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Abstract. A functor is defined which detects stable equivalences of symmetric spectra. As an ap-
plication, the definition of topological Hochschild homology on symmetric ring spectra using the
Hochschild complex is shown to agree with B¨okstedt’s original ad hoc definition. In particular, this
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1. Introduction

The category of symmetric spectra introduced by Jeff Smith is a closed sym-
metric monoidal category whose associated homotopy category is equivalent to
the traditional stable homotopy category, see [11]. Unlike most other categories of
spectra, not all stable weak equivalences of symmetric spectra induceπ∗-
isomorphisms, that is, isomorphisms of the classical stable homotopy groups,
πnX = colimk πn+kXk , defined on the underlying prespectra. Hence, another way
to identify stable equivalences here is necessary.

To remedy this we consider a detection functor,D, which turns stable equi-
valences intoπ∗-isomorphisms. Theorem 3.1.2 shows thatX −→ Y is a stable
equivalence if and only ifDX −→ DY is a π∗-isomorphism. Thus, the classical
stable homotopy groups ofDX are invariants of the stable homotopy type ofX.
In fact, the groupsπ∗DX are the derived stable homotopy groups ofX. That is,
π∗DX ∼= π∗LX, whereL is a stable fibrant replacement functor, see 2.1.3.

Basically, the classical stable homotopy groups ofX are not homotopy invari-
ants ofX because their construction ignores the symmetric group actions on the
levels ofX. The construction ofDmodifies the usual telescope or sequential homo-
topy colimit construction to use the extra symmetric structure. More specifically,
DXn = hocolimk∈I �kf6nXk where the indexing category is the category of finite
sets and injections andf is a fibrant replacement functor, see Definition 3.1.1. As
with any homotopy colimit, there is a spectral sequence for calculatingπ∗DX, the
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derived stable homotopy groups ofX, see Proposition 2.2.4. This functorD in fact
appears in the zeroth level of the simplicial spectrum in B¨okstedt’s definition of
topological Hochschild homology (THH) [1]. This provides the starting point for
the comparison of various definitions of THH discussed below.

Although in general stable weak equivalences are notπ∗-isomorphisms, in the
full subcategory of semistable spectra (see Definition 2.1.6), the stable weak equi-
valences are exactly theπ∗-isomorphisms. In the even more specialized full subcat-
egory of�-spectra, the stable weak equivalences are exactly the level equivalences.
This detection functor is then analogous to a localization functor; after its first
application it localizes a spectrum to give a semistable spectrum and after two
applications it produces a spectrum which is level equivalent to an�-spectrum,
see Theorem 3.1.5. Thus, in model category theoretic terms,D2 composed with
level fibrant replacement is a stable fibrant replacement functor which is more
explicit than the one introduced in [11] that relies on the small object argument,
see Definition 2.1.3.

As an application of this detection functor we consider the THH of a symmetric
ring spectrum. One of the motivations for creating a symmetric monoidal category
of spectra was to provide a setting where one could easily mimic the usual con-
structions of algebra. Now that this is possible, one can verify that the classical ad
hoc construction of THH due to B¨okstedt, [1], agrees with these simple algebraic
definitions. Due to the work of [13, 16], the verification here for symmetric ring
spectra also shows that the algebraic definition of THH agrees with B¨okstedt’s ori-
ginal definition when defined forS-algebras, functors with smash product, Gamma
rings, and orthogonal ring spectra.

In Section 4 we give two definitions based on algebra of THH for a symmetric
ring spectrum; one uses a derived smash product over the enveloping algebra, 4.1.1,
and the other mimics the Hochschild complex, 4.1.2. These two definitions are then
shown to agree under certain cofibrancy conditions in Theorem 4.1.10 and to agree
with Bökstedt’s original definition of THH in Theorem 4.2.8.

Perhaps the most surprising of these results is the agreement of B¨okstedt’s
definition with the others without any of the connectivity or convergence condi-
tions that Bökstedt originally required. Some conditions are indeed necessary to
apply Bökstedt’s approximation theorem [1, 1.6], though the usual connectivity
and convergence conditions can be weakened to include any semistable spectrum,
see Corollary 3.1.7. For spectra which are not semistable, the model category
structure on symmetric ring spectra is used instead to prove comparison results
such as Theorems 3.1.2 and 4.2.8. Also, without any extra conditions, B¨okstedt’s
original definition of THH takes stable equivalences of symmetric ring spectra to
π∗-isomorphisms (see Corollary 4.2.9, Remark 2.1.12).

Symmetric spectra have also been used by Jardine in [12] to define a symmetric
monoidal model category which gives rise to the Morel–Voevodsky stable homo-
topy theory [19]. An analysis similar to the one carried out here will be necessary
to detect stable equivalences in this setting. The details of the analysis here do
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not immediately carry over to the stableA1-local homotopy theory, but the broad
outline should in fact generalize.

Outline. In the first section we recall various properties of symmetric spectra
from [11] and define symmetric ring spectra. In Section 2.2 we define the ho-
motopy colimit of diagrams of symmetric spectra and state several comparison
results for homotopy colimits which are used in Sections 3 and 4. The functorD,
which detects stable equivalences, is defined in Section 3. As an application of this
detection functor, in Section 4, three different definitions of topological Hochschild
homology are defined and compared.

2. Basic Definitions

In the first section, we recall the definitions and properties of symmetric spectra
which are essential to this paper. In Section 2.2, we consider the properties of the
homotopy colimit needed for Sections 3 and 4.

2.1. SYMMETRIC SPECTRA

First we recall the symmetric spectra,FnK, and some properties of the cofibrantly
generated stable model category of symmetric spectra. Then we consider a subcat-
egory of symmetric spectra, the semistable spectra, between which stable equival-
ences are exactly theπ∗-isomorphisms. Finally, we recall the definition of symmet-
ric ring spectra,R-modules, andR-algebras. Throughout this paper ‘space’ means
simplicial set, except in Remark 3.1.4. We denote byS∗ the category of pointed
simplicial sets and bySp6 the category of symmetric spectra over simplicial sets.

We first give a slightly different description of the free symmetric spectraFnK

defined in [11, 2.2.5] which play an important role in the model category structures
and in the later sections of this paper. LetI be the skeleton of the category of finite
sets and injections with objectsn. Note that homI (n,m) ∼= 6m/6m−n as6m sets.
This isomorphism gives the following proposition. The close connection between
the following free spectra and free diagrams overI (see Definition 3.2.6) is the key
reason for the use ofI in the definition of the detection functor given in the next
section.

PROPOSITION 2.1.1.(FnK)m = 6+m∧6m−n Sm−n∧K ∼= homI (n,m)+∧Sm−n∧K
whereSn = ∗ for n < 0.

Fn is left adjoint to thenth evaluation functorEvn : Sp6 −→ S∗ where
Evn(X) = Xn. There is a natural isomorphismFnK ∧S FmL −→Fn+m(K ∧ L).

The stable model category of symmetric spectra is cofibrantly generated by [11,
3.4]. In particular, this means that a version of Quillen’s small object argument
[14, II 3.4] exists. One aspect of the small object argument implies the following
proposition, see also [17, 2.1].
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PROPOSITION 2.1.2 [11, 3.4.9, 3.4.16].There is a set of mapsJ in Sp6 such that
any stable trivial cofibration is a retract of a sequential colimit of pushouts of maps
in J .

This provides a general method for proving that the class of cofibrations or
trivial cofibrations has some property. One shows that the generating maps have
some property and that the property is preserved under pushouts, colimits, and
retracts. This method is central to the proofs in Sections 3 and 4.

Quillen’s small object argument [14, p. II 3.4] has an analogue which allows one
to functorially factor maps whenever the model category is cofibrantly generated,
see [11, 3.2.11].

DEFINITION 2.1.3. LetL be the functorialstable fibrant replacementfunctor
defined by functorially factoring the mapX −→∗ into a stable trivial cofibration,
X −→LX and a stable fibrationLX −→∗. This is the factorization one defines using
the small object argument applied to the set of mapsJ . UsingJ ′, the generators of
the level trivial cofibrations, instead, one definesL′ as the functoriallevel fibrant
replacementwith X → L′X a level trivial cofibration andL′X → ∗ a level
fibration.

Semistable objects andπ∗-isomorphisms
Comparing symmetric spectra to the model category of spectra,SpN, defined in
[2] sheds light on the complications involved in the model category of symmetric
spectra. There is a forgetful functorU : Sp6 −→ SpN which forgets the action of
the symmetric groups and uses the structure mapsS1 ∧Xn −→X1+n.

DEFINITION 2.1.4. Letπk(X) = πk(UX) = colimi πk+iXi. A map f of sym-
metric spectra is aπ∗-isomorphismif it induces an isomorphism on theseclassical
stable homotopy groups.

These classical stable homotopy groups arenot the maps in the homotopy cat-
egory of symmetric spectra of the sphere intoX. For example,λ : F1S

1 −→F0S
0,

adjoint to the identity mapS1 → Ev1(F0S
0), is a stable equivalence but it is

not a π∗-isomorphism. As shown in [11, 3.1.11], though, aπ∗-isomorphism is
a particular example of a stable equivalence. Hence, to avoid confusion, we use
the termπ∗-isomorphism instead of stable homotopy isomorphism and call these
the classical stable homotopy groups instead of just stable homotopy groups. In
Section 3 we construct a functor,D, which converts any stable equivalence into a
π∗-isomorphism between semistable spectra, see Definition 2.1.6 below.

As in [2], we define a functorQ for symmetric spectra.

DEFINITION 2.1.5. DefineQX = colimn �
nL′ shn X.
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This functor does not have the same properties as in [2]. For instance,QX is
not always an�-spectrum andX −→QX is not always aπ∗-isomorphism. One
property that does continue to hold, however, is that a mapf is aπ∗-isomorphism
if and only ifQf is a level equivalence. Also,QX is always level fibrant.

DEFINITION 2.1.6. Asemistablesymmetric spectrum is one for which the stable
fibrant replacement map,X −→LX, is aπ∗-isomorphism.

Of courseX −→ LX is always a stable equivalence, but not all spectra are
semistable. For instance,F1S

1 is not semistable. Any stably fibrant spectrum, i.e.,
an �-spectrum, is semistable though. The following proposition shows that on
semistable spectraQ has the same properties as in [2] onSpN.

PROPOSITION 2.1.7.The following are equivalent.

(1) The symmetric spectrumX is semistable.

(2) The mapX −→�L′ sh1X is aπ∗-isomorphism.
(3) X −→QX is aπ∗-isomorphism.

(4) QX is an�-spectrum.

This proposition, [11, 5.6.2] withR∞ there, is replaced byQ here.
Two classes of semistable spectra are described in the following proposition.

The second class includes the connective and convergent spectra.

PROPOSITION 2.1.8 [11, 5.6.4].

(1) If the classical stable homotopy groups ofX are all finite thenX is semistable.

(2) Suppose thatX is a level fibrant symmetric spectrum and there exists some
α > 1 such thatXn −→�Xn+1 induces an isomorphismπkXn −→πk+1Xn+1

for all k6αn for sufficiently largen. ThenX is semistable.

The next proposition shows that stable equivalences between semistable spectra
are particularly easy to understand.

PROPOSITION 2.1.9 [11, 5.6.5].Letf : X −→Y be a map between two semistable
symmetric spectra. Thenf is a stable equivalence if and only if it is aπ∗-
isomorphism.

Finally, any spectrumπ∗-isomorphic to a semistable spectrum is itself
semistable.

PROPOSITION 2.1.10.If f : X → Y is a π∗-isomorphism andY is semistable
thenX is semistable.
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Proof. SinceLf andY → LY areπ∗-isomorphisms,X → LX is also aπ∗-
isomorphism.

Symmetric ring spectra
In this section, rings, modules, and algebras are defined for symmetric spectra.

DEFINITION 2.1.11. Asymmetric ring spectrumis a monoid in the category of
symmetric spectra. In other words, a symmetric ring spectrum is a symmetric spec-
trum,R, with mapsµ : R ∧S R −→R andη : S −→R such that they are associative
and unital, i.e.,µ◦(µ ∧S id) = µ◦(id ∧S µ) andµ◦(η ∧S id) ∼= id ∼= µ◦(id ∧S η).
R is calledcommutativeif µ ◦ tw = µ, where tw:R ∧S R→ R ∧S R is the twist
isomorphism.

Since symmetric ring spectra are the only type of ring spectra in this paper we
also refer to them as simplyring spectra.

Remark2.1.12. This description of a symmetric ring spectrum agrees with the
definition of a functor with smash product defined on spheres as in [10, 2.7]. The
centrality condition mentioned in [10, 2.7.ii] is necessary but was not included in
some earlier definitions of FSPs defined on spheres. Note, however, that there are
no connectivity (e.g.F(Sn+1) is n-connected) or convergence conditions (e.g. the
limit is attained at a finite stage in the colimit definingπn for eachn) placed on
symmetric ring spectra. These conditions are usually assumed although not always
explicitly stated when using FSPs. In particular, these conditions are necessary for
applying Bökstedt’s approximation theorem [1, 1.6]. Corollary 3.1.7 shows that
a special case of this approximation theorem holds for any semistable spectrum.
To consider non-convergent spectra we use Theorem 3.1.2 in place of the approx-
imation theorem. This theorem does not require any connectivity or convergence
conditions.

Proposition 2.1.8 shows that the connectivity and convergence conditions on
an FSP ensure that the associated underlying symmetric spectrum is semistable.
Proposition 2.1.9 shows that stable equivalences between such FSPs are exactly
theπ∗-isomorphisms. As with the category of symmetric spectra, inverting theπ∗-
isomorphisms is not enough to ensure that the homotopy category of symmetric
ring spectra is equivalent to the homotopy category ofA∞-ring spectra. So once
the connectivity and convergence conditions are removed one must consider stable
equivalences instead of justπ∗-isomorphisms.

We also need the following definitions ofR-modules andR-algebras in later
sections.

DEFINITION 2.1.13. LetR be a symmetric ring spectrum. A (left)R-moduleis a
symmetric spectrumM with a mapα : R∧S M −→M that is associative and unital.
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DEFINITION 2.1.14. LetR be a commutative ring spectrum. AnR-algebra is
a monoid in the category ofR-modules. That is, anR-algebra is a symmetric
spectrumA with R-module mapsµ : A ∧R A −→ A andR −→ A that satisfy
the usual associativity and unity diagrams.

Note that symmetric ring spectra are exactly theS-algebras. The following
lemma is needed for Section 4 so we reproduce it for the reader’s convenience.

LEMMA 2.1.15 [11, 5.4.4].LetR be a symmetric ring spectrum andM a cofibrant
R-module. ThenM ∧R − takes level equivalences ofR-modules to level equival-
ences inSp6 and it takes stable equivalences ofR-modules to stable equivalences
in Sp6.

2.2. HOMOTOPY COLIMITS

In this section we list some of the properties of the homotopy colimit functor for
symmetric spectra which are used in the latter parts of this paper. The most import-
ant property is that the homotopy colimit of symmetric spectra can be defined by
using the homotopy colimit of spaces at each level, see Definition 2.2.1. We use
the basic construction of the homotopy colimit for spaces from [3].

DEFINITION 2.2.1. LetB be a small category andF : B −→ Sp6 a diagram
of symmetric spectra. LetFl denote the diagram of spaces at levell. Then
(hocolimB

Sp6
F )l = hocolimB

S∗ Fl.

This definition makes sense because any stable cofibration is a level cofibration
and colimits inSp6 are created on each level. Also, this homotopy colimit has the
usual properties of a homotopy colimit. Namely, a map between diagrams which is
objectwise a level equivalence, aπ∗-isomorphism, or a stable equivalence induces
the same type of equivalence on the homotopy colimit. The next two propositions
consider the first two cases. The case of stable cofibrations could be proved by
generalizing [3, XII 4.2] to arbitrary model categories. Instead, here we use the
detection functor developed in Section 3 to verify this property in Lemma 4.1.5.

PROPOSITION 2.2.2.LetF,G : B −→Sp6 be two diagrams of symmetric spectra
with a natural transformationη : F −→G between them. Ifη(b) : F(b) −→G(b)

is a level equivalence at each objectb ∈ B, thenhocolimB F −→hocolimB G is a
level equivalence.

Proof.This follows from the dual of [3, XI 5.6]. Cofibrancy conditions are not
required here since any space (i.e., simplicial set) is cofibrant.

Following [3, XII 5] there is a spectral sequence for calculating any homology
theory applied to the homotopy colimit of spaces. The spectral sequence is associ-
ated to the filtration of the homotopy colimit given by the length of the sequence of
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maps inB. So forF : B → S∗ this spectral sequence converges toh∗ hocolimB F

and hasE2-termE2
s,t = colims

B(htF ).

We use the following lemma to go from the homology theoryπs∗ defined on
spaces byπs∗K =π∗F0K to one onSp6 .

LEMMA 2.2.3. For X a symmetric spectrum,π∗X = colimn π
s∗Xn.

Proof.Consider the lattice of spaces�i(�jL′6jXi) indexed over(i, j) ∈ N×N
with maps for fixedj using the adjoint structure maps of�jL′6jX and for fixedi
using�i�j applied to the adjoint structure maps ofL′F0Xi . Applying homotopy
and taking colimits in the two different directions finishes the proof. In one direc-
tion, one gets colimj π∗�jL′6jX, but each of these terms and hence the colimit is
isomorphic toπ∗X. In the other direction, one has colimi π s∗Xi.

So applying the homology theoryπ∗, the above spectral sequence calculatesπ∗
of each level of the homotopy colimit. Sinceπ∗X = colimn π

s∗Xn and a sequential
colimit of spectral sequences is a spectral sequence, taking the colimit of these
level spectral sequences produces a spectral sequence.

PROPOSITION 2.2.4.For F : B → Sp6, there is a spectral sequence converging
to π∗hocolimB

Sp6
F withE2-termE2

s,t = colims
B(πtF ).

This spectral sequence shows that homotopy colimits preserve objectwiseπ∗-
isomorphisms.

PROPOSITION 2.2.5.LetF,G : B −→Sp6 be two diagrams of symmetric spectra
with a natural transformationη : F −→G between them. Ifη(b) : F(b) −→G(b)

induces aπ∗-isomorphism at each objectb ∈ B thenhocolimB F −→hocolimB G

induces aπ∗-isomorphism.
Proof.Sinceη induces aπ∗-isomorphism between the two diagrams in question,

it induces anE2-isomorphism. Thus, it induces an isomorphism on theE∞-term,
and hence, aπ∗-isomorphism on the homotopy colimits.

In Section 3, we consider diagrams over the skeleton of the category of finite
sets and injections,I , with objectsn. Let Im denote the full subcategory ofI whose
objects aren wheren is greater than or equal tom. The following lemma states the
cofinality information relating these categories.

LEMMA 2.2.6. Let F : I → Sp6 be a diagram of spectra. The inclusionum:
Im −→I is terminal, hencehocolimIm u∗mF → hocolimI F is a level equivalence.

Proof. Consider the functor− + m : I −→ Im which induces a functor on any
under category. There is a natural transformation from the identity functor to both
um ◦(−+m) and(−+m)◦um. Hence each under category is homotopy equivalent
to (i ↓ I ). But (i ↓ I ) is contractible because it has an initial object 1:i −→i. The
homotopy colimit statements follow from [3, XI 9.2].
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Using this cofinality result we prove the following proposition.

PROPOSITION 2.2.7.LetF,G : I −→S∗ be two diagrams of spaces with a nat-
ural transformationη : F −→G between them. Assume thatη(n) : F(n) −→G(n)
is a λ(n) connected map, whereλ(n)6λ(n + 1) and limn λ(n) is infinite. Then
hocolimI F −→hocolimI G is a weak equivalence.

Proof. The map is anN-equivalence for everyN > 0. Choose ann such that
λ(n) > N . Then for every objectm in In the mapη : F(m) → G(n) is anN-
equivalence, and so we conclude thatη : hocolimIn u∗nF → hocolimIn u∗nG is an
N-equivalence. The proposition follows by Lemma 2.2.6.

We also need the following proposition which shows that the homotopy colimit
of a diagram of level equivalences overI is level equivalent to its value at0.

PROPOSITION 2.2.8.LetF : I → Sp6 be a diagram of spectra. Assume that for
each morphismf in I , F(f ) is a level equivalence. Then the inclusionF(0) →
hocolimI F is a level equivalence.

Proof. Consider the constant functorC : I → Sp6 with constant valueF(0).
Then at each object the mapC(n) = F(0) → F(n) induced by the unique map
0 → n is a level equivalence. Hence, by Proposition 2.2.2, it induces a level
equivalence on the homotopy colimits,F(0)→ hocolimI F .

Finally, we need the following proposition due to Jeff Smith, [18]. LetT be the
category with objectsn = {1, . . . , n} and morphisms the standard inclusions. Ho-
motopy colimits overT are weakly equivalent to telescopes. Letω be the ordered
set of natural numbers andIω be the category whose objects are the finite setsn
and the setω and whose morphisms are inclusions. LetLhF : Iω → S∗ be the
left homotopy Kan extension ofF : I → S∗ along the inclusion of categories
i : I → Iω.

PROPOSITION 2.2.9.LetM be the monoid of injective mapsi : ω → ω under
composition. Given any functorF : I → S∗, then

(1) hocolimI F is weakly equivalent to(LhF (ω))hM where(−)hM is the homo-
topy orbits with respect to the action ofM, and

(2) LhF(ω) is weakly equivalent tohocolimT F .

Proof. For the convenience of the reader we sketch Smith’s proof of this pro-
position. SinceLhF is the homotopy Kan extension, hocolimI F ' hocolimIω LhF .
Next, consider the full subcategory,A of Iω with just one object,ω. Since the inclu-
sion ofA in Iω is terminal, hocolimIω LhF is weakly equivalent to hocolimA LhF ,
by [3, XI 9.2]. Since HomA(ω,ω) = M, hocolimA LhF is the homotopy orbit
space(LhF (ω))hM .
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For the second statement,LhF(ω) = hocolimi(n)→ω∈(i↓ω) F (n). Herei is the
inclusionI → Iω. The categoryT described above is equivalent to the category
(i ◦ α ↓ ω) for the inclusionα : T → I . This category(i ◦ α ↓ ω) is terminal
in (i ↓ ω), because every under category has an initial object. So by [3, XI 9.2],
LhF(ω) is weakly equivalent to hocolimT F .

3. Detecting Stable Equivalences

In this section we introduce a functor,D, which detects stable equivalences in the
sense that a mapX −→ Y is a stable equivalence if and only ifDX −→ DY is
a π∗-isomorphism. Of course the stable fibrant replacement functorL, 2.1.3, also
has this property. It even turns stable equivalences into level equivalences. The
drawback ofL is that its only description is via the small object argument. Hence
it is difficult to say much aboutL apart from its abstract properties. The advantage
of the functorD is that it has a more explicit definition. In particular, there is a
spectral sequence for calculating the classical stable homotopy groups ofDX, see
Proposition 2.2.4. Moreover, these groups are invariants of the stable equivalence
type ofX becauseD takes stable equivalences toπ∗-isomorphisms.

In Section 4 we see thatD fits into a sequence of functors used to define THH in
[1]. We use the notationD instead of THH0 becauseD is defined on any symmetric
spectrum, not just on ring spectra.

3.1. MAIN STATEMENTS AND PROOFS

The detection functorD is a homotopy colimit over the diagram categoryI , the
skeleton of finite sets and injections with objectsn. Given a symmetric spectrum
X, define a functorDX : I −→ Sp6 whose value on the objectn is �nL′F0Xn.
RecallL′ is just a level fibrant replacement functor. For a standard inclusion of
a subsetα : n ⊂ m the mapDX(α) is just�nL′ applied to the composition of
mapsF0Xn −→ F0�

m−nXm −→�m−nF0Xm induced by the structure maps ofX.
For an isomorphism, the action is given by the conjugation action on the loop
coordinates and onXn. All morphisms inI are compositions of isomorphisms and
these standard inclusions.

DEFINITION 3.1.1. Thedetection functorD : Sp6 −→Sp6 is defined by

DX = hocolimI
Sp6
DX.

The homotopy colimit of symmetric spectra is given by a level homotopy colimit
of spaces, see 2.2.1. Hence

(DX)n = hocolimk∈I
S∗ �

kL′6nXk.

The next theorem states thatD detects stable equivalences.

THEOREM 3.1.2.The following are equivalent.
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(1) X −→Y is a stable equivalence.
(2) DX −→DY induces aπ∗-isomorphism.
(3) D2X −→D2Y is a level equivalence.
(4) QDX −→QDY is a level equivalence.

Remark3.1.3. One can apply the forgetful functorU : Sp6 → SpN after ap-
plyingD. Then, although the forgetful functor does not detect and preserve stable
equivalences, the composition of this detection functor with the forgetful functor
does detect and preserve weak equivalences.

Remark3.1.4. One could consider symmetric spectra over topological spaces
instead of simplicial sets here. Theorem 3.1.2 and all of the statements leading up
to it in this section and in Section 2.2 which do not involve the functorQ hold
when the objects involved are levelwise non-degenerately based spaces. Hence,D

also detects stable equivalences between symmetric spectra based on topological
spaces. More precisely, letc be a cofibrant replacement functor of spaces applied
levelwise, thenX → Y is a stable equivalence if and only ifDcX → DcY is a
π∗-isomorphism.

To modify these statements for topological spaces, note that homotopy colimits
of non-degenerately based spaces are invariant under weak homotopy equival-
ences. For the statements involvingQ one needs stably cofibrant symmetric spec-
tra because homotopy groups must commute with sequential colimits. But these
statements are separate from those involvingD.

Theorem 3.1.2 considers the properties ofD with respect to morphisms. The
following theorem considers the properties ofD on objects.

THEOREM 3.1.5.LetX be a symmetric spectrum.

(1) DX is semistable.
(2) If X is semistable, then the level fibrant replacement ofDX, L′DX, is an

�-spectrum.

Since stable equivalences between semistable spectra areπ∗-isomorphisms and
between�-spectra are level equivalences, Theorem 3.1.5 shows that the second
and third statements of Theorem 3.1.2 really just say thatD andD2 preserve and
detect stable equivalences.

Theorem 3.1.2 shows that the classical stable homotopy groups ofDX are a
stable equivalence invariant. In the next theorem we show that they are in fact the
derived classical stable homotopy groups, i.e., they are isomorphic toπ∗LX.

THEOREM 3.1.6.LetX be a symmetric spectrum.

(1) There is a natural zig-zag of functors inducingπ∗-isomorphisms betweenLX
andDX.
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(2) There are natural zig-zags of functors inducing level equivalences between
LX,D2X, andQDX.

This theorem shows that the fibrant replacement functor is determined up toπ∗-
isomorphism byD or up to level equivalence byD2 orQD. The spectral sequence
for calculating the classical stable homotopy groups ofDX, Proposition 2.2.4, thus
calculates the derived stable homotopy groupsπ∗DX ∼= π∗LX.

COROLLARY 3.1.7. For X any semistable spectrum,X and DX are π∗-
isomorphic. Moreover,QX andDX are level equivalent.

LX andQX are level equivalent forX semistable, so the second statement
follows from Proposition 3.1.9(3) below.

Remark3.1.8. This corollary is a special case of [1, 1.6] where the convergence
and connectivity conditions are replaced by the semistable condition. By Proposi-
tion 2.1.8 we recover a statement with convergence conditions but no connectivity
conditions. But this corollary also applies for instance when the classical stable
homotopy groups ofX are all finite, by Proposition 2.1.8.

The proofs of Theorems 3.1.2 and 3.1.5 use the following properties of the
functorD.

PROPOSITION 3.1.9.Letf : X −→Y be a map of symmetric spectra.

(1) If f is a stable equivalence thenDf is aπ∗-isomorphism.

(2) If f is aπ∗-isomorphism thenDf is a level equivalence.

(3) For any semistable spectrumX, there is a natural zig-zag of functors inducing
level equivalences betweenLX andDX.

We assume Proposition 3.1.9 to prove Theorems 3.1.2, 3.1.5, and 3.1.6. The
proof of Proposition 3.1.9 is technical, so it is delayed until the next subsection.

Proof of Theorem 3.1.6.By Proposition 3.1.9 (3) applied toLX there is a zig-
zag of level equivalences betweenLLX andDLX. By Proposition 3.1.9 (1) since
X→ LX is a stable equivalenceDX→ DLX is aπ∗-isomorphism. Putting these
equivalences together with the fact thatLLX is level equivalent toLX, we get a
zig-zag ofπ∗-isomorphisms betweenLX andDX.

Applying D to the zig-zag ofπ∗-isomorphisms betweenLX andDX shows
thatDLX andD2X are level equivalent by Proposition 3.1.9 (2). Combining this
with the zig-zag of level equivalences betweenLX andDLX produces the level
equivalence ofLX andD2X. The equivalences forQDX are similar.
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Proof of Theorem 3.1.5.By Theorem 3.1.6DX is π∗-isomorphic toLX. LX is
an�-spectrum, hence it is semistable. So by Proposition 2.1.10,DX is semistable.

ForX semistable, Proposition 3.1.9 shows thatDX is level equivalent toLX,
an�-spectrum. HenceL′DX is an�-spectrum.

Proof of Theorem 3.1.2.Proposition 3.1.9 shows that (1) implies (2) and (2)
implies (3). A mapf is aπ∗-isomorphism if and only ifQf is a level equivalence.
Hence the second and fourth statements are also equivalent.

By Theorem 3.1.6 part 2,LX andD2X are naturally level equivalent. Hence if
D2X→ D2Y is a level equivalence then so isLX→ LY . But this is equivalent to
X→ Y being a stable equivalence.

3.2. PROOF OF PROPOSITION3.1.9

The proof of Proposition 3.1.9 is more technical. In this subsection we first prove
the second part of Proposition 3.1.9. Using this we prove the third part. Then,
for the first part of Proposition 3.1.9 we state and prove several lemmas which
together finish the proof. The proof of the first part is the most technical and heavily
uses model category techniques. Throughout this section we use several of the
properties of the homotopy colimit developed in Section 2.2.

Proof of Proposition 3.1.9 Part 2. We apply Lemma 2.2.9, due to Jeff Smith,
to each level ofD. Consider the zeroth level first. Iff is aπ∗-isomorphism then
hocolimT �nL′fn is a weak equivalence, sinceπ∗X = π∗hocolimT �nL′Xn. Since
taking homotopy orbits preserves weak equivalences this shows that the zeroth
level of DX → DY is a weak equivalence, i.e., hocolimI �nL′fn is a weak
equivalence.

Thekth level ofDX is the 0th level ofD6kX. Since6kf is aπ∗-isomorphism
if f is, this shows that each level is a weak equivalence.

Recall that(shnX)k = Xn+k, [11, 2.2.12] andL′ is a level fibrant replacement
functor.

DEFINITION 3.2.1. DefineMX = hocolimI �nL′shnX.

Proof of Proposition 3.1.9 Part 3.First we develop the transformations which
play a part in the zig-zag mentioned in the proposition. The inclusion of the object
0 in I induces a natural mapX −→MX. There is also a natural transformation of
functorsD −→M. The structure maps onX induce a natural map of symmetric
spectraF0Xn −→ shnX. Applying �nL′ to this map induces a map of diagrams
over I , and hence a natural map of homotopy colimits. So there is a natural zig-
zagX −→MX ←−DX. The zig-zag mentioned in the proposition is this zig-zag
applied toLX along with the natural mapDX→ DLX.
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For semistableX, the mapX → LX is aπ∗-isomorphism. SoDX → DLX

is a level equivalence by Proposition 3.1.9 part 2. So we show that ifX is an
�-spectrum, then both of the mapsX→ MX←−DX are level equivalences.

By definition an�-spectrum is a level fibrant spectrum such thatX −→� sh1X

is a level equivalence. Since both shift and� preserve level equivalences (on level
fibrant spectra), each map in the diagram overI used to defineMX is a level
equivalence. By Proposition 2.2.8, thenX −→MX is a level equivalence.

To showDX −→MX is a level equivalence for any�-spectrumX, we consider
connective covers. Given a level fibrant spectrumX define itskth connective cover,
CkX, as the homotopy fiber of the map fromX to itskth Postnikov stagePkX. The
kth Postnikov functor is the localization functor given by localizing with respect to
the set of maps{Fn∂1[m+n+k+2]→ Fn1[m+n+k+2] : m,n> 0}. At level
n, this functor is weakly equivalent to the(n + k)th Postnikov functor on spaces
which is given by localization with respect to the set of maps{∂1[m+n+k+2]→
1[m + n + k + 2] : m> 0} (see also [8]). Then(CkT )n is n + k connected and
πi(CkT )n → πiTn is an isomorphism fori > n + k. Note that any level fibrant
spectrum is level equivalent to the homotopy colimit over its connective covers.
As −k decreases, the homotopy type of each level ofC−kX eventually becomes
constant. So hocolimk C−kX→ X is a level equivalence.

Because�m,L′ andF0 commute up to level equivalence with sequential homo-
topy colimits and homotopy colimits commute, hocolimn DC−nX is level equiva-
lent to DX. The shift functor also commutes with homotopy colimits so
hocolimn MC−nX is level equivalent toMX. So, to apply Proposition 2.2.2, we
need to showDCnX andMCnX are level equivalent for eachn.

In the diagrams creating these homotopy colimits, consider levell at the object
m in I . The map in question is(�mL′6lCnX)m −→(�mL′CnX)m+l. In general the
map6l�lY −→Y is 2N − l+1 connected whenY isN connected. Hence the map
in question is 2n+m+ l+1 connected. Using Proposition 2.2.7, this connectivity
implies that(DCnX)k −→(MCnX)k is a weak equivalence.

The proof of Proposition 3.1.9 part 1 breaks up into several parts by using model
category theory techniques. Since any stable equivalence can be factored as a stable
trivial cofibration followed by a level trivial fibration, we show thatD takes both
stable trivial cofibrations and level equivalences toπ∗-isomorphisms. For the case
of stable trivial cofibrations we split the problem further into showing thatD of
any generating stable trivial cofibration is aπ∗-isomorphism and thatD behaves
well with respect to push outs, i.e., that the following two lemmas hold. Since any
stable trivial cofibration is a retract of a sequential colimit of pushouts of generating
trivial cofibrations by 2.1.2, these lemmas suffice to finish the proof.

LEMMA 3.2.2. Let j : A −→ B be a generating stable trivial cofibration. Then
Dj : DA −→DB is aπ∗-isomorphism.
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LEMMA 3.2.3. If

A −−−→ Xy y
B −−−→ Y

is a pushout square withA −→B a cofibration, then

DA −−−→ DXy y
DB −−−→ DY

is a homotopy pushout square. That is, ifP is the homotopy colimit ofDB ←−
DA −→ DX, thenP −→ DY is a stable equivalence. In fact,P −→ DY is a
π∗-isomorphism.

Combining this lemma with the next shows that ifDA −→DB is aπ∗-isomor-
phism thenDX −→DY is also aπ∗-isomorphism.

LEMMA 3.2.4. Let
A −−−→ Xy y
B −−−→ Y

be a square inSp6 withY π∗-isomorphic to the homotopy pushout. AssumeA −→B

is aπ∗-isomorphism. ThenX −→Y is aπ∗-isomorphism.

For a proper model category this is a standard fact, that the homotopy pushout
of a weak equivalence is a weak equivalence. But no model category on symmetric
spectra has been written down with weak equivalences theπ∗-isomorphisms, so
we prove this below.

Proof of Proposition 3.1.9 Part 1.Assuming Lemmas 3.2.2, 3.2.3, and 3.2.4,
we can finish this proof. As mentioned above, we factor a stable equivalence into
a stable trivial cofibration followed by a level trivial fibration and showD takes
both pieces toπ∗-isomorphisms. A level equivalence induces a level equivalence
at each object in the diagram for definingD. Hence, by Proposition 2.2.2,D of a
level equivalence is a level equivalence, and thus aπ∗-isomorphism.

Next we build an arbitrary stable trivial cofibration as a retract of a sequential
colimit of pushouts of generating cofibrations by 2.1.2. Since retracts and sequen-
tial colimits preserveπ∗-isomorphisms we only need to consider pushouts of gener-
ating stable trivial cofibrations. By Lemma 3.2.2,D of a generating trivial cofibra-
tion is aπ∗-isomorphism. Then, by Lemmas 3.2.3 and 3.2.4,D of any map formed
by a pushout of a generating stable trivial cofibration is aπ∗-isomorphism.
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The rest of this section is devoted to proving these three lemmas.

Proof of Lemma 3.2.4.Factor the mapA −→X as a stable cofibration followed
by a level trivial fibrationA→ Z −→X. Then form the pushout square as follows:

A −−−→ Zy y
B −−−→ P.

Since the top map is a level cofibration,P is the homotopy pushout of this square.
SinceA −→ B is aπ∗-isomorphism,Z −→ P is aπ∗-isomorphism becauseπ∗ is
a homology theory. SinceZ −→X is a level equivalence, to see thatX −→ Y is a
π∗-isomorphism it is enough to know thatP −→Y is aπ∗-isomorphism. But this is
assumed as part of the hypotheses.

Proof of Lemma 3.2.3.P −→ DY is a π∗-isomorphism, because homotopy
colimits commute. LetPn be the homotopy pushout at the objectn ∈ I of DB ←−
DA −→ DX. ThenP is level equivalent to hocolimI P n. Proposition 2.2.5 shows
that a map of diagrams which is aπ∗-isomorphism at each object induces aπ∗-
isomorphism on the homotopy colimits. Hence, it is enough to show thatPn −→
�nL′F0(Yn) is aπ∗-isomorphism for eachn.

Since cofibrations induce level cofibrations andF0 preserves cofibrations and
pushouts,F0 applied to each level of the pushout square in the lemma is a homotopy
pushout square. SinceX → L′X is a level equivalence it preserves homotopy
pushout squares up to level equivalence. Since�n only shiftsπ∗ by n, it preserves
homotopy pushouts up toπ∗-isomorphism. HencePn → �nL′F0(Yn) is a π∗-
isomorphism.

We are left with proving Lemma 3.2.2. This proof goes to the heart of whyD

detects stable equivalences. Basically this is because the free symmetric spectra,
FnK, are closely related to free diagrams overI , see 2.1.1. The following lemma
and its proof make this statement more exact and identify the stable homotopy type
of DFm(K).

LEMMA 3.2.5. There is a2l − m − 1 connected mapψl : �mL′(Sl ∧ K) →
(DFmK)l. These maps fit together to give a map of symmetric spectraψ :
�mL′F0K → DFmK which is aπ∗-isomorphism.

To prove this lemma we define free diagrams on the categoryI .

DEFINITION 3.2.6. DefineFmK : I → S∗ by (FmK)(n) = homI (m, n)+ ∧K.
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Fm(−) is left adjoint to the functor fromI -diagrams overS∗ to S∗ which eval-
uates the diagram atm ∈ I . Hence a natural transformation fromFmK into any
diagram overI is determined by a map from K to the diagram evaluated atm.

Proof of Lemma 3.2.5.Let DlFmK : I → S∗ be the functor given by thelth
level of the functorDFmK . Then there is a mapφl : Fm�mL′(Sl ∧ K) → DlFmK
determined by the inclusion of the wedge summand corresponding to the identity
map,�mL′(Sl ∧K)→ �mL′(Sl ∧ homI (m,m)+ ∧K). As the homotopy colimit
of a free diagram is weakly equivalent to the colimit (see [7, 15]), the homotopy
colimit of this map is the mapψl : �mL′(Sl ∧K) → (DFmK)l mentioned in the
lemma.

The map of diagrams is 2l−m−1 connected at each spot. At eachn ∈ I , φl(n),
factors into two maps as follows,

homI (m, n)+ ∧�mL′(Sl ∧K)→ �mL′(homI (m, n)+ ∧ Sl ∧K)
→ �m�n−mL′6n−m(homI (m, n)+ ∧ Sl ∧K).

The first map is 2l − m − 1 connected by the Blakers–Massey theorem which
shows that a wedge of loop spaces,�X ∨ �Y , is equivalent in the stable range to
the loop of the wedge,�(X ∨ Y ). The second map is 2l − m − 1 connected by
the Freudenthal suspension theorem, which for simplicial sets concerns the map
X→ �L′6X. Hence the map at each spot in the diagram,φl(n) and thus the map
of homotopy colimits,ψl is 2l −m− 1 connected.

To see that these levels fit together, note that we can prolongFm to a functor
from symmetric spectra toI -diagrams of symmetric spectra. Then there is a map
φ : Fm(�mL′F0K) → DFmK which on levell is given by the map,φl, above.
Hence, taking homotopy colimits, this induces a mapψ : �mL′F0K → DFmK

which is aπ∗-isomorphism.

Proof of Lemma 3.2.2.Some of the generating trivial cofibrations are in fact
level equivalences,Fn(1l[k]+) −→Fn(1[k]+). But,D of a level equivalence is a
level equivalence. Recall from [11, 3.4.9], the other generating trivial cofibrations
are the mapsP(cm, jr) : Pm,r −→ Cλm ∧S F0(1[r]+) wherePm,r is the pushout
below.

Fm+1(S
1 ∧ 1̇[r]+) −−−→ Fm+1(S

1 ∧1[r]+)y y
Cλm ∧S F0(1̇[r]+) −−−→ Pm,r

To show thatD of P(cm, jr) is a π∗-isomorphism, it is only necessary to
show thatD of cK : Fm+1(S

1 ∧ K) −→ Cλm ∧S F0K is a π∗-isomorphism
for K = 1̇[r]+ or 1[r]+. This is enough, as Lemma 3.2.4 shows that if
DFm+1(S

1 ∧ 1̇[r]+) −→ D(Cλm ∧S F0(1̇[r]+)) is a π∗-isomorphism then
the pushoutDFm+1(S

1 ∧ 1[r]+) −→ DPm,r is also a π∗-isomorphism. If
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DFm+1(S
1 ∧ 1[r]+) −→ D(Cλm ∧S F0(1[r]+)) is also aπ∗-isomorphism, this

implies thatDPm,r −→D(Cλm ∧S F0(1[r]+)) is aπ∗-isomorphism.
SinceF0K is cofibrant andCλm −→ FmS

0 is a level equivalence, the map
Cλm∧SF0K −→FmS

0∧SF0K = FmK is a level equivalence, by Lemma 2.1.15. As
already noticed,D takes level equivalences toπ∗-isomorphisms so we can assume
thatCλm is replaced byFmS0 in cK for both values ofK.

So we show thatDcK : DFm+1(S
1∧K)→ DFmK is aπ∗-isomorphism. Note

thatFm+1(S
1∧K)→ FmK is induced by homI (m+ 1, n)→ homI (m, n) which,

in turn, is induced by the inclusion ofm in m + 1. Now consider homotopy ap-
plied to the map of diagrams,DcK . Using theπ∗-isomorphisms from Lemma 3.2.5
above, this map is a map of free diagrams, homI (m + 1,−) ⊗ πs∗+m+1S

1 ∧K →
homI (m,−) ⊗ πs∗+mK. This map induces an isomorphism on the colimits and all
of the higher colimi vanish. Hence, using the spectral sequence for calculating the
homotopy of homotopy colimits (see Section 2.2)DcK is aπ∗-isomorphism. One
can also see this by considering the associated map of free diagrams directly.

4. Topological Hochschild Homology

Let k be a commutative symmetric ring spectrum. LetR be ak-algebra. Define
Re = R ∧k Rop. LetM be ak-symmetricR-bimodule, i.e., anRe-module. With
this set up we have two different algebraic definitions of topological Hochschild
homology, one using a derived tensor product definition, the other mimicking the
usual Hochschild complex. In Theorem 4.1.10 we see that these definitions con-
struct stably equivalentk-modules. Of course, since the smash product is only
stably invariant for cofibrant spectra, the case whereR is a cofibrantk-module
is the only one of interest.

The idea to define topological Hochschild homology (THH) by mimicking al-
gebra in this way is due to Goodwillie [9]. But because a symmetric monoidal
category of spectra was not available until recently, one could not simply im-
plement this idea. B¨okstedt was the first one to define THH by modifying this
idea to work with certain rings up to homotopy. This original definition of THH
concerns the case whenk = S. We restate the definition of the simplicial spectrum
THH·(R) and its realization, THH(R), from [1] for a symmetric ring spectrum
(see Definition 4.2.6). Theorem 4.2.8 shows that fork = S the new definitions
are stably equivalent to the original definition whenR is a cofibrant symmetric
ring spectrum. As a corollary to this comparison theorem we see that B¨okstedt’s
definition of THH takes stable equivalences ofS-algebras toπ∗-isomorphisms.
Hence it always determines the right homotopy type, even on non-connective and
non-convergent ring spectra, that is, without B¨okstedt’s original hypotheses. As
noted above, the other two algebraic definitions give the right homotopy type only
on cofibrant symmetric ring spectra. To avoid these unnecessary hypotheses we use
model category techniques and the detection functor developed in Section 3.
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4.1. TWO DEFINITIONS OF RELATIVE TOPOLOGICAL HOCHSCHILD

HOMOLOGY

The first definition corresponds to the derived tensor product notion of algebraic
Hochschild homology. The second definition mimics the Hochschild complex from
algebraic Hochschild homology. As we see in Theorem 4.1.10, these notions are
stably equivalent whenM is a cofibrantRe-module.

DEFINITION 4.1.1. Define thhk(R;M) byM ∧Re R.

Let µ : R ∧k R −→R andη : k −→R be the multiplication and unit maps on
R. Let φr : M ∧k R −→M andφl : R ∧k M −→M be the right and leftR-module
structure maps ofR acting onM. LetRs be the smash product overk of s copies
of R, i.e.,R ∧k · · · ∧k R. The following definition mimics the Hochschild complex
as in [4].

DEFINITION 4.1.2. tHHk·(R;M) is the simplicialk-module with s-simplices
M ∧k Rs. The simplicial face and degeneracy maps are given by

di =


φr ∧ (idR)s−1 if i = 0,

(idM) ∧ (idR)i−1 ∧ µ ∧ (idR)s−i−1 if 16 i < s,
(φl ∧ (idR)s−1) ◦ τ if i = s,

andsi = idM ∧ (idR)i ∧ η ∧ (idR)s−1.

Each level of this simplicial symmetric spectrum is a bisimplicial set. Since
the realization of bisimplicial sets is equivalent to taking the diagonal, we use the
diagonal to define the realization of this simplicial symmetric spectrum.

DEFINITION 4.1.3. Define thek-module tHHk(R;M) as the diagonal of the bisim-
plicial set at each level of this simplicialk-module. For the special cases ofk = S
orM = R we delete them from the notation.

Since the homotopy colimit of a diagram of symmetric spectra is determined
by the homotopy colimit of each level, the fact that the homotopy colimit of a
bisimplicial set is weakly equivalent to the diagonal simplicial set, see [3, XII 4.3],
proves the following proposition.

PROPOSITION 4.1.4.The maphocolim1op

Sp6
tHHk·(R;M) −→ tHHk(R;M) is a

level equivalence.

Next we show certain homotopy invariance properties of tHHk. First we show
the realization of a map which is a stable equivalence at each simplicial level is a
stable equivalence.



174 BROOKE SHIPLEY

LEMMA 4.1.5. LetF,G : B → Sp6 be two diagrams of symmetric spectra with
a natural transformationη : F → G between them. Ifη(b) : F(b) → G(b) is a
stable equivalence for each objectb in B thenhocolimB F → hocolimB G is a
stable equivalence.

Proof.ConsiderDη : DF → DG. By Theorem 3.1.2 this is aπ∗-isomorphism
at each object, so by Proposition 2.2.5 the homotopy colimits areπ∗-isomorphic.
SinceL′, F0 and homotopy colimits commute with homotopy colimits and�n

commutes with homotopy colimits up toπ∗-isomorphism, hocolimB DF is π∗-
isomorphic toD hocolimB F . Hence,D hocolimB F → D hocolimB G is a π∗-
isomorphism. Thus, by Theorem 3.1.2, hocolimB F → hocolimB G is a stable
equivalence.

COROLLARY 4.1.6.A map between simplicial symmetric spectra which is a stable
equivalence on each level induces a stable equivalence on the realizations.

Proof. This just combines Lemma 4.1.5 and Proposition 4.1.4 or [3, XII, 4.3].

PROPOSITION 4.1.7.Let R −→ R′ be a stable equivalence betweenk-algebras
which are cofibrant ask-modules,M an Re-module,N an (R′)e-module, and
M −→N a stable equivalence ofRe-modules. ThentHHk(R;M) −→ tHHk(R′;N)
is a stable equivalence. In particular,tHHk(R) −→ tHHk(R′), tHHk(R;M) →
tHHk(R;N), andtHHk(R;N)→ tHHk(R′;N) are stable equivalences.

First note that a cofibrantk-algebra is also cofibrant as ak-module by [11,
5.4.3], so there are many examples ofk-algebras which are cofibrant ask-modules.

Proof. Lemma 2.1.15 applied tok shows thatP ∧k − preserves stable equi-
valences ofk-modules ifP is a cofibrantk-module. Hence,Rs → R′s is a stable
equivalence between cofibrantk-modules. So bothM ∧k Rs → N ∧k Rs and
N ∧k Rs → N ∧k R′s are also stable equivalences. Thus each simplicial level is
a stable equivalence. Then Corollary 4.1.6 shows that this map induces a stable
equivalence on tHHk.

To compare these two definitions of THH we proceed as in [6, IX 2]. Let
N be a leftR-module, withφN : R ∧k N −→ N , andM a rightR-module, with
φM : M ∧k R −→M. We define the topological bar constructionBk· (M,R,N) by
mimicking algebra.

DEFINITION 4.1.8. The bar constructionBk· (M,R,N) is the simplicialk-module
with s-simplicesM ∧k Rs ∧k N . The face and degeneracy maps are given by

di =


φM ∧ (idR)s−1 ∧ idN if i = 0,

idM ∧ (idR)i−1 ∧ µ ∧ (idR)s−i−1 ∧ idN if 16 i < s,
idM ∧ (idR)s−1 ∧ φN if i = s.

LetBk(M,R,N) be the realization of this simplicialk-module.
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Let c·(X) be the constant simplicial object withX in each simplicial degree.
Using the identificationM ∧R R ∼= M, the mapη : k −→R induces a simplicial
k-module mapBk· (M,R,N) −→c·(M ∧R N).
LEMMA 4.1.9. For M a cofibrantR-module, the simplicial map ofk-modules,
Bk· (M,R,N) −→ c·(M ∧R N), induces a stable equivalence ofBk(M,R,N) −→
M ∧R N .

Proof. Note thatBk· (M,R,N) ∼= c·M ∧R Bk·(R,R,N). Since realization
commutes with smash products,Bk(M,R,N) ∼= M ∧R Bk(R,R,N). So, using
Lemma 2.1.15, it is enough to show thatBk(R,R,N) −→ N is a stable equi-
valence. The mapN ∼= k ∧k N −→ R ∧k N provides a simplicial retraction for
Bk· (R,R,N). Hence the spectral sequence for computing the classical stable ho-
motopy groups of the homotopy colimit of this simplicialk-module collapses. So
the mapBk· (R,R,N) −→c·N induces aπ∗-isomorphism on the realizations.

Using the bar construction we show the two definitions of THH are stably
equivalent whenM is a cofibrantRe-module.

THEOREM 4.1.10. There is a natural map ofk-modules tHHk(R;M) →
thhk(R;M) which is a stable equivalence forM a cofibrantRe-module.

Proof.We show that tHHk(R;M) is naturally isomorphic toM∧ReBk(R,R,R)
below. Then the map tHHk(R;M) −→ thhk(R;M) is given byM ∧Re φ for φ:
Bk(R,R,R) −→ R. R is always a cofibrantR-module, henceφ is a stable equi-
valence by Lemma 4.1.9. Then Lemma 2.1.15 shows thatM ∧Re φ is a stable
equivalence sinceM is a cofibrantRe-module.

We now show tHHk·(R;M) is naturally isomorphic toc.(M)∧Re Bk· (R,R,R).
On each simplicial level there are natural isomorphisms

M ∧k Rs ∼= M ∧Re (Re ∧k Rs) ∼= M ∧Re (R ∧k Rs ∧k R)
= M ∧Re Bks (R,R,R).

These isomorphisms commute with the simplicial structure. Hence the simpli-
cial k-modules are naturally isomorphic, so their realizations are also naturally
isomorphic.

4.2. BÖKSTEDT’ S DEFINITION OF TOPOLOGICAL HOCHSCHILD HOMOLOGY

We now define the simplicial spectrum THH·(R;M) and its realization
THH(R;M) following Bökstedt’s original definitions. Each of the levels of the
simplicial spectrum THH· can be defined for a general symmetric spectrumX. A
ring structure is only necessary for defining the simplicial structure. In fact, level
k of THH· can be thought of as a functor generalizingD which gives the correct
π∗-isomorphism type for the smash product ofk+1 symmetric spectra. We start by
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considering each of these levels as a functor of several variables. See Section 2.2
for facts about homotopy colimits.

Let X denote a sequence ofj + 1 spectra,X0, . . . , Xj . Define a functorDjX
from I j+1 to Sp6 which atn = (n0, . . . , nj ) takes the value,

DjX(n) = �nL′F0(X
0
n0
∧ . . . ∧Xj

nj
),

whereL′ is a level fibrant replacement functor andn = 6ni, the sum of theni.
Note thatD0(X) is DX, the functor defined at the beginning of Section 3. To see
thatDjX is defined overI j+1 one uses maps similar to those described forDX.

DEFINITION 4.2.1. LetX0, . . . , Xj be symmetric spectra. Define

Tj X = hocolimI j+1 DjX.

We now define a natural transformationφjX : Tj X → D(X0 ∧S . . . ∧S Xj).
Letµ : I j+1 −→I be the functor induced by concatenation. Then there is a natural
transformation fromDjX toµ∗D0(X0∧S . . .∧S Xj). It is induced by the map from
X0
n0
∧ · · · ∧Xj

nj to thenth level ofX0∧S . . .∧S Xj . This map is6n0 × · · · ×6nj
equivariant, which is exactly what is necessary overI j+1. Hence, on homotopy
colimits there is a natural map hocolimI

j+1 DjX −→hocolimI j+1
µ∗D0(X0∧S . . .∧S

Xj).

DEFINITION 4.2.2. There is a natural transformationφjX : Tj X → D(X0 ∧S
. . . ∧S Xj). It is given by the composition

hocolimI j+1 DjX −→hocolimI j+1
µ∗D0(X0 ∧S . . . ∧S Xj)

−→hocolimI D0(X0 ∧S . . . ∧S Xj).

PROPOSITION 4.2.3.For any cofibrant symmetric spectra,X0, . . . , Xj , the map
φjX is aπ∗-isomorphism.

This proposition is proved in Section 4.3. It is used in proving the comparison
theorem between B¨okstedt’s definition of THH and our previous definition of tHH.
As a corollary of this proposition, Tj gives the correctπ∗-isomorphism type for the
derived smash product ofj + 1 symmetric spectra. Recall that the smash product
is only homotopy invariant on cofibrant spectra, so the derived smash product is
the smash product of the cofibrant replacements. In the stable model category of
symmetric spectra, consider a cofibrant replacement functor,C, analogous to the
fibrant replacement functorL.

COROLLARY 4.2.4.π∗Tj X is isomorphic toπ∗L(CX0 ∧S . . . ∧S CXj), the
derived homotopy of the derived smash product ofX0, . . . , Xj .

Proof. SinceC is a cofibrant replacement functor,CX → X is a level equi-
valence. Hence Tj (CX0, . . . , CXj) → Tj (X0, . . . , Xj ) is a level equivalence by
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Proposition 2.2.2, as the map is a level equivalence at each object in the diagram
defining Tj . So this corollary follows from Proposition 4.2.3 sinceπ∗D(CX0 ∧S
. . . ∧S CXj) is isomorphic toπ∗L(CX0 ∧S . . . ∧S CXj) by Theorem 3.1.6.

We now define THH following B¨okstedt’s definition in [1].

DEFINITION 4.2.5. LetR be a symmetric ring spectrum withM anRe-module.
Define THHj (R;M) = Tj (M,R, . . . , R).

The functors THHj (R;M) fit together to form a simplicial symmetric spectrum
THH·(R;M). Although the definition of THHj (R;M) does not use the ring struc-
ture ofR or the module structure ofM, the simplicial structure of THH·(R;M)
does use both the multiplication and unit maps. Theith face map uses the functor
δi : I j+1 −→ I j defined by concatenation of the sets in factorsi and i + 1. The
last face map uses the cyclic permutation ofI j+1 followed by concatenation of
the first two factors. For ease of notation letDj (R;M) = Dj (M,R, . . . , R).
The multiplication ofR andM defines a natural transformation of functors from
Dj (R;M) to δ∗i Dj−1(R;M). Sodi is the composition

di : hocolimI j+1 Dj (R;M) −→hocolimI j+1
δ∗i Dj−1(R;M)

−→hocolimI j Dj−1(R;M).
The degeneracy maps are similar.

DEFINITION 4.2.6. Define THH(R;M) as the diagonal of the bisimplicial set at
each level of the simplicial symmetric spectrum THH·(R;M).

One can check that each level in this spectrum agrees with the definition in [1]
whenM = R.

As in Proposition 4.1.4 we have the following equivalence.

PROPOSITION 4.2.7.The maphocolim1op

Sp6
THH·(R;M) −→ THH(R;M) is a

level equivalence.

The next theorem shows that the definition of THH which mimics the Hoch-
schild complex is stably equivalent to the original definition of THH.

THEOREM 4.2.8.Let R be a cofibrant ring spectrum. Then there is a natural
zig-zag of stable equivalences betweentHH(R;M) andTHH(R;M).

Proof.The zig-zag of functors between tHH and THH is induced by a zig-zag of
maps between the simplicial complexes defining tHH and THH. First one applies

the zig-zag of functors 1
ψ−→ L −→ML ←−DL Dψ←−− D to each simplicial level of

the Hochschild complex defining tHH. Here,L is the fibrant replacement functor,
M, D, and the natural transformations are defined in Section 3, see 3.1.1, 3.2.1,
and the proof of 3.1.9 part 3. Then there is a natural mapφj : THH j (R;M) −→
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D(M∧SRj ). To see that theφj maps commute with the simplicial maps, one needs
to note that the multiplication maps commute with the first map in the composite
defining φj . This follows since the mapRn ∧ Rm → Rn+m is the map on the
appropriate wedge summand of the mapR ⊗ R → R which induces the map
R ∧S R → R. The maps involvingM are similar. Putting these simplicial levels
together one gets a zig-zag of natural transformations from tHH·(−) to THH·(−).

The zig-zag of functors between 1 andD was investigated in Section 3. Each
functor induces a stable equivalence on each simplicial level, by Definition 2.1.3,
Theorem 3.1.2, and Proposition 3.1.9. Corollary 4.1.6 shows that they induce stable
equivalences on the realizations.

So the only part left isφ· : THH·(R;M) −→D(tHH·(R;M)). LetCM → M

be a cofibrant replacement ofM as anRe-module. Then by Proposition 4.1.7,
tHHj (R;CM) → tHHj (R;M) is a stable equivalence. Similarly, THHj (R;
CM) → THHj (R;M) is a stable equivalence sinceCM → M is a level equi-
valence and hence induces a level equivalence on the homotopy colimits used to
define THHj . So we can assumeM is cofibrant as anRe-module.

SinceR is cofibrant as anS-algebra, it is also cofibrant as anS-module. Since
M is cofibrant as anRe-module andRe is cofibrant,M is also cofibrant as an
S-module. Proposition 4.2.3 shows that ifR andM are any cofibrantS-modules
then THHj (R;M) −→D(M ∧S Rj ) is aπ∗-isomorphism. By Proposition 2.2.5 the
map of realizations is aπ∗-isomorphism. Hence, assuming Proposition 4.2.3, this
finishes the proof of Theorem 4.2.8.

Using this comparison we show B¨okstedt’s original definition of THH takes
stable equivalences of ring spectra toπ∗-isomorphisms. This is a stronger result
than for tHH because no cofibrancy condition is needed here and the map is a
π∗-isomorphism, not just a stable equivalence.

COROLLARY 4.2.9.LetR −→R′ be a stable equivalence of ring spectra,M an
Re-module,N an (R′)e-module, andM → N a stable equivalence ofRe-modules.
ThenTHH(R;M) −→THH(R′;N) is aπ∗-isomorphism.

Remark4.2.10. This corollary could also be proved without using these com-
parison results. Each THHj takes stable equivalences toπ∗-isomorphisms by ar-
guments similar to those for THH0 = D in Section 3. By Proposition 2.2.5 the
realization, THH, also takes stable equivalences toπ∗-isomorphisms.

Proof. In the category of symmetric ring spectra, define a functorial cofibrant
replacement functor,C. Applying this functor we have the following square.

CR −−−→ CR′y y
R −−−→ R′
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Each of the vertical maps is a level trivial fibration and hence a level equivalence.
The bottom map is a stable equivalence by assumption. Hence the top map is also a
stable equivalence. To show THH applied to the bottom map is aπ∗-isomorphism
we show THH applied to the other three maps in this square areπ∗-isomorphisms.

We also consider cofibrant replacements of the modules in question.M is a
(CR)e-module andN is a(CR′)e-module. SinceCR is a cofibrantS-algebra it is a
cofibrantS-module. Thus,(CR)e is also cofibrant as anS-module by the monoidal
structure of the stable model category [11, 5.3.8]. Hence the cofibrations in the
category of(CR)e-modules are also underlying cofibrations. So letCM → M

be the cofibrant replacement ofM in the category of(CR)e-modules. Similarly,
let CN → N be the cofibrant replacement ofN as a(CR′)e-module. Then both
CM andCN are cofibrant asS-modules. Also, by the lifting property in the model
category of(CR)e-modules, we have a mapCM → CN becauseCN → N is a
level trivial fibration. This mapCM → CN is a stable equivalence by the two out
of three property.

The level equivalencesCR → R and CM → M induce a level equival-
ence on each object of the diagram defining THHj . So by applying Proposition
2.2.2 and Lemma 4.2.7 this shows that THH(CR;CM)→ THH(R;M) is a level
equivalence. Similarly THH(CR′;CN)→ THH(R′;N) is a level equivalence.

For the top map, first consider applying tHH. Proposition 4.1.7 implies that
tHH(CR;CM) −→ tHH(CR′;CN) is a stable equivalence. Hence by Theorem
3.1.2,D tHH(CR;CM) −→ D tHH(CR′;CN) is a π∗-isomorphism. But, in the
proof of Theorem 4.2.8, we showed that THH−→ D tHH induces aπ∗-isomor-
phism if the ring and module are cofibrant asS-modules. So THH(CR;CM) −→
THH(CR′;CN) is a π∗-isomorphism. Stringing these equivalences together fin-
ishes the proof of this corollary. As Proposition 4.2.3 applies to each level, we have
actually shown that each THHj (R;M) −→THHj (R

′;N) is also aπ∗-isomorphism.

4.3. PROOF OF PROPOSITION4.2.3

To prove Proposition 4.2.3 we follow an outline similar to the proof thatD takes
stable trivial cofibrations toπ∗-isomorphisms, see Section 3.2. We show thatφj is
aπ∗-isomorphism when it is evaluated only on free symmetric spectra, i.e., some
FnK. Then we prove an induction step lemma which deals with pushouts over
generating stable trivial cofibrations. Using these lemmas we showφj is a π∗-
isomorphism on any collection of cofibrant spectra.

LEMMA 4.3.1.φj (Fn0K0, . . . , Fnj Kj) is aπ∗-isomorphism.

LEMMA 4.3.2. LetA → B be a stable cofibration andX0, . . . , Xj be cofibrant
S-modules. Consider the following pushout square.
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A −−−→ Wy y
B −−−→ Y

Assume thatTHHj+1(X
0, . . . , Z, . . . , Xj )→ D(X0∧S . . .∧S Z ∧S . . .∧S Xj) is

a π∗-isomorphism forZ = A,B, or W whereZ is inserted between theith and
(i+1)th spots. ThenTHHj+1(X

0, . . . , Y, . . . , Xj )→ D(X0∧S . . .∧S Y ∧S . . .∧S
Xj) is aπ∗-isomorphism.

Using these two lemmas we can now prove Proposition 4.2.3.

Proof of Proposition 4.2.3.We prove this by induction oni with the induction
assumption thatφj is aπ∗-isomorphism whenj − i variables are free spectra and
the other variables are cofibrant. Lemma 4.3.1 verifies this fori = 0. For the
induction step, in one variable we build up a cofibrant spectrum from the initial
spectrum by retracts, colimits, and pushouts over generating cofibrations. Since
retracts ofπ∗-isomorphisms areπ∗-isomorphisms andφj of a retract is a retract we
only need to consider colimits and pushouts.

As F0, smash products,L′, �n, and homotopy colimits commute with filtered
colimits, Tj of a colimit in one of the variables is a colimit. This is also true ofD.
Since a filtered colimit ofπ∗-isomorphisms is aπ∗-isomorphism,φj of a colimit
in one variable is aπ∗-isomorphism if it is aπ∗-isomorphism at each spot in the
sequence. Hence we are only left with pushouts.

Sinceφj is a level equivalence between trivial spectra if one of the variables
is the initial spectrum,∗, proceed by induction to verify the pushout property. By
induction the two corners in the pushout corresponding to the generating cofibra-
tion areπ∗-isomorphisms. This is because generating cofibrations are of the form
FnK → FnL, so these two corners havej − i + 1 free spectra and hence, fall into
the case covered by the previous induction step. The third corner is assumed to
be aπ∗-isomorphism by induction. Henceφj is aπ∗-isomorphism on the pushout
corner by Lemma 4.3.2.

Proof of Lemma 4.3.1.We first establish the stable homotopy type of
Tj (Fn0K0, . . . , FnjKj ). There is a free diagram functorF(n0,...,nj )X : I j+1→ Sp6

defined by

F(n0,...,nj )X(m0, . . . mj ) = homI j+1((n0, . . . , nj ), (m0, . . . mj ))+ ∧X.
ThenF(n0,...,nj )(−) is left adjoint to the functor from I-diagrams overSp6 to Sp6

which evaluates the diagram at(n0, . . . , nj ) ∈ I j+1. There is a map of diagrams

F(n0,...,nj )(�
nL′F0(K0 ∧ . . . ∧Kj))→ Dj (Fn0K0, . . . , FnjKj )

wheren = 6ni. Each spot in this diagram is aπ∗-isomorphism. This is similar to
the proof of Lemma 3.2.5, on each level the map is an equivalence in the stable
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range by the Blakers–Massey and the Freudenthal suspension theorems. Hence the
map on homotopy colimits is also aπ∗-isomorphism,

�nL′F0(K0 ∧ . . . ∧Kj))→ Tj (Fn0K0, . . . , Fnj Kj).

By Lemma 3.2.5,

�nL′F0(K0 ∧ . . . ∧Kj))→ D(Fn(K0 ∧ . . . ∧Kj))
is also aπ∗-isomorphism. To see thatφj induces aπ∗-isomorphism, note that on
the free diagrams there are similar maps

hocolimI j+1 F(n0,...,nj )(�
nL′F0(K0 ∧ . . . ∧Kj))

→ hocolimI j+1
µ∗Fn(�nL′F0(K0 ∧ . . . ∧Kj))

→ hocolimI Fn(�nL′F0(K0 ∧ . . . ∧Kj))
which induce level equivalences on the homotopy colimits.

To prove Lemma 4.3.2 we first show Tj of a homotopy pushout in one variable
is a homotopy pushout.

LEMMA 4.3.3. LetX0, . . . , Xj be cofibrant spectra. If

A −−−→ Wy y
B −−−→ Y

is a pushout square withA −→B a cofibration, then

Tj+1(X
0, . . . , A, . . . Xj ) −−−→ Tj+1(X

0, . . . ,W, . . . Xj )y y
Tj+1(X

0, . . . , B, . . . Xj ) −−−→ Tj+1(X
0, . . . , Y, . . . Xj )

is a homotopy pushout square. That is, ifP is the homotopy pushout of the second
square thenP −→ Tj+1(X

0, . . . , Y, . . . Xj ) is a stable equivalence. In fact,P −→
Tj+1(X

0, . . . , Y, . . . Xj ) is aπ∗-isomorphism.
Proof.This proof is similar to the proof of Lemma 3.2.3. As with Lemma 3.2.3,

it is enough to consider each object inI j+1 since homotopy colimits commute.
The following square is a pushout square with the left map a cofibration:

X0
n0
∧ . . . ∧ Ani ∧ . . . Xj

nj −−−→ X0
n0
∧ . . . ∧Wni ∧ . . . Xj

njy y
X0
n0
∧ . . . ∧ Bni ∧ . . . Xj

nj −−−→ X0
n0
∧ . . . ∧ Yni ∧ . . . Xj

nj
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The first step in constructing Tj is just applyingF0 to this square.F0 preserves
cofibrations and pushouts, henceF0 applied to this square is a homotopy pushout.
L′ preserves homotopy pushout squares up to level equivalence and�6ni preserves
homotopy pushout squares up toπ∗-isomorphism. Hence the map from the homo-
topy pushout to the bottom right corner is aπ∗-isomorphism. Since the homotopy
colimit of π∗-isomorphisms is aπ∗-isomorphism, this finishes the proof.

Proof of Lemma 4.3.2.Both Tj andD take homotopy pushouts in one variable
to homotopy pushouts where the map from the pushout to the bottom right corner
is aπ∗-isomorphism by Lemmas 4.3.3 and 3.2.3. Hence, this lemma follows from
the fact that homotopy colimits preserveπ∗-isomorphisms, Lemma 2.2.5.
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