M is also cofibrant as an
S-module. Proposition 4.2.3 shows thatRfand M are any cofibran§-modules
then THH; (R; M) — D(M As RY) is ar,-isomorphism. By Proposition 2.2.5 the
map of realizations is a.-isomorphism. Hence, assuming Proposition 4.2.3, this
finishes the proof of Theorem 4.2.8. O

Using this comparison we showoRStedt's original definition of THH takes
stable equivalences of ring spectrastgisomorphisms. This is a stronger result
than for tHH because no cofibrancy condition is needed here and the map is a
m.-isomorphism, not just a stable equivalence.

COROLLARY 4.2.9.Let R — R’ be a stable equivalence of ring specti, an
R¢-module,N an (R")¢-module, and — N a stable equivalence @¢-modules.
ThenTHH(R; M) — THH(R'; N) is am.-isomorphism.

Remark4.2.10. This corollary could also be proved without using these com-
parison results. Each THHakes stable equivalences t@-isomorphisms by ar-
guments similar to those for THH= D in Section 3. By Proposition 2.2.5 the
realization, THH, also takes stable equivalences.tisomorphisms.

Proof. In the category of symmetric ring spectra, define a functorial cofibrant
replacement functor;. Applying this functor we have the following square.

CR —— CR
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Each of the vertical maps is a level trivial fibration and hence a level equivalence.
The bottom map is a stable equivalence by assumption. Hence the top map is also a
stable equivalence. To show THH applied to the bottom maprisiaomorphism

we show THH applied to the other three maps in this square airgomorphisms.

We also consider cofibrant replacements of the modules in quedtios. a
(CR)*-module andV is a(C R")¢-module. Since” R is a cofibrantS-algebra itis a
cofibrantS-module. Thus(C R)¢ is also cofibrant as astmodule by the monoidal
structure of the stable model category [11, 5.3.8]. Hence the cofibrations in the
category of(C R)*-modules are also underlying cofibrations. Sodey — M
be the cofibrant replacement 8f in the category of C R)¢-modules. Similarly,
let CN — N be the cofibrant replacement tf as a(C R’)°-module. Then both
CM andCN are cofibrant as-modules. Also, by the lifting property in the model
category of(C R)¢-modules, we have a mapM — CN becaus&C N — N is a
level trivial fibration. This magC M — CN is a stable equivalence by the two out
of three property.

The level equivalence€ R — R andCM — M induce a level equival-
ence on each object of the diagram defining THBo by applying Proposition
2.2.2 and Lemma 4.2.7 this shows that THdHR; CM) — THH(R; M) is a level
equivalence. Similarly THHCR’; CN) — THH(R'; N) is a level equivalence.

For the top map, first consider applying tHH. Proposition 4.1.7 implies that
tHH(CR; CM) — tHH(CR’; CN) is a stable equivalence. Hence by Theorem
3.1.2, DtHH(CR; CM) — DtHH(CR’; CN) is am.-isomorphism. But, in the
proof of Theorem 4.2.8, we showed that THH D tHH induces ar,-isomor-
phism if the ring and module are cofibrant #snodules. So THIICR; CM) —
THH(CR’; CN) is am,.-isomorphism. Stringing these equivalences together fin-
ishes the proof of this corollary. As Proposition 4.2.3 applies to each level, we have
actually shown that each THR; M) — THH;(R’; N) is also ar,-isomorphism.

]

4.3. PROOF OF PROPOSITIONM.2.3

To prove Proposition 4.2.3 we follow an outline similar to the proof thaiakes
stable trivial cofibrations ter,-isomorphisms, see Section 3.2. We show thgaits
am,-isomorphism when it is evaluated only on free symmetric spectra, i.e., some
F,K. Then we prove an induction step lemma which deals with pushouts over
generating stable trivial cofibrations. Using these lemmas we gho a .-
isomorphism on any collection of cofibrant spectra.

LEMMA 4.3.1. ¢, (Fy Ko, . .., F,; K ;) is am,-isomorphism.

LEMMA 4.3.2. Let A — B be a stable cofibration an&?, ..., X/ be cofibrant
S-modules. Consider the following pushout square.
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A— W

L

B —— Y

Assume thaTHH; .1(X°, ..., Z,..., X)) > D(X°As...As Z A5 ... As X7) is
a m.-isomorphism forZ = A, B, or W whereZ is inserted between thi¢h and
(i + 1th spots. TheMHH; 1 1(X°,....Y,..., X)) = D(X°As...AsY As...As
X/) is am,-isomorphism.

Using these two lemmas we can now prove Proposition 4.2.3.

Proof of Proposition 4.2.3We prove this by induction onhwith the induction
assumption thap; is am.-isomorphism wher — i variables are free spectra and
the other variables are cofibrant. Lemma 4.3.1 verifies this fer 0. For the
induction step, in one variable we build up a cofibrant spectrum from the initial
spectrum by retracts, colimits, and pushouts over generating cofibrations. Since
retracts ofr,-isomorphisms are..-isomorphisms ang; of a retract is a retract we
only need to consider colimits and pushouts.

As Fy, smash productd,’, ", and homotopy colimits commute with filtered
colimits, T; of a colimit in one of the variables is a colimit. This is also true/nf
Since a filtered colimit ofr,-isomorphisms is ar,-isomorphismg; of a colimit
in one variable is ar.-isomorphism if it is ar,-isomorphism at each spot in the
sequence. Hence we are only left with pushouts.

Sinceg; is a level equivalence between trivial spectra if one of the variables
is the initial spectrums, proceed by induction to verify the pushout property. By
induction the two corners in the pushout corresponding to the generating cofibra-
tion arer,-isomorphisms. This is because generating cofibrations are of the form
F,K — F,L, so these two corners haye- i + 1 free spectra and hence, fall into
the case covered by the previous induction step. The third corner is assumed to
be am,-isomorphism by induction. Heneg is an.-isomorphism on the pushout
corner by Lemma 4.3.2. O

Proof of Lemma 4.3.1We first establish the stable homotopy type of
T;(FyKo. ..., F,,K;). There is a free diagram functd,, ... ,X: I/t — Sp*
defined by

.....

.....

which evaluates the diagram@to, ..., n;) € 1/*1. There is a map of diagrams
ap(Q'L'Fo(Ko A ... ANK;j)) = D/ (FyoKo, ..., F, K))

.....

wheren = Xn;. Each spot in this diagram isma.-isomorphism. This is similar to
the proof of Lemma 3.2.5, on each level the map is an equivalence in the stable
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range by the Blakers—Massey and the Freudenthal suspension theorems. Hence the

map on homotopy colimits is alsom.-isomorphism,
Q'L'Fo(KoA...AK}) = T;(FyKo, ..., F, K)).
By Lemma 3.2.5,
Q"L'Fo(KoA...ANKj)) = D(F,(KoA...ANK)))

is also arr,.-isomorphism. To see that; induces ar.-isomorphism, note that on
the free diagrams there are similar maps

.....

— hocolim’”"" W* F (L' Fo(Ko A ... A K )
— hocolim’ 7,(Q"L'Fo(Ko A ... A K}))

which induce level equivalences on the homotopy colimits. O

To prove Lemma 4.3.2 we first show ©f a homotopy pushout in one variable
is a homotopy pushout.

LEMMA 4.3.3.LetX°, ..., X/ be cofibrant spectra. If

A— W

Lo

B—— Y

is a pushout square with — B a cofibration, then

Tia(X0% LA X) —— Ta(X% . W, XY)

| l

Tis1(X%...,B, ... X)) —— T,0(X%...,Y,...X))

is a homotopy pushout square. That isPifs the homotopy pushout of the second
square then? — T,,1(X° ..., Y, ... X/) is a stable equivalence. In fack, —
T,+1(X% ..., Y,... X)) is am,-isomorphism.

Proof. This proof is similar to the proof of Lemma 3.2.3. As with Lemma 3.2.3,
it is enough to consider each object/ifi! since homotopy colimits commute.

The following square is a pushout square with the left map a cofibration:

0 J 0 J
Xno/\.../\A,,l./\...X,,j —_— Xno/\“‘/\Wni/\“‘Xﬂj

| |

XO N ABy AL Xy, —— XOALLAY, ALLXG
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The first step in constructing;Tis just applyingFy to this squareF, preserves
cofibrations and pushouts, henEgapplied to this square is a homotopy pushout.
L’ preserves homotopy pushout squares up to level equivalence*@ngreserves
homotopy pushout squares uprtpisomorphism. Hence the map from the homo-
topy pushout to the bottom right corner israisomorphism. Since the homotopy
colimit of r.-isomorphisms is a,-isomorphism, this finishes the proof. O

Proof of Lemma 4.3.8Both T; and D take homotopy pushouts in one variable
to homotopy pushouts where the map from the pushout to the bottom right corner
is am.-isomorphism by Lemmas 4.3.3 and 3.2.3. Hence, this lemma follows from
the fact that homotopy colimits preservg-isomorphisms, Lemma 2.2.5. [
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