
Solutions For Homework 3

Ch. 2

2. Show that the set {5, 15, 25, 35} is a group under multiplication modulo
40. What is the identity element of this group? Can you see any relationship
between this group and U(8)?

Answer. We need to follow the definition of a group given on page 43:

Notation. Let us denote the operation given in the question, multiplication
modulo 40, with · and the usual multiplication of integers a and b with ab or
(a)(b). So, we have

a · b = ab mod 40

Step 1. Check that the operation defined in the question is a binary operation:

5 15 25 35
5 25 35 5 15
15 35 25 15 5
25 5 15 25 35
35 15 5 35 25

Calculations above show that the operation defined in the question assigns
to each ordered pair of elements of {5, 15, 25, 35} an element in {5, 15, 25, 35}.
Therefore, it is a binary operation.

Step 2. Check associativity of the given operation:

Since we have a(bc) = a(bc) for every a,b,c in Z, we get a(bc) = (ab)c for
every a, b, c in {5, 15, 25, 35}. Clearly, a(bc) = (ab)c implies that

a(bc) mod 40 = (ab)c mod 40.

So, we get

a · (b · c) = a(b · c) mod 40 (def. of ·)
= [(a mod 40)((b · c) mod 40)] mod 40 (pr. of mod)
= [(a mod 40)((bc mod 40) mod 40)] mod 40 (def. of ·)
= [(a mod 40)(bc mod 40)] mod 40 (pr. of mod)
= a(bc) mod 40 (pr. of mod)
= (ab)c mod 40 (assoc. of Z)
= [((ab) mod 40)(c mod 40)] mod 40 (pr. of mod)
= [((ab) mod 40) mod 40)(c mod 40)] mod 40 (pr. of mod)
= [((a · b) mod 40)(c mod 40)] mod 40 (def. of ·)
= (a · b)c mod 40 (pr. of mod)
= (a · b) · c (def. of ·).
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So, the operation given in the question is associative.

Step 3. Check the existence of identity:

If we look at the Cayley table above, we see that 25 · a = a · 25 = a for all a
in {5, 15, 25, 35}. So 25 is the identity.

Step 4. Check the existence of inverses:

The Cayley table also shows that for each element a in {5, 15, 25, 35}, there
is an element b in {5, 15, 25, 35} such that a · b = b · a = e. More explicitly, we
see that

5 · 5 = 5 · 5 = 25
15 · 15 = 15 · 15 = 25
25 · 25 = 25 · 25 = 25
35 · 35 = 35 · 35 = 25.

Conclusion. Since the set {5, 15, 25, 35} with multiplication modulo 40 satis-
fies all requirements given in the definition of a group, {5, 15, 25, 35} is a group
under the multiplication modulo 40.

In Step 4, we see that inverse of every element in {5, 15, 25, 35} is itself.
Since we have

(1)(1) mod 8 = 1
(3)(3) mod 8 = 1
(5)(5) mod 8 = 1
(7)(7) mod 8 = 1

inverse of every element in U(8) is also itself. This is one relationship between
{5, 15, 25, 35} and U(8). In fact, if you consider all of the numbers mod 8 in
the Cayley table for {5, 15, 25, 35} you get the Cayley table for U(8) (with the
rows and columns in different orders). Later we will see that this means the two
groups are isomorphic.

1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

16. In a group, prove that (ab)−1 = b−1a−1. Find an example that shows that
it is possible to have (ab)−2 6= b−2a−2. Find distinct nonidentity elements a and
b from a non-Abelian group with the property that (ab)−1 = a−1b−1. Draw an
analogy between the statement (ab)−1 = b−1a−1 and the act of putting on and
taking off your sock and shoes.

Answer. Let us start with first part. We show that (ab)−1 is b−1a−1 by showing
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that the second expression satisfies the definition of an inverse.

(ab)(b−1a−1) = a(bb−1)a−1 associativity
= aea−1 inverses
= aa−1 identity
= e inverses

For the second part, let us consider D4. Let us use the notation given in the
page 32. Let a = R90 and b = D′, then a−1 = R270 and b−1 = D′. So we get

(ab)−2 = (ab)−1(ab−1)
= (b−1a−1)(b−1a−1)
= (D′R270)(D′R270)
= V V
= R0

But we have
b−2a−2 = (b−1b−1)(a−1a−1)

= (D′D′)(R270R270)
= R0R180

= R180.

So we get (ab)−2 6= b−2a−2.
For the third part of the question let us consider SL(2, R). Let

a =
[

1 1
0 1

]
, b =

[
−1 1
0 −1

]
, a−1 =

[
1 −1
0 1

]
, b−1 =

[
−1 −1
0 −1

]
.

Then we see that

(ab)−1 =
([

1 1
0 1

] [
−1 1
0 −1

])−1

=
([

−1 0
0 −1

])−1

=
[
−1 0
0 −1

]
,

a−1b−1 =
([

1 1
0 1

])−1 ([
−1 1
0 −1

])−1

=
[

1 −1
0 1

] [
−1 −1
0 −1

]
=

[
−1 0
0 −1

]
.

So we have (ab)−1 = a−1b−1. (Remember though, this only happens in this
particular example!)

For the last part of the problem: the order of shoes and socks depends
whether you’re putting them on or taking them off. (Putting on: socks then
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shoes, taking off: shoes then socks.) This is similar for multiplying elements or
taking their inverses.

18. Show that (a−1)−1 = a. By definition, (a−1)−1 is the inverse of a−1. That
is, it is an element b such that a−1b = e = b(a−1). By Theorem 2.3 there is a
unique b that has this property. Notice that b = a also solves these equations
by the definition of a−1 being the inverse of a. Thus these two solutions agree
and (a−1)−1 = a.

Ch. 3

2. Let Q be the group of rational nubmers under addition and let Q∗ be the
group of nonzero rational numbers under multiplication. In Q, list the elements
in 〈 1

2 〉. In Q∗, list the elements in 〈 1
2 〉.

Answer. In Q, we have

〈1
2
〉 = {n(

1
2
)|n ∈ Z}

= {. . . ,−5
2
,−2,−3

2
,−1,−1

2
, 0,

1
2
, 1,

3
2
, 2,

5
2
, . . . }.

In Q∗, we have

〈1
2
〉 = {(1

2
)n|n ∈ Z}

= {. . . , 32, 16, 8, 4, 2, 1,
1
2
,
1
4
,
1
8
,

1
16

,
1
32

. . . }.

4. Prove that in any group, an element and its inverse have the same order.

Answer. The definition of order of an element is crucial for this question. So
we repeat this definition (page 59):

Definition. The order of an element g in G is the smallest positive integer
n such that gn = e. (In additive notation, this would be ng = 0). If no such
integer exists, we say that g has infinite order. The order of an element g is
denoted by |g|.
Proof. There are two cases: either |g| = ∞ or |g| < ∞. If |g| = ∞ is the case,
by the definition above there is no positive integer n such that gn = e. Assume
that |g| 6= |g−1|. Since |g| 6= |g−1|, |g−1| has to be a finite positive integer. Let
us say |g−1| = m. But note that we have

gm =
(
(g−1)−1

)m

=
(
(g−1)m

)−1

= e−1

= e.
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Namely, we get a positive integer m such that gm = e. So, the assumption
|g| 6= |g−1| gives a contradiction. Hence, if we have |g| = ∞, we have to have
|g| = |g−1|.

If |g| < ∞ is the case, let us say |g| = n. Note that we have

(g−1)n = (gn)−1

= e−1

= e.

So |g−1| is finite and less than or equal n. Let us assume that |g−1| = m < n.
If we consider the following calculation

gm =
(
(g−1)−1

)m

=
(
(g−1)m

)−1

= e−1

= e.

we obtain a smaller integer m than n such that gm = e. This is a contradiction.
Hence, we get m = n. Namely, we have |g| = |g−1|. This finishes the proof.

14. If H and K are subgroups of G, show that H ∩ K is a subgroup of G.
(Can you see that the same proof showsthat the intersection of any number of
subgroups of G, finite of infinite, is again a subgroup of G?)

Answer. Let us use two-step subgroup test (theorem 3.2, page 62). Since H is
a subgroup of G, we have e ∈ H. Since K is a subgroup of G, we have e ∈ K.
So we get e ∈ H ∩K. Namely, H ∩K is nonempty. Let a and b be two elements
in H ∩ K. Then a and b are in H and in K. Since we know that H ≤ G, we
get ab ∈ H and a−1 ∈ H. Since we also know that K ≤ G, we have ab ∈ K
and a−1 ∈ K. That means ab ∈ H ∩ K and a−1 ∈ H ∩ K. Hence, H ∩ K is a
subgroup of G by two-step subgroup test.

The same proof with necessary generalizations shows that the intersection
of any number of subgroups of G is again a subgroup of G.
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