CONVERGENCE OF THE HOMOLOGY SPECTRAL SEQUENCE
OF A COSIMPLICIAL SPACE

By BROOKE E. SHIPLEY

1. Introduction. In this paper we study the convergence properties of the
homology spectral sequence of a cosimplicial space. The Eilenberg-Moore spec-
tral sequenceisan example of this spectral sequence applied to the cobar construc-
tion of afibre square. Hence this spectral sequence is also called the generalized
Eilenberg-Moore spectral sequence.

This work builds on results due to W. Dwyer and A. K. Bousfield. W. Dwyer
considered the convergence properties of the Eilenberg-Moore spectral sequence
for a fibration in [D1]. Then A. K. Bousfield used these results as a basis for
finding convergence conditions for the generalized Eilenberg-Moore spectral se-
guence [B2]. We continue in this direction. In section 3 we consider new con-
vergence conditions for the Eilenberg-Moore spectral sequence of a fibre square.
Using these results and adding a finite type assumption we obtain a new pro-
convergence result, Theorem 5.3. Combining this result with Corollary 1.2 from
[S] gives conditions for strong convergence (Theorem 6.1) which replace Bous-
field's one-connectedness requirement in [B2, 3.6] by a p-good requirement.

In [D2] W. Dwyer analyzed what the Eilenberg-Moore spectral sequencefor a
fibration is converging to when it is not necessarily converging to the homology
of the fibre. We consider this exotic convergence question in the case of the
generalized Eilenberg-Moore spectral sequence in section 7. In section 8 we note
that our exotic convergence result for the Eilenberg-Moore spectral sequence of
a fibre square generalizes one of W. Dwyer’s results for a fibration.

In section 2 we construct the homology spectral sequence of a cosimplicial
space. We also define pro-convergence and strong convergence. Section 3 con-
tains the various Eilenberg-Moore spectral sequence convergence results. The
special case of pro-convergence for a cosimplicial ssimplicia abelian group is
considered in section 4. As mentioned above, sections 5 and 6 contain the main
pro-convergence and strong convergence results: Theorem 5.3 and Theorem 6.1.
The homology of mapping spaces is discussed at the end of section 6 as an appli-
cation of Theorem 6.1. Section 7 considers exotic convergence results. In section 8
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we apply the exotic convergence results from section 7 to the Eilenberg-Moore
spectral sequence. Relative convergence is considered in section 9. In the last sec-
tion we consider the total space of the p-resolution of a cosimplicial space. We
also prove another strong convergence theorem which generalizes Theorem 6.1.

This paper iswritten simplicially, so “ space” means “simplicial set.” Through-
out, the homology of spaces is homology with coefficients in the field with p
elements. Let R= .
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2. The homology spectral sequence for a cossmplicial space. In this sec-
tion we recall some of the necessary definitions for cosimplicial spaces and tow-
ers. Then we construct the homology spectral sequence for a cosimplicial space
X'. Findly, we consider definitions of strong convergence and pro-convergence.

The main objects of study in this paper are cosimplicial spaces. We use the
model category structure on cosimplicial spaces developed in [BK, X]. A map
f: X — Y isaweak equivalence if f" : X" — Y" is a weak equivaence for
n>0. Themap f is afibration if

X" — Y" xynoays MPIX

is afibration for n > 0. Here M"X" = {(X°,-- -, X") € X" x - x X"|gx = ~1x
for0<i<j<n}forn>0and M~!=x Themaps: X" - M" X isinduced
by & x --- x s". The map f is a cofibration if f" : X" — Y" is a cofibration
of smplicial sets for n > 0 and f induces an isomorphism on the maximal
augmentations. The maximal augmentation of X' is the subspace of X° which
consists of the simplices x € X° such that d° = d'x. X' is fibrant (cofibrant) if
X —x is afibration (l——X" is a cofibration).

Let A" be the cosimplicial space with A™ = A[m] the simplicial m-simplex
for m > 0. Let TotX' = Hom (A", X') and TotsX' = Hom (Al¥, X) where AlY is
the simplicial s-skeleton of A'.

Lemma 2.1. Aweak equival encebetween fibrant cosimplicial spacesX’ ———Y"
induces a weak equivalence TotsX" ——— TotsY".
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Proof. Since Al is cofibrant, this lemma follows from the simplicial model
category structure on cosimplicial spaces. See [BK, X 5.2]. O

This lemma shows that on fibrant cosimplicial spaces Tots is homotopy in-
variant. This is not true in general. For a nonfibrant cosimplicial space X* we
replace X by aweakly equivalent fibrant cosimplicial space X'. Since the choice
of fibrant replacement is unique up to weak equivalence, TotsX™ is homotopy
invariant.

Towers are useful for studying convergence properties of spectral sequences.
A good reference for towers is [BK, I11]. Over any category a map of towers
{fs} : {As} — {Bs} is a pro-isomorphism if for each s thereis at and a map
from Bsi; to As which makes the following diagram commute.

fsrt
Asit — Bst

e

fs
As —_— BS

A map of towers of spaces {Xs} — {Ys} is aweak pro-homotopy equivalence
if it induces a pro-isomorphism of sets {moXs} — {moYs} and for each i and s
there exists a t such that for each vertex v € Xg¢ there exists a homomorphism
7i(Ystt, V) — 7i(Xs, V) making the following diagram commute.

T (X5+tl V) — T (YS+tl V)

1

Ti(Xe, V) —— 7i(Ys, V)

For pointed towers of connected spaces this condition is equivalent to having a
pro-isomorphism of sets on 7wy and a pro-isomorphism of groups for each tower
of higher homotopy groups. A weak pro-homotopy equivalence induces a pro-
homology isomorphism, i.e. {HnXs} — {HnYs} is a pro-isomorphism for all n
[B2, 8.5].

We now construct the mod p homology spectral sequence for a cosimplicial
space, {E"(X")}, which abuts to H,.(Tot X"; ). See also [B2].

Let sa (ca) be the category of (co)simplicial abelian groups. Let csa be the
category of cosimplicial simplicial abelian groups. For G in sa, let N,.G be the
normalized chain complex with N,G = G,/imsy + --- +ims,_1 and boundary
9 =3(—1)'di. For B' in ca, let N*B" be the normalized cochain complex with
N'B =B "Nnkers’ N ---Nkers" 1 with boundary 6§ = Z( — 1)'d'. For B' in csa
let N*N,B’ be the normalized double chain complex.
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Given B’ in csa construct the total complex TB™ with

(TB)n= ][ N"NmnB', 01 =9+ (—1)™s.

m>0

Let TnB' = TB'/F™TB" where (F™TB)n = [Tiomes NNknB'. Then TB' =
limTmB". -

For a cosimplicial space X', let R® X" be the cosimplicial smplicial vector
space generated by X', i.e., (R® X')i'is the vector space generated by the set XI".
Let {E"(X")} be the homology spectral sequence of the filtered chain complex
T(R® X"). In other words, the spectral sequence comes from the following exact
couple.

- ———— H,T(R® X)) — H.Ts-.1(R® X)) —— -~

|~

Ega(X) EL(X)

Hence we can identify EZ, = NSH;(X") and d* = 5( — 1)'d". So E2; = 7°H(X").
The tower {H. Ts(R® X")} contains all of the information needed for conver-
gence questions about this spectral sequence. Occasionally we need to transate
between the usual spectral sequence language and the analogous tower theoretic
descriptions. For instance, the following two lemmas give very useful translations.

Lemma 2.2 If for somer themap f : X* — Y induces an E"-isomorphism be-

tween spectral sequences {E'(X")} — {E"(Y')}, thenf inducesa pro-isomorphism
of towers

{HnTs(R® X))} — {HaTs(R® Y')}
for each n.

Proof. Consider the rth-derived exact couple.

= HTOReX) — HTO,ROX) ———— -+

|~

Ega(X) Es(X)

Here H.T)(R® X') is the image of i, : HiTsw(R® X') — H. T{(R® X) in
the tower {H,Ts(R® X')}. Note that H,T_1(R® X’) = 0. So H,T(R® X') &
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EH(X"). Hence by induction and the five-lemma, an E'-isomorphism induces an
isomorphism H, TO(R® X') — H.TO(R® Y'). This is enough to show that f
induces a pro-isomorphism of towers {H,Ts(R® X)} — {H.Ts{((R® Y)}. O

Any weak equivalence between cosimplicia spaces X° — Y' induces an
E2-isomorphism, 7*H.(X) ——7*H.(Y"). Hence by Lemma 2.2 a weak equiv-
alence induces a pro-isomorphism {H.Ts(R® X)} — {H.Ts(R® Y")}.

Before we state the next lemma we need two definitions. A tower which
is pro-isomorphic to a constant tower is called pro-constant. A tower which is
pro-isomorphic to the trivial constant tower is called pro-trivial.

Lemma 2.3. [B2, 3.5] For any integer n, the tower {H,Ts(R® X')} is pro-
constant if and only if for each s there existsr < oo with Egq,n(X") = E%n(X)
and for each sufficiently large s EC2,,(X) = 0. The tower is pro-trivial if and only
if for each sthere existsr < oo with E{¢,(X') = 0.

Proof. The proof is a straightforward translation between tower information
and spectral sequence information. O

In [B2, 2.2] Bousfield writes down compatible maps
¢s : Hi(TotsX) — H, Tg(R® X).
Using the map induced from Tot X* — TotsX™ we get the following tower maps.
{H. Tot X} —F—{H, ToteX '} —2—{H, T{(R® X')}
A cosimplicial space X' is strongly convergent if
®oP: {HTotX'} — {HTs(R® X)}

isapro-isomorphism for each integer n. The homology spectral sequence {E"(X')}
is caled strongly convergent if X' is strongly convergent.

Lemma 2.3 trandates the above tower theoretic definition of strong conver-
gence into the usual structural strong convergence statements. Note that {E"(X")}
is strongly convergent if and only if for each n {H,Ts(R® X')} is pro-constant
with constant value Hy Tot X". Hence Lemma 2.3 shows that there are two nec-
essary conditions for strong convergence. First, there must only be finitely many
nonzero differentials emanating from and terminating at any one Es; and only
finitely many nontrivial filtrations on any one total degree line by E*. Second,
the spectral sequence must eventually vanish in negative total degrees.

A cosimplicial space X' is pro-convergent if

@ : {HpToteX '} — {HnTs(R® X')}
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isapro-isomorphism for each integer n. If X" is pro-convergent then the homol ogy
spectral sequence {E"(X")} is also called pro-convergent.

The following proposition, which is a generalization of [B2, 8.6], is used in
the proofs of Theorem 4.1 and Theorem 5.3. First we need a definition. A tower
of cosimplicia spaces {X;} will be called pro-convergent if

is a pro-isomorphism for each n.

ProrosiTion 2.4. Let h : {X;} — {Y:} be a map of towers of cosimplicial
gpaces such that h : {XI'} — {Yg"} is a weak pro-homotopy equivalence for each
m > 0. Then {X;} is pro-convergent if and only if { Y} is pro-convergent.

Proof. {X;} is pro-convergent if and only if {X.} is pro-convergent. The
map h induces amap {X;} — {Y;} of fibrant replacements which is also a weak
pro-homotopy equivalence on each codegree. Hence we reduce to the case where
all of the cosimplicial spaces in the lemma are fibrant.

Because h induces weak pro-homotopy equivalences on each codegree, it
induces a pro-homology isomorphism {Hn(Xg")} — {Hn(YZ")} for each m and
n. So by the five lemma for pro-isomorphisms, [BK, Il 2.7], it induces a pro-
isomorphism {7™HX;} — {7#™HnYs} for each m and n. In other words, it
induces a pro-isomorphism of each tower {Ez,,(X5)} — {Exmn(Ye)}-

Lemma 2.2 can be restated for a map of towers of cosimplicial spaces to
show that a pro-isomorphism of E? towers induces a pro-isomorphism of towers
{H.Ts(R® Xg)} — {H.Ts(R® Yg)}. This new statement can be proved by fol-
lowing the proof of Lemma 2.2 using the five lemma for pro-isomorphisms in
place of the usua five lemma. Thus we can conclude that the right-hand map in
the following diagram is a pro-isomorphism for each n.

{HnTotsXs} — {HnTs(R® X9)}

| l

{HnTotsYs} — {HnTs(R® Yg)}

If the left-hand map in this diagram is a pro-isomorphism then the top map
will be a pro-isomorphism if and only if the bottom map is a pro-isomorphism.
This is equivalent to the statement of the proposition. So to conclude the proof
we only need to show that the left-hand map is a pro-isomorphism.

We proceed by induction to show that {TotX;}s — {Tot;Ys}s is awesk pro-
homotopy equivalence for each t. First, Toto X' = X°. Since h: {X{} — {Y9} is
aweak pro-homotopy equivalence, Totgh : {Toto X} — {Toto Y¢} is also.

Throughout this paper fibre square refers to a pull-back square where at |east
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one map is afibration. For afibrant cosimplicial space X', Tot;X" can be built up
inductively by fibre squares as follows. See also [B1, p.149-150].

TotyX” —— Hom(A[t], XY

| l

Toti_1 X* —— P

Here P is the pull-back of the following diagram.

Hom (A[t], M1X))

Hom (0A[t], X') —— Hom (9A[t], M1X")

For the induction step we assume Tot;_q h : {Toti_1 X;} — {Tot;i_1Y:} isa
weak pro-homotopy equivalence. Since h induces a weak pro-homotopy equiv-
alence on each codegree, it induces a weak pro-homotopy equivalence on each
of the corners of the diagram for building Tot:h : {Tot:X}s — {TotiYs}s as a
pull-back. Using the five lemma for pro-isomorphisms, [BK, Il 2.7], one can
show that a map between towers of fibre squares induces a weak pro-homotopy
equivalence on the pull-back towers if it is a weak pro-homotopy equivalence
on the other towers. Thus Totih : {Tot;Xs}s — {Tot;Ys} is aweak pro-homotopy
equivalence.

So by induction {Tot;X;} — {Tot;Y<} is a weak pro-homotopy equivalence
for each t. Hence, by considering the diagonal, {TotsXs} — {TotsYs} is a weak
pro-homotopy equivalence. So it induces a pro-isomorphism on homology. O

The following corollary states the specific case which will be used in the
proofs of Theorem 4.1 and Theorem 5.3.

CorrOLARY 2.5. Let h : {X'} — {Yg} be a map of towers of cosimplicial
spaces such that h : {X™} — {Y{"} isaweak pro-homotopy equivalence for each
m > 0. If each Y is pro-convergent, then sois X'.

Proof. From the definition of pro-convergence for towers we can see that a
tower of pro-convergent cosimplicial spaces is a pro-convergent tower. Also, for
a constant tower, pro-convergence for the tower is equivalent to pro-convergence
for the cosimplicia space itself. Thus this corollary follows easily from Proposi-
tion 2.4. m]
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The following lemma shows one way of ensuring that each homotopy group
of the partial total spacesis finite. This will be used in the proof of Lemma 5.4.

LemmA 2.6. Let X' be a cosimplicial space. If mm(X", %) isfinite for each m, n
and choice of base point in X", then mm(TotsX", *) isfinite for each m, sand choice
of base point in TotgX".

Proof. Since X' is weakly equivalent to X' we see that (X', ) is also
finite for each m, n, and choice of base point. Hence we can assume that X' is
a fibrant cosimplicial space. Note that Totg X is X°. So mm( Totg X', %) is finite
for each m > 0 and for each choice of base point. We proceed by induction.
Assume that mn( Totk_1 X', %) is finite for each m > 0 and for each base point.
Consider the fibration px : Toty X* — Totx_1 X'. We must consider each of the
components separately. Consider a vertex b € Toty X'. Let Fy be the fibre of
pk over px(b) € Tot_1 X'. Let by be the vertex in X° which is in the image
of b. By using the construction discussed in the proof of Lemma 2.4 of the
fibration py : Toty X” — Tot_1 X" Bousfield shows that 7 (Fp, b) = Nk (X', b)
[B3, 10.2]. Here, Nk (X', b) ¥ mia(XK, b) Nker 2 N - - - N ker <=1 . Thus the
normalization is finite for each i > 0. Hence j(Fp, b) is finite for i > 0 and for
each choice of b. Because Totx 1 X' has finite homotopy this is enough to show
that mj( Toty X, b) is finite for each i > 0 and for each choice of b. O

3. TheEilenberg-M oore spectral sequence. In this section, we generalize
the Eilenberg-Maoore spectral sequence results stated by Bousfield [B2, 4.1, 8.4].
Theorem 3.3 is used in section 4 to prove Theorem 4.1 and in section 5 to prove
Theorem 5.3.

Consider the fibre square

M——Y
X——B
wheref isafibration and M is the pull-back. Farjoun and Smith noticed that for X
contractible they could generalize W. Dwyer’s Eilenberg-Moore spectral sequence
convergence result to cases where B is not necessarily connected [D1], [FS].
Bousfield considered the convergence of the Eilenberg-Moore spectral sequence
for a fibre sguare with X, Y, and B connected [B2, 4.1]. We combine these two

directions in the next theorem. Let Yy denote the component of Y containing the
point y. Let Fy be the fibre of the fibration Yy, — B over the point f(y).

Treorem 3.1. In the above diagram assume that moX X -, moY is finite and
that 71(B, f(y)) acts nilpotently on H..(Fy) for every pointy € Y where Yy isin
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the image of moX X, moY. Then the Eilenberg-Moore spectral sequence for this
diagram strongly converges to H, M.

Proof. We will denote the cobar construction of the above diagram by B'. We
can assume X, Y, and B are fibrant simplicia sets. This ensures that B’ is fibrant.
Let X =], Xo Where {X,} is the set of connected components of X. Similarly,
let Y =T[5 Yp. Thenitiseasy to seethat B' =[], 3B, ; where B, ; is the cobar
construction of the following diagram.

Y3

D)

Xo —— B

We show that the spectral sequence for each B;, ; strongly converges. Then
we use this information to conclude the statement of the theorem.

We consider two different cases for the cosimplicial space B, ;. The first
case to consider is when the images of X, and Y lie in different components of
B. In this case the pull-back is empty. Thus Tot B.s= (). A computation shows
that the E-term of the spectral sequence is 0. Hence the spectral sequence is
strongly convergent.

Next consider the case when the images of X, and Yj lie in the same com-
ponent of B. Call this component By. Let B, be the cobar construction for the
following diagram.

Ys
(2 fa

Xo — By

The inclusion By — B induces an inclusion of cosimplicial spacesi : By —
B ..
a!ﬁ
By assumption, 71Bg acts nilpotently on H*(fﬁ‘l*). Thus, by [B2, 4.1], this
spectral sequence strongly converges for By. Thisis equivalent to the top map in
the following diagram being a pro-isomorphism for each n.

{HnTotBy} ——— {HnTs(R® By)}
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By considering the contribution of the homology of the components of B other
than By we see that the inclusion i induces an E2-isomorphism for each n. This
implies that the right map above is a pro-isomorphism by Lemma 2.2. The homo-
topy pull-back for diagram (1) is homotopy equivalent to the homotopy pull-back
for diagram (2). Thus Tot B, — Tot B..s is a homotopy equivalence. This shows
that the left map above is a pro-isomorphism. Thus we conclude that the bot-
tom map is a pro-isomorphism. This shows that the spectral sequence for B, s
strongly converges.

To conclude the proof we need to show that since each B, 3 is strongly con-
vergent, B is also strongly convergent. Because A" has connected codegrees Tot
commutes with coproducts. So TotB™ = [], 3 TotB,, 5 because B = ][, 5B, 5.
This also shows that the E2-term for the cosimplicial space B' splits as the direct
sum of the E2-terms for each B, 3. Hence we have the following commutative
diagram.

P{H.TotB, 5} P{H.T(R® B, )}
a,B a3

{H,TotB'} ——— {H,Ts(R® B’)}

The top map is a pro-isomorphism on each direct summand because each B, ;
strongly converges. Since moX X r,g 7Y iS finite and the spectral sequence col-
lapses at E2 when Tot B, 5 Is empty, the top map is in fact a pro-isomorphism.
Arguments similar to those above show that both the left and right maps are pro-
isomorphisms. Thus the bottom map is a pro-isomorphism. This is equivaent to
the statement of the theorem. m]

Using this convergence result for the Eilenberg-Moore spectral sequence for
spaces we can prove the following theorem for cosimplicia spaces. This is a
generalization of [B2, 8.4].

THEOREM 3.2. Let

|

@ =<

|

be a fibre square of cosimplicial spaces wheref isa fibration, M" isthe pull-back,
and X', Y, and B" are fibrant and pro-convergent. Assume that moX" X r,gn moY"
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isfinite, moTotsX' X roTotsB" TOTOLsY’ isfinite, and that 71 (B", ) and 71 (TotsB", *)
are finite p-groups for each n, s, and choice of base points x € B" and * € TotsB'.
Then M’ is pro-convergent.

Proof. Using the proof of [B2, 8.4], we see that M’ is pro-convergent if
X, Y, and B" are pro-convergent and the Eilenberg-Moore spectral sequences
for the following diagrams are strongly convergent

TotsY’ Y"

Tots X" —— TotsB’ X" —— B"

for each sand n. A finite p-group acts nilpotently on any I, vector space. Hence a
finite p-group always acts nilpotently on mod p homology. Thus, by Theorem 3.1,
we see that the hypotheses of this theorem ensure that these spectral sequences
are in fact strongly convergent. m]

We need to apply this convergence result to a pull-back diagram where the
cosimplicial spaces are not necessarily fibrant and the maps are not necessarily
fibrations. The following theorem is a dight generalization of Theorem 3.2 which
is tailored to this application.

THEOREM 3.3. Let

e

X  — <

v
|f
B

be a pull-back diagram of cosimplicial spaces where f" : Y"——B" is a fibra-
tion for each n, B* isfibrant, and X', Y*, and B" are pro-convergent. Assume that
X" X roen moY ' isfinite, moTOtX X, rog- ToTOLY " isfinite, and 1 (B", +) and
m1(TotsB, *) arefinite p-groups for each n, sand choice of base points x € B" and
% € TotsB". Then M" is pro-convergent.

_

Proof. We use the model category structure on cosimplicial spaces to replace
the given diagram by a diagram which satisfies the hypotheses of Theorem 3.2
Let X’ ———X —B" be the factorization of X’ — B’ into atrivial cofibration
followed by a fibration. Repeat this process for Y' — B'.



190 BROOKE E. SHIPLEY

Consider the following diagram of pull-back sguares

M’ e Y
v z Y
X —— X B

Because B’ is fibrant, X" and Y are fibrant. Thus the lower right hand pull-
back diagram satisfies the hypotheses of Theorem 3.2. This implies that Z is
pro-convergent.

To conclude the proof of this lemma we only need to see that Z* is a weakly
equivalent fibrant object for M". Since a pull-back of a fibration is a fibration,
Z —Y isafibration. So Z' is fibrant.

The model category on simplicial setsis proper, i.e., the pull-back of aweak
equivalence along a fibration is a weak equivalence (and the dual statement).
Thus since a fibration of fibrant cosimplicial spaces induces level-wise fibrations
and weak equivalences are defined as level-wise weak equivalences, W ——Z’
is a weak equivalence.

Now we need to see that M —— W'’ isaweak equivalence. By the hypothe-
ses, Y"—B" is a fibration for each n. Thus W"——X" is a fibration for
each n. Each X"—=—X" is a weak equivalence. Hence M" —=—W" is a weak
equivalence because it is the pull-back of a weak equivalence along a fibration.

m|

4. Cosimplicial smplicial abelian groups. Thissection is devoted to prov-
ing Theorem 4.1 which shows that certain cosimplicial simplicial abelian groups
are pro-convergent.

THeorem 4.1. Let B” bein csa. Assume that Ny (B") is a finite p-group for
each n < m. Then B’ is pro-convergent as a cosimplicial space.

We need the following lemmas before beginning the proof of Theorem 4.1.

LemmA 4.2. Let B" bein csa. moB™ is a finite p-group for each m > 0 if and
only if NMmoB" is a finite p-group for each m > 0.

Proof. The forward direction is obvious. The converse follows by induction
using the fibration N™B° — B™ — M™%(B’) and the fact that M™m; = 7M™
[BK, X 6.3]. m|
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In the next lemma we use the classifying space functor W. W and the as-
sociated total space functor W are defined on sa in [M]. These functors prolong
to functors on csa [Do]. Let X be the functor which shifts grading by one. The
following lemma states one useful fact about WB'.

Lemma 4.3 For B incsa, HiTWB' = H;_1TmB".

Proof. For G in sa, the definitions of W and N, imply that N,WG = ZN,G.
Thus, for B" in csa, N*N,WB" = N*3N,B’". Hence, T,\WB" = =T,,B". The lemma
follows by applying homology. O

To begin the proof of Theorem 4.1, we prove the following specia case.

LeEMMA 4.4. Let B" bein csa with N™r,B a finite p-group for n < m. If there
existsan N such that {H;T,B} ispro-trivial for i < N, then B" is pro-convergent.

Proof. We use descending induction on N, beginning with N = 0. Given B’
satisfying the hypotheses of the lemma for N = 0, consider WB'. By Lemma 4.3
we see that {H;T\WB'} is pro-trivial for i < 0. By construction WB' is termwise
connected, so WB' is pro-convergent by the following lemma due to Bousfield.

LemmA 4.5. [B2, 8.7] Let A" beincsa. If {H;T»,A"} ispro-trivial for eachi <0
and A’ istermwise connected, then A" is pro-convergent.

Consider the following fibre square of cosimplicial spaces

B —— WB’

|

where x denotes the constant cosimplicial point. We need to verify that the hy-
potheses for applying Theorem 3.2 to this fibre square are satisfied. WB' is pro-
convergent because it is weakly equivalent to the cosimplicial point. This aso
implies that moWB" and moTotsWB™ are trivial. Hence the fibred product of com-
ponents for both codegrees and the partial total spaces of this fibre square are
trivial.

From the proof of Lemma 4.3 we see that N,WB' = *N,B’". Hence 7, WB' =
>m.B. So N"m,\WB" = N™r,_1B" is afinite p-group for each n < m+ 1. Thisis
enough to ensure that 71 Tot\WB" is afinite p-group for m > 0 [BK, X 6.3]. Since
N™MmoB" is a finite p-group for m > 0, Lemma 4.2 implies that 7oB™ is a finite
p-group for m > 0. Thus, since 7, WB™ = 7oB™, 71WB™ is a finite p-group for
each m > 0. Since WB" and WB'" are in csa and WB® — WB' is an epimorphism,
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WB' and WB' are fibrant and WB" — WB' is a fibration [BK, X 4.9]. Thus
Theorem 3.2 applies to the fibre square above. Hence B’ is pro-convergent.

For the induction step, assume that we have proved Lemma 4.4 for n > N.
Given B® satisfying the hypotheses of the lemmafor n = N, we see by Lemma 4.3
that WB" satisfies the hypotheses for n = N+1. Thus, by the induction assumption,
WB' is pro-convergent. As in the case for N = 0, the fibre square satisfies the
conditions for Theorem 3.2. So we conclude that B’ is pro-convergent. O

Proof of Theorem 4.1. To finish the proof of Theorem 4.1 we need to consider
a map of towers of cosimplicia spaces and apply Corollary 2.5.

Let X' be a cosimplicial space. The nth cosimplicial skeleton, cosky (X'), is
the cosimplicial space generated by al simplices of X" of codegree less than or
egual to n. Thisisjust the nth skeleton of X* considered asasimplicial object over
the opposite category of spaces. Note that X™ — ( cosk, X )™ is an isomorphism
forn>m.

Consider the map of towers of cosimplicial spaces {B'} — {cosk,B"} for
B" satisfying the conditions of Theorem 4.1. Thisis a pro-homotopy equivalence
on each codegree. To use Corollary 2.5, we need to see that each cosky B’ is
pro-convergent. N/ cosk,, B' is trivial for j > n. So H,.Ni cosk, B’ is trivia for
j > n. Because the cosimplicia and simplicial operators commute H,Ni = NIH,.
Thus E!, (cosk,B") = 0 for j > n. Hence Ef,;(cosk,B’) = 0 for i < —n, since
Eg’q =0if p or q is negative. By Lemma 2.3 this shows that {H;Tncosk, B’} is
pro-trivia for i < —n.

Ni 7y cosk, B" is trivial for i > nand is equal to N'mB" for i < n. So, for any
k < i, Nz cosk, B is a finite p-group. Hence, by Lemma 4.4, we see that each
cosky, B® is pro-convergent. Thus, by Corollary 2.5, B* is pro-convergent. O

Remark. We should note here that in fact the hypotheses of Theorem 4.1
can be weakened. As is evident from the statement of Proposition 2.4, it is only
necessary for cosk,B" to be pro-convergent for infinitely many n. If N™roB’
is a finite p-group for each m < n and nk Tot, W™B' is a finite p-group for
1 < k < n, then cosky B' is pro-convergent. This implies, for instance, that if
N™r,B" isafinite p-group except for finitely many mand n and there exists some
r such that each E§;(B’) is a finite p-group in the homotopy spectral sequence of
B, then B is pro-convergent.

5. Pro-convergence. In this section we use Theorem 4.1 to prove Theo-
rem 5.3, a pro-convergence statement which applies to a more general class of
cosimplicial spaces.

A connected space X is nilpotent if its fundamental group acts nilpotently
on each 7 X for i > 1. A connected space X is p-nilpotent if it is nilpotent and
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mX is a p-group with bounded torsion for each i. In general, define a space to
be p-nilpotent if each of its components is p-nilpotent. See aso [BK, 11l 5].

We need a construction from [BK, | 2]. Let R® X be the simplicial vector
space generated by the simplicial set X. Define RX € R® X to be the simplicial
set consisting of the simplices Zrix with Zrj = 1. Then RX has an affine R-
structure which becomes an R-module structure once a base point is chosen in X.
See [BK, | 2.2]. Ris atriple on the category of spaces. So iterating R produces
an augmented cosimplicial space, X — R'X, called the p-resolution of X. Here
(RX)" = R™1X. Let RX = TotsR X.

Bousfield and Kan show that a connected space is p-nilpotent if and only
if {X} — {RsX} is aweak pro-homotopy eguivalence [BK, Il 5.3]. To prove
Theorem 5.3 below we need to prove the same statement for spaces with finitely
many components. Before we can do this we need the following lemma about
the interaction of the p-resolution and coproducts. We also include in this lemma
a similar statement about products which will be used in section 8.

Lemma 5.1. The product of the projection maps induces a weak pro-homotopy
equivalence {Rs(X x Y)} — {RX x RsY}. Consider Z = [[ Z,, where Z; is the
component corresponding to a € mpZ. The map of towers induced by inclusion
{IIRsZa} — {RsZ} isaweak pro-homotopy equivalence.

Proof. In [BK, | 7.1 and 7.2] Bousfield and Kan show that the p-completion
functor commutes with products and coproducts. This lemma is just the tower
theoretic analogue to those statements. In fact, for showing that p-completion
commutes with products they show that there is an E2-isomorphism of homotopy
spectral sequences between R (XxY) and R XxR'Y. Asin LemmaZ2.2, translating
this E?-isomorphism into tower theoretic language shows that {m TotsR (X x
Y)} — {mTots(R' X x R'Y)} is apro-isomorphism for each i. This proves the first
statement in the lemma.

Similarly, for coproducts Bousfield and K an exhibit an E2-isomorphism which
translates into tower theoretic language to show that {Tots([TR'Zs)} — {RsZ}
is a weak pro-homotopy equivalence. Since Totg X' = X°, the functor Totg com-
mutes with coproducts. For s > 0, the simplicial s-skeleton of A" has connected
codegrees. So Tots also commutes with coproducts. Thus {[[ RsZa} — {RsZ} is
a weak pro-homotopy equivalence. O

Now we are ready to prove the next lemma.
Lemma 5.2. If {X} — {RsX} isa weak pro-homotopy equivalence then X is
p-nilpotent. A space with finitely many components is p-nilpotent if and only if

{X} — {RsX} isaweak pro-homotopy equivalence.

Proof. Write X as a coproduct of its components, i.e., X = ][] X5 with each
Xa a connected component. To prove each of the statements in the lemma we



194 BROOKE E. SHIPLEY

consider the following diagram.

{IIXa} —— X}

{[[RXa} —— {RX}

Lemma 5.1 shows that the bottom map in this diagram is a weak pro-
homotopy equivalence. Assume that {X} — {RsX} is a weak pro-homotopy
equivalence. Using the diagram above, this implies that {[[Xa} — {[IRXa}
is a weak pro-homotopy equivalence. Because this map is a coproduct of maps
each component map is also a weak pro-homotopy equivalence. Thus each X, is
p-nilpotent by [BK, 11l 5.3]. By definition this shows that X is p-nilpotent.

Assume X is p-nilpotent, then by definition each X, is p-nilpotent. This, by
[BK 111 5.3], implies that each {Xa} — {RsXa} is a weak pro-homotopy equiva-
lence. The coproduct of finitely many weak pro-homotopy equivalences is again
a weak pro-homotopy equivalence. Hence if X has finitely many components
{X} — {RsX} isaweak pro-homotopy equivalence because the other three maps
in the diagram are also weak pro-homotopy equivalences. O

The next statement is the main pro-convergence theorem.

THeorem 5.3. Let X* be a cosimplicial space. Assume X" is p-nilpotent and
H. X" isfinitetypefor all n. Then X" ispro-convergent. In other words, thefollowing
map is a pro-isomorphism

@ {H,TotsX'} — {H. Ts(R® X)}.

The following lemma contains the main work for proving Theorem 5.3.

First consider the bicosimplicial space R X" with codegrees (R X')" = RS*1XM,
We refer to the cosimplicia direction within X as the vertical direction and the
other cosimplicial direction as the horizontal direction. Then by definition RgX',
with codegrees (RX')" = ReX™, is TotIR X".

LemmA 5.4. If X' isa pointed cosimplicial space such that H, X" isfinite type,
then RyX™ is pro-convergent for all s < oo.

Proof. We prove this lemma by induction on s. First consider s = 0. RpX’
is RIX". Given a pointed cosimplicial space X', R'X" is in csa [BK, | 2.2].
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Since mRIX" = H, X", this group is a finite p-group by hypothesis. Thus, by
Theorem 4.1, RIX is pro-convergent.

Now we assume by induction that RsX' is pro-convergent and prove that
Rs+1 X" is pro-convergent. The following diagram forms Rs:1 X as a pull-back
[B1, pp. 149-150].

Rs+1X =~ Totl, ;R X" ———— Hom(A[s + 1], R¥*?X")

3 J

RX' ~ TotlR X’ P

Here P’ is the pull-back of the following diagram

Hom (A[s+ 1], MS(R'X'))
4

Hom (8A[s+ 1], R®?X’) —— Hom (dA[s+ 1], MS(R'X))

where 0A[S] is the s — 1 skeleton of A[s]. We use Theorem 3.3 to prove that
Rs+1X" is pro-convergent. Hence, we need to see that the other three cosimplicial
spaces in diagram (3) are pro-convergent, P’ is fibrant, the right map is a level-
wise fibration, certain spaces have finitely many components, and that certain
fundamental groups are finite p-groups.

First, we assume that RoX" is pro-convergent by way of induction hypoth-
esis. Note that R°X" is in csa for any s. Using the fact that a space with finite
homatopy groups has finite homology groups, we see that each 7, R°X" is a fi-
nite p-group. Thus Theorem 4.1 shows that R°X" is pro-convergent for any s.
Hom (A[s+1], RS*2X") also satisfies the hypotheses for Theorem 4.1. Hence it is
pro-convergent.

Applying Lemma 2,6 to R’ X" we see that m,RsX" is finite for each m, s,
n and choice of base point. This is also true of the fibrant replacement, RsX'.
Thus applying Lemma 2.6 to RX" shows that m,Tot:(RsX') is finite for each m,
t, s and choice of base point. Since Hom (A[s+ 1], RS*2X") is fibrant, applying
Lemma 2.6 shows that =mTot; Hom (A[s+1], RS"2X") isfinite for each m, t, s and
choice of base point. In particular, these arguments show that moTotyReX" X o TotP"
moToty Hom (A[s + 1], R®2X’) and moReX™ X r,pn mo Hom (A[s + 1], R¥2X") are
finite for each s, t, and n.

Next we show that Hom(A[s + 1], R®2X") — P" is a fibration for each
n. The maps s : R®2X" — MS(RX") and i : 0A[s+ 1] — A[s+ 1] induce
map(i,s) : Hom(A[s + 1], R®2X") — P". The model category on cosimplicial
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spaces developed in [BK, X] isasimplicial model category. Hence the axiom for
a simplicial model category shows that if s is a fibration and i is a cofibration
then map(i,s) is a fibration [BK, X 5]. Since R’ X" is fibrant [BK, X 4.10]
s: R*2X" — MS(R'X") is a fibration. The map i : OA[s+ 1] — A[s+ 1] isa
cofibration. Thus Hom (A[s+ 1], R*2X") — P" is a fibration.

We are left with proving that P° is pro-convergent and 7;P" and 71 TotsP
are finite p-groups for each n and s. The horizontal codegeneracy maps in R X’
are homomorphisms. Thus MS(R'X) is in csa. Hence diagram (4) is a pull-
back square in csa. So P’ isin csa. The finite type hypothesis ensures that the
necessary homotopy groups are finite p-groups. Hence, by Theorem 4.1, P’ is
pro-convergent.

Using pull-back diagramsto inductively build TotsP™ we see for each sthat the
fundamental group of each component of TotsP" is a finite p-group. So w1 (P", )
and 71(TotsP", %) are finite p-groups for each n, s and choice of base points. This
is what we needed to apply Theorem 3.3 to diagram (3) and conclude that Rg1 X
is pro-convergent. O

Proof of Theorem 5.3. To use Lemma 5.4 we need a pointed cosimplicial
space. If X' is not pointed then consider Y' = X' [ %', where %" is the constant
cosimplicial space with each codegree equal to a point. If X* satisfies the hy-
potheses in Theorem 5.3 then Y' does too. Also note that Y = X' ] *'. Because
ReY =(R® X)® (R® *") and TotsY" = TotsX ][ *, the vertical maps in the
diagram below are level-wise isomorphisms.

{H.TotsY "} {H.Th(R® Y")}

Because {H.(x)} — {H.Th(R® ")} is an isomorphism of constant towers this
shows that X" is pro-convergent if and only if Y is pro-convergent. Thus we can
assume that X" is a pointed cosimplicia space.

To finish the proof of Theorem 5.3 we use Corollary 2.5. Consider the map
of towers of pointed cosimplicia spaces {X'} — {RsX"}. Lemma 5.4 shows that
for a pointed cosimplicial space X' satisfying the hypotheses in Theorem 5.3
each RsX' is pro-convergent. Since each X™ is p-nilpotent and has finitely many
components, Lemma 5.2 shows that {X™} — {RsX™} is a weak pro-homotopy
equivalence. Thus, Corollary 2.5 shows that X" is pro-convergent. |

Remarks. Given the hypotheses of Theorem 4.1, one might expect that The-
orem 5.3 would only require H,X" finitely generated for m < n. In fact, here
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we need that H, X" is finite type, because the construction of the matching space
MSX" uses codegrees X" for n < s. See [BK, X 6.3].

We should also note here that the finite type assumptions are necessary.
Consider for example the Eilenberg-Moore spectral sequence for the path loop
fibration over the classifying space of an infinite dimensional Z/2 vector space V.

QBV —— PBV

BV

Let B* be the cobar construction for this fibration. At E*, this spectral se-
guence has infinitely many nonzero filtrations on the zero total degree line. Thus,
by Lemma 2.3, {H.Ts(R® B")} is not pro-constant. But {H.(TotsB")} for any
cobar construction is pro-constant since Tot; B ~ Tot; B* ~ --- ~ TotB’. Thus
®: {H.(TotsB")} — {H.Ts(R® B’)} is not a pro-isomorphism.

6. Strong convergence. In this section we discuss strong convergence of
the homology spectral sequence for a cosimplicial space. As an example we then
apply this convergence result to the calculation of the homology of a mapping
space.

First we need two definitions. In section 5 we defined the cosimplicial space
R'X. Its total space, TotR' X = R X, is caled the p-completion of the space
X. A space is called p-good if the map from the space to its p-completion is a
homology isomorphism, i.e. H. X——H, R X.

We combine Theorem 5.3 and Corollary 1.2 from [S] to get the following
strong convergence result. To use Corollary 1.2 from [S], each {H;TotsX } must
be pro-isomorphic to a tower of finite groups. If H.X" is finite type then so is
H.X". Thus Tm(R® X") = HnX' is finite for each m, n and choice of base point.
Hence Lemma 2.6 implies that mmTots(R®X") isfinite for each mand s. Bousfield
shows that mmTots(R® X') = HyTs(R® X') [B2, 2.2]. Thus {H|T{(R® X')} isa
tower of finite groups for each i. So {H;TotsX} is pro-isomorphic to a tower of
finite groups.

THEOREM 6.1. Let X* be a cosimplicial space with X5 p-nilpotent and H, XS
finite type for each s. Assume either

(@ H.TotX isfinitetype, or

(b [i_n1H*TotsX‘ isfinite type.

Then the homol ogy spectral sequence for X isstrongly converging to H, TotX' (i.e.
{H.TotX'} — {H.Ts(R®X")} isapro-isomorphism) if and only if TotX" isp-good.



198 BROOKE E. SHIPLEY

Remarks. In section 10 we prove another strong convergence result which
only requires that each X® is p-complete.

We should note that since {H.TotsX'} is pro-finite type—i.e., each degree
is pro-isomorphic to a tower of finite groups—condition (b) is equivalent to
{H.TotsX "} being pro-constant. Thus, considering Lemma 2.3 and Theorem 5.3,
we see that condition (b) is equivalent to having certain structura strong conver-
gence properties. Specifically, condition (b) is equivalent to requiring that at each
Est there are only finitely many nonzero differentials and that “by E>" each total
degree has only finitely many filtrations.

One common use for the homology spectral sequence of a cosimplicia space
is calculating the homology of mapping spaces. We now consider the application
of Theorem 6.1 to these calculations.

One cosimplicial space associated to a mapping space, map (X, Y), is con-
structed by using the p-resolution of the target, map (X, R'Y). Note that each code-
gree hereisp-nilpotent. If H, X isfiniteand H..Y isfinite type, then 7, map (X, R°Y)
is finite type. Thus each codegree has finite type homology. Hence we have the
following corollary to Theorem 6.1.

CoROLLARY 6.2. Let X and Y be spaces such that H,. X isfiniteand H..Y isfinite
type. Assume either

(@ H.map(X,RyY) isfinitetype, or
(b LiLnH* map (X, RsY) isfinite type.

Then the homology spectral sequence for map (X, R'Y) strongly converges to the
H. map (X, R, Y) if and only if map (X, R Y) is p-good.

Remarks. Again, note that condition (b) is equivalent to certain structural
strong convergence conditions. Hence part (b) of this corollary states that if the
spectral sequence “looks’ like it is converging then it is strongly converging if
and only if the mapping space is p-good. We should also note that this same
result holds for pointed mapping spaces.

Under certain conditions one can easily see that map (X, Ry Y) is p-good. If
Y is nilpotent then R, Y is also nilpotent [BK, VI 5.1]. Hence, if X is a finite
complex and Y is nilpotent, map (X, R Y) is nilpotent [BK, V 5.1] and therefore
p-good [BK, VI 5.3].

7. Exotic convergence. In sections 5 and 6 we have analyzed when the
homology spectral sequence is pro-convergent or strongly convergent. In this
section, we change our focus. Here, instead of asking when the spectral sequence
converges, we ask to what the spectral sequence is converging. This change in
focus alows us to consider cosimplicial spaces whose codegrees are not nec-
essarily p-nilpotent. The exotic convergence results are stated in Corollaries 7.6
and 7.7.
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In section 5 we considered the bicosimplicial space R'X". Here we consider
the diagonal of this bicosimplicial space, which we denote R*X'. The p-resolution
of the cosimplicial space X* is R*X". The codegrees of this cosimplicial space are
(RAX)" = R™1IX". Each codegree is a simplicia vector space over R. Therefore
it is p-nilpotent. For a pointed cosimplicial space X', R*X" is group-like. Hence it
isfibrant [BK, X 4.9]. In fact the following lemma shows that R*X" is fibrant for
any cosimplicial space X'. So the p-resolution construction takes any cosimplicial
space to a related fibrant cosimplicia space which has p-nilpotent codegrees.

LemmA 7.1. Let X' be a cosimplicial space. R*X isfibrant.

Proof. If X' is the empty cosimplicial space then RAX' is the cosimplicial
point. Hence it is fibrant. Now assume X' is nonempty and hence also that X°
is nonempty. Choose an element xo € X°. This element is carried by the iterated
coface operators d' for i > 0 to a system of basepoints. This system of basepoints
is respected under all iterated cosimplicial operators not involving d°. We will
use this system of basepoints to show that R*X" is group-like and hence fibrant
[BK, X 4.9].

Each R™1X" has the structure of a simplicial R-module using the choice of
basepoint above [BK, | 2.2]. To show that RAX" is group-like we need to see that
each cosimplicial operator except d° is a homomorphism with respect to these
group structures. Each d' : R"X"1 — R™1X" js a composite of d' : R"X"1 —
R'X" and d' : R"X" — R™1X". Because each d' : X"~1 — X" for i > O preserves
the chosen basepoints, each of these composite maps is a homomorphism. Similar
argumentswork for each s also. Thus any cosimplicial operator except d® in RAX’
is a homomorphism. Hence RAX" is fibrant. O

In order to apply Theorem 5.3 to the p-resolution we need the next lemma.

LemmAa 7.2. Let X* be a cosimplicial space such that H. X" is finite type for
each n. Then mm(RAX )M isfinite and H.. (RAX )" isfinite type for each mand n.

Proof. This is easy to see using induction, the fact that H, X" = 7,R(X"), and
the fact that a space with finite homotopy groups has finite mod p homology. O

The following corollary is an easy application of Theorem 5.3 given this
lemma and the fact that each codegree of RAX' is p-nilpotent.

CoroLLARY 7.3. Let X be a cosimplicial space. Assume that H,. X" is finite
type for all n. Then RAX" is pro-convergent. In other words, the following map is a
pro-isomor phism

@ : {H,TotsR*X'} — {H. Ts(R® REX)}.
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We can aso apply Theorem 6.1 to the p-resolution to get the following
corollary.

CoRroLLARY 7.4. Let X* be a cosimplicial space with H, X" finite type for each
n. Assume either

(@ H.TotRAX isfinitetype, or
(b) I(iLnH*TotSRAX' isfinite type.

Then {H,TotR*X'} — {H.Ts(R® R*X")} isa pro-isomorphism, i.e., the homology
spectral sequence for RAX' strongly converges, if and only if Tot R2X' is p-good.

These corollaries become more interesting once we realize the relationship
between a cosimplicia space and its p-resolution. Using the canonical map X —
R®X, one can construct a map X' — RAX".

Lemma 7.5. Let X' be a cosimplicial space. The canonical map X' — RAX
induces an isomor phism 7SHy(X") — 7SHy(RAX") for all sand t.

Proof. First consider the p-resolution of a space Y. Its homology is aug-
mented by H.Y — H.RY. The natural map R® RY — R® Y induces a natural
cosimplicia retraction of H,R'Y onto H. Y. Hence 7*H,.R'Y = H.Y. This natura
cosimplicial retraction can be extended to give a retraction of H.RAX onto H, X".
Thus, 7*H, X" % 7*H,.RAX". See also [G, 3.4], where an analogous statement in
cohomology is proved. m]

This lemma shows that the map X' — RAX" induces an E2-isomorphism
of the respective homology spectral sequences. Lemma 2.2 shows that the
E2-isomorphism induced by the map X' — RAX" produces a pro-isomorphism
{H.Ts(R® X)} — {H.Ts(R® RAX)}. Thus strong convergence of the homol-
ogy spectral sequence for RAX is equivalent to having the homology spectral
sequence for X' converge to H,. Tot R*X". More precisely we have the following
corollary.

CoRroLLARY 7.6 Under the hypotheses of Corollary 7.4, the following maps are
both pro-isomorphisms

{H, TotR*X'} — {H,Ts(R® R®X)} — {H,Ts(R® X)}

if and only if Tot R*X is p-good. In other words, the homology spectral sequence
for X is strongly converging to H, Tot R*X if and only if Tot R*X" is p-good.

Restating Corollary 7.3 from this perspective, the following corollary states
that the homology spectral sequence for X* pro-converges to the homology of the
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tower {TotsRAX'} quite generally.

CoroOLLARY 7.7. Let X* be a cosimplicial space with H, X" finite type for each
n. Then the following maps are both pro-isomor phisms.

{H, TotsRAX'} — {H, Ts(R® REX")} «— {H.Ts(R® X))}

Remark. This corollary showsthat for X" with H, X" finite type {H, Ts(R®X")}
is pro-trivial for n < 0. Thus Lemma 2.3 shows that in this case the homol-
ogy spectral sequence will vanish in negative total degrees “by E*.” In [D3]
W. Dwyer constructed operations which ensure over 7/2, among other things,
that E>°(X") vanishes in negative total degrees for any cosimplicial space X'.
We conjecture that this is true over Z/p for any prime p, athough we have
only proved this for cosimplicial spaces whose codegrees have finite type mod p
homology.

8. Exotic convergence of the Eilenberg-Moore spectral sequence. In
this section we apply the exotic convergence results discussed in section 7 to
the Eilenberg-Moore spectral sequence. First we need the following proposition,
which is useful for dealing with the total space of R®X". Let Y™ be a bicosim-
plicial space. Let AY"" be the cosimplicia space with codegrees (AY )" = Y™,
Hence R*X' = AR'X'. Let Tot" and Tot¥ refer to the “horizontal” and “vertical”
Tot functors.

ProposiTioN 8.1. Tot (AY") isisomorphic to Tot"Tot" (Y"*) and Tot¥ Tot"(Y"").
Smilarly, {Tots(AY ")} is pro-isomorphic to { TotITot! Y} and {Tot! TotlY"'}.

Proof. Let A" x A" be the bicosimplicial space such that (A" x A")™™ = A[n] x
A[m]. Then the first statement in the lemma is equivalent to Hom (A", AY™") ¥
Hom (A" x A", Y™"). We exhibit the isomorphism on the zero simplices.

A k-simplex of (A" x A)™™ is a simplex ok x 7x with ox € A[n]x and
7k € A[mM]k. A[Nn]k can beidentified as Homy (k, n). Under thisidentification, let oy
correspond to gi. Given an element g € Hom (A", AY"), define@: A" x A" — Y™
by §(ok x 1) = gk x 7k(9(ik)). Here iy is the nondegenerate k-simplex in A[K].
Givenaneementf € Hom (A" xA", Y™) restrict thismap by the diagonal inclusion
A — A" x A" to get an element of Hom (A", AY ™). It is easy to check that these
maps are hatural two-sided inverses.

The second statement of the lemmais equivalent to having a pro-isomorphism
{Hom (sKksA" x KA, Y )} — {Hom(skeA', AY"")}. Arguments similar to those
above show that for each s Hom (sksA",AY™) is isomorphic to Hom (skg(A™ x
A),Y"). So the proof of the lemma is finished by noting that the inclusion
{SKs(A" x A)} — {sksA" x skg/A"} is @ pro-isomorphism of simplicial sets. m]
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For REX' this proposition shows that Tot R®X" is isomorphic to Tot (RyX)
and {Tots(RsX')} — {TotsR*X'} is a pro-isomorphism.

Now we consider the Eilenberg-Moore spectral sequence for the following
diagram

<

—

©)

X —

(o8]

wheref isafibration. If H. X, H.B, and H. Y are finite type then the codegrees of
the cobar construction B" are finite type. Thus we can apply Corollary 7.7 to see
that the Eilenberg-Moore spectral sequence here is pro-converging to the tower
{H,TotsR°B'}.

Applying Proposition 8.1, we see that {TotsR*B'} is weakly pro-homotopy
equivalent to {Tot! Tot’R'B}. Let the cosimplicial direction in B™ be the vertical
direction. Consider {Tot!R'B'} = {RsB}. Since each codegree of B’ is a product
of copies of X, Y, and B by Lemma 5.1 this tower of cosimplicial spaces is
weakly pro-homotopy equivalent on each codegree to {B;}, where B; is the
cobar construction of the following diagram.

RsY
©) a
Rsx — RS B

Thus applying Tots to these two towers gives a weak pro-homotopy equivalence,
{Tot! Tot"R' B’} — {TotsB;}. Hence {TotsR*B’} is weak pro-homotopy equiva-
lent to {TotsBg}.

Any cobar construction has the property that TotB® ~ - - - ~ Tot, B" ~ Tot; B’
and Tot; B™ is the homotopy pull-back of the diagram being considered. Let Mg
be the homotopy pull-back of diagram (6). Then TotsBg is homotopy equivalent
to Ms for s > 0. Hence {TotsR*B'} is weakly pro-homotopy equivalent to {Ms}.
So we can state the following corollary to Corollary 7.7.

CoroLLARY 8.2. Let B’ be the cobar construction for diagram (5). If H, X,
H.B, and H.Y are finite type, then the Eilenberg-Moore spectral sequence for
diagram (5) pro-convergesto {H.Ms}. More precisely, there s a sequence of weak
pro-homotopy equivalences between {H.Ms} and {H,.Ts(R® B’)}.

Thisis a generalization to fibre squares of one of W. Dwyer’s exotic conver-
gence results for fibrations [D2, 1.1].
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Let M, be the homotopy pull-back of the following diagram
RoY

Roof

Ry X —— R B.

Then M, = limMs. Thus we can state the following strong convergence corollary

«—

to Corollary 7.6.

CoroLLARY 8.3. Consider diagram (5). Let H,. X, H..B, and H..Y befinite type.
Assume either

(@ H.My isfinitetype, or
(b) [iLnH*Msisfinitetype.

Then the Eilenberg-Moore spectral sequence for diagram (5) strongly convergesto
H.M if and only if M, is p-good.

9. Relative convergence. In this section we consider yet another type of
convergence question. Here we ask whether a map of cosimplicial spaces which
induces an E2-isomorphism on the homology spectral sequence gives us any
information about the relationship between the total spaces of the cosimplicial
spaces.

Let f : X* — Y be a map of cosimplicial spaces which induces an E'-
isomorphism on the homology spectral sequences. When H.X" and H.Y" are
finite type for each n, we know that each of these spectral sequences is pro-
convergent to {H.TotsR*X'} by Corollary 7.7. This shows that the horizontal
maps in the following diagram are pro-isomorphisms.

{H,TotRX'} —— {H.T(R®REX)} —— {H,T{(R® X))}

l | |

{H, TotsRY'} —— {H.T{((R®RY)} «—— {H.T{(R®Y)}

The right-hand map is a pro-isomorphism by Lemma 2.2 because f is an E'-
isomorphism. Thus we conclude that the left-hand map is also a pro-isomorphism.

By generaizing [BK, Ill 6.2] to the case of nonconnected spaces, we see
that a homology isomorphism H,W — H.Z induces a pro-homotopy equivalence
{RW} — {RsZ}. Applying this to the above pro-homology isomorphism gives a
pro-homotopy equivalence {RsTotsR*X'} — {RsTotsRAY'}. Each TotsRAX' is p-
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nilpotent [B2, 4.6]. TotsRA*X' also has finitely many components by Lemma 7.2
and Lemma 2.6. Hence Lemma 5.2 shows that {TotsR®X'} is pro-homotopy
equivalent to {RsTotsR*X'}. The same is true for Y. So we conclude that
{TotsRAX'} — {TotsRAY'} is a pro-homotopy equivalence. Because of the fi-
nite type assumptions (Lemma 7.2 and Lemma 2.6), each homotopy group of
TotsREX" is finite. So [i_rnlwiTotsRAX' is zero for each i. The same is true for Y.

Thus we conclude that Tot R*X" — Tot RAY" is a homotopy equivalence [BK, IX
3.1]. We state this relative convergence result in the following theorem.

THeEOREM 9.1. Letf : X* — Y be a map of cosimplicial spaces which induces
an E'-isomorphism on the homology spectral sequences. If H, X" and H,.Y" are
finite type for each n, then the following map is a homotopy equivalence.

TotR*X ——— Tot R*Y’

Using Lemma 7.5, we can apply this theorem to RAX" itself to deduce the
following corollary.

CoroLLARY 9.2. Let X* bea cosimplicial space. If H, X" isfinite type for each
n, then the following map is a homotopy equivalence.

Tot RAX —=— Tot RRRAX

10. The p-resolution of a cosimplicial space. Because of the exotic con-
vergence results in section 7 and the relative convergence results in 9, we would
like to understand Tot R*X" and its relationship to Tot X'.

Let the constant cosimplicial space associated to X be denoted ¢’ X. Then
Tot RA(c'X) is by definition the p-completion of X, R,X, which was studied
in [BK]. So R(Totc'X) ~ TotRAc'X). In general the relationship between
Tot X" and Tot R®X' is not this straightforward. The following theorems discuss
two special cases in which we can relate these two spaces. First we need the
following lemma.

LemmA 10.1. Let R, X" bethecosimplicial spacewith (R X")" = R, X". Then
R, X" isafibrant cosimplicial space.

Proof. To show that R, X" isfibrant we must show that Ry X" — M"1(R, X))
is a fibration for each n. This map is the map of total spaces induced by
R X" — M"1(R X') because the total space functor commutes with inverse limit
constructions such as the matching space. The mth codegree of this map of cosim-
plicial spacesis R™X" — M"~1(R™X"). A fibration of cosimplicial spaces induces
a fibration on the total spaces because the category of cosimplicial spaces is a
simplicial model category. Thus it is enough to show that R X" — M"™1(R'X")
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is a fibration of cosimplicial spaces. To show this we will use the fact that an
epimorphism of group-like cosimplicia spaces is a fibration [BK, X 4.9].

Any choice of basepoint in X" makes R' X" a group-like cosimplicial space
[BK, X 4.10]. Each codegree of M"~1(R'X") is a simplicial group because it is
the inverse limit of a diagram of homomorphisms of simplicia groups. Similarly
each cosimplicial operator other than d° is a homomorphism. Hence M"1(R'X")
is group-like. To see that the map between these group-like cosimplicial spacesis
an epimorphism it is enough to see that each level is an epimorphism. As noted
above the levels of this map are R"™X" — M"~1(R™X"). For each m this map is
an epimorphism because R™X" is a group-like cosimplicial space [BK, X 4.9]. O

THeorREM 10.2. Let X™ be a cosimplicial space such that each X" is p-complete.
Then the following maps are homotopy equivalences.

TotX' — TotRAX' «—— TotRAX’

Proof. Proposition 8.1 shows that Tot R*X' is isomorphic to Tot Ry, X'. So
to show that the first map is a homotopy equivalence we need to show that
Tot X" — Tot R, X is a homotopy equivalence. To do this we consider the map
X' — R X'. Thismap is aweak equivalence of cosimplicial spaces because each
X" is p-complete. The lemma above shows that R, X" is fibrant. Hence this map
is a weak equivalence of fibrant cosimplicial spaces. So it induces a homotopy
equivalence on the total spaces by Lemma 2.1.

The functor R preserves weak equivalences. So since X' — X' is a weak
equivalence, R®X" — RAX' is a wesk equivalence. By Lemma 7.1both of these
cosimplicial spaces are fibrant. Hence Tot R*X™ — Tot R*X is a homotopy equiv-
alence by Lemma 2.1. O

We now prove a strong convergence result which generalizes Theorem 6.1
by requiring only that each codegree is p-complete.

CoroLLARY 10.3. Let X' be a cosimplicial space with H, X" finite type and X"
p-complete for each n. Assume either

(@ H.TotRAX isfinite type (equivalently H,Tot X' isfinite type), or

(b) [i_n1H*TotsRAX' isfinitetype (equivalently {H. Ts(R®X")} ispro-constant).
Then {H,TotX'} — {H.T{(R® X')} is a pro-isomorphism, i.e., the homology
spectral sequence for X strongly converges, if and only if Tot X' is p-good.

Proof. First we should note that the equivalence of the two statements in
condition (b) follows from the fact that RAX" is pro-convergent here. Thus
{H.TotsR*X'} — {H.Ts(R® R*X")} is a pro-isomorphism. Lemma 7.5 shows
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that these towers are also pro-isomorphic to {H.Ts(R® X')}. These towers are
pro-finite type by arguments similar to those before the statement of Theorem 6.1.
Thusthe inverse limit of {H,TotsRX } isfinite typeif and only if {H,Ts(R®X)}
is pro-constant. Using these pro-isomrophisms and Theorem 10.2 this corollary
follows easily from Corollary 7.4 above. O

To identify Tot R®X" when each X" is not p-complete we must ask that both
X" and RAX" be strongly convergent.

Treorem 10.4 If X* and RAX are both strongly convergent and Tot RAX' is
p-good then the following map is a homotopy equivalence of p-complete spaces.

R, TotX —=—Tot R*X’

Proof. Since RAX' is strongly convergent RAX" is also strongly convergent.
Thus the horizontal maps in the following diagram are pro-isomorphisms.

{H,TotX'} ———— {H.Ts(R® X))}

{H, TotR®X'} —— {H.Ts(R® R*X)}

By Lemma 7.5 and Lemma 2.2 the right-hand map is a pro-isomorphism. Thus
we conclude that the |eft-hand map is a pro-isomorphism. Tot R*X" is p-good and
an inverse limit of p-nilpotent spaces. Hence by [S, 5.3] it is p-complete. So the
map Tot X' — Tot R*X' is a homology isomorphism to a p-complete space. Thus
there is a homotopy equivalence R, TotX' — Tot R*X" [BK, VII 2.1]. O

Note that if one uses the strong convergence conditions in Theorem 6.1 and
Corollary 7.4 then TotX™ and Tot R*X" must be p-good. Also Theorem 6.1 re-
quires that each X" is p-nilpotent. Hence [S, 5.3] implies that Tot X* and Tot RAX’
are p-complete. Thus

TotX —= Ry (TotX ) ——Tot REX —= R ( Tot R*X").

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY,
CAMBRIDGE, MA 02139
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