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Introduction

Stable homotopy theory studies spectra as the linear approximation to spaces.
Here, “stable” refers to the consideration of spaces after inverting the suspension
functor. This approach is a general one: one can often create a simpler category
by inverting an operation such as suspension. In this paper we study a particularly
simple model for inverting such operations which preserves product structures. The
combinatorial nature of this model means that it is easily transported, and hence
may be useful in extending the methods of stable homotopy theory to other settings.

The idea of a spectrum is a relatively simple one: Freudenthal’s suspension
theorem implies that the sequence of homotopy classes of maps

[X, Y ] −→ [ΣX, ΣY ] −→ . . . −→ [ΣnX, ΣnY ] −→ . . .

is eventually constant for finite-dimensional pointed CW-complexes X and Y , where
ΣX = S1 ∧ X is the reduced suspension of X . This suggests forming a stable
category where the suspension functor is an isomorphism. The standard way to do
this is to define a spectrum to be a sequence of pointed spaces Xn together with
structure maps S1 ∧Xn −→ Xn+1. This was first done by Lima [Lim59] and later
generalized by Whitehead [Whi62]. The suspension functor is not an isomorphism
in the category of spectra, but becomes an isomorphism when we invert the stable
homotopy equivalences. The resulting homotopy category of spectra is often called
the stable homotopy category and has been extensively studied, beginning with the
work of Boardman [Vog70] and Adams [Ada74] and continuing to this day. Notice
that this definition of a spectrum can be applied to any situation where one has
an operation on a category that one would like to invert; however, this simplest
construction does not preserve the smash product structure coming from spaces.

One of the stable homotopy category’s basic features is that it is symmetric
monoidal. There is a smash product, built from the smash product of pointed spaces
and analogous to the tensor product of modules, that is associative, commutative,
and unital, up to coherent natural isomorphism. However, the category of spectra
defined above is not symmetric monoidal. This has been a sticking point for almost
forty years now. Indeed, it was long thought that there could be no symmetric
monoidal category of spectra; see [Lew91], where it is shown that a symmetric
monoidal category of spectra cannot have all the properties one might like.

Any good symmetric monoidal category of spectra allows one to perform alge-
braic constructions on spectra that are impossible without such a category. This is
extremely important, for example, in the algebraic K-theory of spectra. In particu-
lar, given a good symmetric monoidal category of spectra, it is possible to construct
a homotopy category of monoids (ring spectra) and of modules over a given monoid.

In this paper, we describe a symmetric monoidal category of spectra, called
the category of symmetric spectra. The ordinary category of spectra as described
above is the category of modules over the sphere spectrum. The sphere spectrum
is a monoid in the category of sequences of spaces, but it is not a commutative
monoid, because the twist map on S1 ∧ S1 is not the identity. This explains why
the ordinary category of spectra is not symmetric monoidal, just as in algebra where
the usual internal tensor product of modules is defined only over a commutative
ring. To make the sphere spectrum a commutative monoid, we need to keep track
of the twist map, and, more generally, of permutations of coordinates. We therefore
define a symmetric spectrum to be a sequence of pointed simplicial sets Xn together
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with a pointed action of the permutation group Σn on Xn and equivariant structure
maps S1 ∧ Xn −→ Xn+1. We must also require that the iterated structure maps
Sp ∧Xn −→ Xn+p be Σp×Σn-equivariant. This idea is due to the third author; the
first and second authors joined the project later.

At approximately the same time as the third author discovered symmetric spec-
tra, the team of Elmendorf, Kriz, Mandell, and May [EKMM97] also constructed
a symmetric monoidal category of spectra, called S-modules. Some generalizations
of symmetric spectra appear in [MMSS98a]. These many new symmetric monoidal
categories of spectra, including S-modules and symmetric spectra, are shown to be
equivalent in an appropriate sense in [MMSS98b] and [Sch98]. Another symmetric
monoidal category of spectra sitting between the approaches of [EKMM97] and of
this paper is developed in [DS]. We also point out that symmetric spectra are part
of a more general theory of localization of model categories [Hir99]; we have not
adopted this approach, but both [Hir99] and [DHK] have influenced us considerably.

Symmetric spectra have already proved useful. In [GH97], symmetric spectra are
used to extend the definition of topological cyclic homology from rings to schemes.
Similarly, in [Shi], Bökstedt’s approach to topological Hochschild homology [Bök85]
is extended to symmetric ring spectra, without connectivity conditions. And in [SS],
it is shown that any linear model category is Quillen equivalent to a model category
of modules over a symmetric ring spectrum.

As mentioned above, since the construction of symmetric spectra is combinatorial
in nature it may be applied in many different situations. Given any well-behaved
symmetric monoidal model category, such as chain complexes, simplicial sets, or
topological spaces, and an endofunctor on it that respects the monoidal struc-
ture, one can define symmetric spectra. This more general approach is explored
in [Hov98b]. In particular, symmetric spectra may be the logical way to construct
a model structure for Voevodsky’s stable homotopy of schemes [Voe97].

In this paper, we can only begin the study of symmetric spectra. The most sig-
nificant loose end is the construction of a model category of commutative symmetric
ring spectra; such a model category has been constructed by the third author in
work in progress. It would also be useful to have a stable fibrant replacement func-
tor, as the usual construction QX does not work in general. A good approximation
to such a functor is constructed in [Shi].

At present the theory of S-modules of [EKMM97] is considerably more devel-
oped than the theory of symmetric spectra. Their construction appears to be
significantly different from symmetric spectra; however, [Sch98] shows that the two
approaches define equivalent stable homotopy categories and equivalent homotopy
categories of monoids and modules, as would be expected. Each approach has its
own advantages. The category of symmetric spectra is technically much simpler
than the S-modules of [EKMM97]; this paper is almost entirely self-contained, de-
pending only on some standard results about simplicial sets. As discussed above,
symmetric spectra can be built in many different circumstances, whereas S-modules
appear to be tied to the category of topological spaces. There are also technical dif-
ferences reflecting the result of [Lew91] that there are limitations on any symmetric
monoidal category of spectra. For example, the sphere spectrum S is cofibrant in
the category of symmetric spectra, but is not in the category of S-modules. On the
other hand, every S-module is fibrant, a considerable technical advantage. Also,
the S-modules of [EKMM97] are very well suited to the varying universes that arise
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in equivariant stable homotopy theory, whereas we do not yet know how to realize
universes in symmetric spectra. For a first step in this direction see [SS].

Organization

The paper is organized as follows. We choose to work in the category of sim-
plicial sets. In the first section, we define symmetric spectra, give some examples,
and establish some basic properties. In Section 2 we describe the closed symmetric
monoidal structure on the category of symmetric spectra, and explain why such a
structure cannot exist in the ordinary category of spectra. In Section 3 we study
the stable homotopy theory of symmetric spectra. This section is where the main
subtlety of the theory of symmetric spectra arises: we cannot define stable equiv-
alence by using stable homotopy isomorphisms. Instead, we define a map to be a
stable equivalence if it is a cohomology isomorphism for all cohomology theories.
The main result of this section is that symmetric spectra, together with stable
equivalences and suitably defined classes of stable fibrations and stable cofibra-
tions, form a model category. As expected, the fibrant objects are the Ω-spectra;
i.e., symmetric spectra X such that each Xn is a Kan complex and the adjoint
Xn −→ XS1

n+1 of the structure map is a weak equivalence. In Section 4, we prove
that the stable homotopy theories of symmetric spectra and ordinary spectra are
equivalent. More precisely, we construct a Quillen equivalence of model categories
between symmetric spectra and the model category of ordinary spectra described
in [BF78].

In Section 5 we discuss some of the properties of symmetric spectra. In par-
ticular, in Section 5.1, we tie up a loose end from Section 3 by establishing two
different model categories of symmetric spectra where the weak equivalences are
the level equivalences. We characterize the stable cofibrations of symmetric spectra
in Section 5.2. In Section 5.3, we show that the smash product of symmetric spectra
interacts with the model structure in the expected way. This section is crucial for
the applications of symmetric spectra, and, in particular, is necessary to be sure
that the smash product of symmetric spectra does define a symmetric monoidal
structure on the stable homotopy category. We establish that symmetric spectra
are a proper model category in Section 5.5, and use this to verify the monoid ax-
iom in Section 5.4. The monoid axiom is required to construct model categories of
monoids and of modules over a given monoid; see [SS97]. In Section 5.6, we de-
fine semistable spectra, which are helpful for understanding the difference between
stable equivalences and stable homotopy equivalences.

Acknowledgments

The authors would like to thank Dan Christensen, Bill Dwyer, Phil Hirschhorn,
Dan Kan, Haynes Miller, John Palmieri, Charles Rezk, and Stefan Schwede for
many helpful conversations about symmetric spectra.

Notation. We now establish some notation we will use throughout the paper. Many
of the categories in this paper have an enriched Hom as well as a set-valued Hom.
To distinguish them: in a category C, the set of maps from X to Y is denoted
C(X, Y ); in a simplicial category C, the simplicial set of maps from X to Y is
denoted MapC(X, Y ) or Map(X, Y ); in a category C with an internal Hom, the
object in C of maps from X to Y is denoted HomC(X, Y ) or Hom(X, Y ). In case C
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is the category of modules over a commutative monoid S, we also use HomS(X, Y )
for the internal Hom.

1. Symmetric spectra

In this section we construct the category of symmetric spectra over simplicial
sets. We begin this section by recalling the basic facts about simplicial sets in
Section 1.1, then we define symmetric spectra in Section 1.2. We describe the sim-
plicial structure on the category of symmetric spectra in Section 1.3. The homotopy
category of symmetric Ω-spectra is described in Section 1.4.

1.1. Simplicial sets. We recall the basics. Consult [May67] or [Cur71] for more
details.

The category ∆ has the ordered sets [n] = {0, 1, . . . , n} for n ≥ 0 as its objects
and the order preserving functions [n]→ [m] as its maps. The category of simplicial
sets, denoted S, is the category of functors from ∆op to the category of sets. The set
of n-simplices of the simplicial set X , denoted Xn, is the value of the functor X at
[n]. The standard n-simplex ∆[n] is the contravariant functor ∆(−, [n]). Varying n
gives a covariant functor ∆[−] : ∆ → S. By the Yoneda lemma, S(∆[n], X) = Xn

and the contravariant functor S(∆[−], X) is naturally isomorphic to X .
Let G be a discrete group. The category of G-simplicial sets is the category SG

of functors from G to S, where G is regarded as a category with one object. A
G-simplicial set is therefore a simplicial set X with a left simplicial G-action, i.e.,
a homomorphism G→ S(X, X).

A basepoint of a simplicial set X is a distinguished 0-simplex ∗ ∈ X0. The
category of pointed simplicial sets and basepoint preserving maps is denoted S∗.
The simplicial set ∆[0] = ∆(−, [0]) has a single simplex in each degree and is the
terminal object in S. A basepoint of X is the same as a map ∆[0] → X . The
disjoint union X+ = X q ∆[0] adds a disjoint basepoint to the simplicial set X .
For example, the 0-sphere is S0 = ∆[0]+. A basepoint of a G-simplicial set X is a
G-invariant 0-simplex of X . The category of pointed G-simplicial sets is denoted
SG
∗ .
The smash product X ∧Y of the pointed simplicial sets X and Y is the quotient

(X × Y )/(X ∨ Y ) that collapses the simplicial subset X ∨ Y = X × ∗ ∪ ∗ × Y
to a point. For pointed G-simplicial sets X and Y , let X ∧G Y be the quotient
of X ∧ Y by the diagonal action of G. For pointed simplicial sets X , Y , and Z,
there are natural isomorphisms (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z), X ∧ Y ∼= Y ∧ X
and X ∧ S0 ∼= X . In the language of monoidal categories, the smash product is a
symmetric monoidal product on the category of pointed simplicial sets. We recall
the definition of symmetric monoidal product, but for more details see [ML71, VII]
or [Bor94, 6.1].

Definition 1.1.1. A symmetric monoidal product on a category C is: a bifunctor
⊗ : C × C → C; a unit U ∈ C; and coherent natural isomorphisms (X ⊗ Y ) ⊗
Z ∼= X ⊗ (Y ⊗ Z) (the associativity isomorphism), X ⊗ Y ∼= Y ⊗ X (the twist
isomorphism), and U ⊗X ∼= X (the unit isomorphism). The product is closed if
the functor X ⊗ (−) has a right adjoint Hom(X,−) for every X ∈ C. A (closed)
symmetric monoidal category is a category C with a (closed) symmetric monoidal
product.
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Coherence of the natural isomorphisms means that all reasonable diagrams built
from the natural isomorphisms also commute [ML71]. When the product is closed,
the pairing Hom(X, Y ) : Cop × C→ C is an internal Hom. For example, the smash
product on the category S∗ of pointed simplicial sets is closed. For X, Y ∈ S∗, the
pointed simplicial set of maps from X to Y is MapS∗(X, Y ) = S∗(X∧∆[−]+, Y ). For
pointed G-simplicial sets X and Y , the simplicial subset of G-equivariant pointed
maps is MapG(X, Y ) = SG∗ (X ∧∆[−]+, Y ).

1.2. Symmetric spectra. Let S1 be the simplicial circle ∆[1]/∂∆[1], obtained by
identifying the two vertices of ∆[1].

Definition 1.2.1. A spectrum is
(1) a sequence X0, X1, . . . , Xn, . . . of pointed simplicial sets; and
(2) a pointed map σ : S1 ∧Xn → Xn+1 for each n ≥ 0.

The maps σ are the structure maps of the spectrum. A map of spectra f : X → Y
is a sequence of pointed maps fn : Xn → Yn such that the diagram

S1 ∧Xn
σ−−−−→ Xn+1

S1∧fn

y fn+1

y
S1 ∧ Yn

σ−−−−→ Yn+1

is commutative for each n ≥ 0. Let SpN denote the category of spectra.

Replacing the sequence of pointed simplicial sets by a sequence of pointed topo-
logical spaces in 1.2.1 gives the original definition of a spectrum (due to Whitehead
and Lima). The categories of simplicial spectra and of topological spectra are
discussed in the work of Bousfield and Friedlander [BF78].

A symmetric spectrum is a spectrum to which symmetric group actions have
been added. Let Σp be the group of permutations of the set p = {1, 2, . . . , p}, with
0 = ∅. As usual, embed Σp×Σq as the subgroup of Σp+q with Σp acting on the first
p elements of p + q and Σq acting on the last q elements of p + q. Let Sp = (S1)∧p

be the p-fold smash power of the simplicial circle with the left permutation action
of Σp.

Definition 1.2.2. A symmetric spectrum is
(1) a sequence X0, X1, . . . , Xn, . . . of pointed simplicial sets;
(2) a pointed map σ : S1 ∧Xn → Xn+1 for each n ≥ 0; and
(3) a basepoint preserving left action of Σn on Xn such that the composition

σp = σ ◦ (S1 ∧ σ) ◦ · · · ◦ (Sp−1 ∧ σ) : Sp ∧Xn → Xn+p

of the maps Si ∧ S1 ∧ Xn+p−i−1
Si∧σ−−−→ Si ∧ Xn+p−i is Σp × Σn-equivariant

for p ≥ 1 and n ≥ 0.
A map of symmetric spectra f : X → Y is a sequence of pointed maps fn : Xn → Yn

such that fn is Σn-equivariant and the diagram

S1 ∧Xn
σ−−−−→ Xn+1

S1∧fn

y fn+1

y
S1 ∧ Yn

σ−−−−→ Yn+1

is commutative for each n ≥ 0. Let SpΣ denote the category of symmetric spectra.
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Remark 1.2.3. In part three of Definition 1.2.2, one need only assume that the
maps σ : S1 ∧ Xn → Xn+1 and σ2 : S2 ∧ Xn → Xn+2 are equivariant; since the
symmetric groups Σp are generated by transpositions (i, i + 1), if σ and σ2 are
equivariant then all the maps σp are equivariant.

Example 1.2.4. The symmetric suspension spectrum Σ∞K of the pointed sim-
plicial set K is the sequence of pointed simplicial sets Sn ∧ K with the natural
isomorphisms σ : S1 ∧ Sn ∧ K → Sn+1 ∧ K as the structure maps and the diag-
onal action of Σn on Sn ∧K coming from the left permutation action on Sn and
the trivial action on K. The composition σp is the natural isomorphism which is
Σp×Σn-equivariant. The symmetric sphere spectrum S is the symmetric suspension
spectrum of the 0-sphere; S is the sequence of spheres S0, S1, S2, . . . with the nat-
ural isomorphisms S1 ∧Sn → Sn+1 as the structure maps and the left permutation
action of Σn on Sn.

Example 1.2.5. The Eilenberg-Mac Lane spectrum HZ is the sequence of sim-
plicial abelian groups Z ⊗ Sn, where (Z ⊗ Sn)k is the free abelian group on the
non-basepoint k-simplices of Sn. We identify the basepoint with 0. The symmet-
ric group Σn acts by permuting the generators, and one can easily verify that the
evident structure maps are equivariant. One could replace Z by any ring.

Remark 1.2.6. As explained in [GH97, Section 6], many other examples of sym-
metric spectra arise as the K-theory of a category with cofibrations and weak
equivalences as defined by Waldhausen [Wal85, p.330].

A symmetric spectrum with values in a simplicial category C is obtained by
replacing the sequence of pointed simplicial sets by a sequence of pointed objects in
C. In particular, a topological symmetric spectrum is a symmetric spectrum with
values in the simplicial category of topological spaces.

By ignoring group actions, a symmetric spectrum is a spectrum and a map of
symmetric spectra is a map of spectra. When no confusion can arise, the adjective
“symmetric” may be dropped.

Definition 1.2.7. Let X be a symmetric spectrum. The underlying spectrum UX
is the sequence of pointed simplicial sets (UX)n = Xn with the same structure
maps σ : S1 ∧ (UX)n → (UX)n+1 as X but ignoring the symmetric group actions.
This gives a faithful functor U : SpΣ → SpN.

Since the action of Σn on Sn is non-trivial for n ≥ 2, it is usually impossible to
obtain a symmetric spectrum from a spectrum by letting Σn act trivially on Xn.
However, many of the usual functors to the category of spectra lift to the category
of symmetric spectra. For example, the suspension spectrum of a pointed simplicial
set K is the underlying spectrum of the symmetric suspension spectrum of K.

Many examples of symmetric spectra and of functors on the category of sym-
metric spectra are constructed by prolongation of simplicial functors.

Definition 1.2.8. A pointed simplicial functor or S∗-functor is a pointed functor
R : S∗ → S∗ and a natural transformation h : RX ∧K → R(X ∧K) of bifunctors
such that the composition RX ∧S0 → R(X ∧S0)→ R(X) is the unit isomorphism
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and the diagram of natural transformations

(RX ∧K) ∧ L
h∧L

//

��

R(X ∧K) ∧ L

h

��

RX ∧ (K ∧ L) h
// R(X ∧K ∧ L)

is commutative. A pointed simplicial natural transformation, or S∗-natural trans-
formation, from the S∗-functor R to the S∗-functor R′ is a natural transformation
τ : R→ R′ such that τh = h′(τ ∧K).

Definition 1.2.9. The prolongation of a S∗-functor R : S∗ → S∗ is the functor
R : SpΣ → SpΣ defined as follows. For X a symmetric spectrum, RX is the
sequence of pointed simplicial sets RXn with the composition σ : S1 ∧ R(Xn) →
R(S1 ∧ Xn) Rσ−−→ R(Xn+1) as the structure map and the action of Σn on R(Xn)
obtained by applying the functor R to the action of Σn on Xn. Since R is a S∗-
functor, each map σp is equivariant and so RX is a symmetric spectrum. For f
a map of symmetric spectra, Rf is the sequence of pointed maps Rfn. Since R
is an S∗-functor, Rf is a map of spectra. Similarly, we can prolong an S∗-natural
transformation to a natural transformation of functors on SpΣ.

Proposition 1.2.10. The category of symmetric spectra is bicomplete (every small
diagram has a limit and a colimit).

Proof. For any small category I, the limit and colimit functors SI
∗ → S∗ are pointed

simplicial functors; for K ∈ S∗ and D ∈ SetI there is a natural isomorphism

K ∧ colimD ∼= colim(K ∧D)

and a natural map

K ∧ lim D → lim(K ∧D).

A slight generalization of prolongation gives the limit and the colimit of a diagram
of symmetric spectra.

In particular, the underlying sequence of the limit is (lim D)n = lim Dn and the
underlying sequence of the colimit is (colim D)n = colimDn.

1.3. Simplicial structure on SpΣ. For a pointed simplicial set K and a sym-
metric spectrum X , prolongation of the S∗-functor (−) ∧K : S∗ → S∗ defines the
smash product X ∧K and prolongation of the S∗-functor (−)K : S∗ → S∗ defines
the power spectrum XK . For symmetric spectra X and Y , the pointed simplicial
set of maps from X to Y is MapSpΣ(X, Y ) = SpΣ(X ∧∆[−]+, Y ).

In the language of enriched category theory, the following proposition says that
the smash product X ∧K is a closed action of S∗ on SpΣ. We leave the straight-
forward proof to the reader.

Proposition 1.3.1. Let X be a symmetric spectrum. Let K and L be pointed
simplicial sets.

(1) There are coherent natural isomorphisms X ∧ (K ∧ L) ∼= (X ∧ K) ∧ L and
X ∧ S0 ∼= X.

(2) (−) ∧K : SpΣ → SpΣ is the left adjoint of the functor (−)K : SpΣ → SpΣ.
(3) X ∧ (−) : S∗ → SpΣ is the left adjoint of the functor MapSpΣ(X,−) : SpΣ →

S∗.
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The evaluation map X ∧MapSpΣ(X, Y )→ Y is the adjoint of the identity map
on MapSpΣ(X, Y ). The composition pairing

MapSpΣ(X, Y ) ∧MapSpΣ(Y, Z)→ MapSpΣ(X, Z)

is the adjoint of the composition

X ∧MapSpΣ(X, Y ) ∧MapSpΣ(Y, Z)→ Y ∧MapSpΣ(Y, Z)→ Z

of two evaluation maps. In the language of enriched category theory, a category
with a closed action of S∗ is the same as a tensored and cotensored S∗-category.
The following proposition, whose proof we also leave to the reader, expresses this
fact.

Proposition 1.3.2. Let X, Y , and Z be symmetric spectra and let K be a pointed
simplicial set.

(1) The composition pairing MapSpΣ(X, Y ) ∧MapSpΣ(Y, Z)→ MapSpΣ(X, Z) is
associative.

(2) The adjoint S0 → MapSpΣ(X, X) of the isomorphism X ∧ S0 → X is a left
and a right unit of the composition pairing.

(3) There are natural isomorphisms

MapSpΣ(X ∧K, Y ) ∼= MapSpΣ(X, Y K) ∼= MapSpΣ(X, Y )K .

Proposition 1.3.1 says that certain functors are adjoints, whereas Proposition
1.3.2 says more; they are simplicial adjoints.

The category of symmetric spectra satisfies Quillen’s axiom SM7 for simplicial
model categories.

Definition 1.3.3. Let f : U → V and g : X → Y be maps of pointed simplicial
sets. The pushout smash product f � g is the natural map on the pushout

f � g : V ∧X qU∧X U ∧ Y → V ∧ Y

induced by the commutative square

U ∧X
f∧X−−−−→ V ∧X

U∧g

y yV ∧g

U ∧ Y −−−−→
f∧Y

V ∧ Y.

Let f be a map of symmetric spectra and let g be a map of pointed simplicial sets.
The pushout smash product f � g is defined by prolongation, (f � g)n = fn � g.

Recall that a map of simplicial sets is a weak equivalence if its geometric real-
ization is a homotopy equivalence of CW-complexes. One of the basic properties of
simplicial sets, proved in [Qui67, II.3], is:

Proposition 1.3.4. Let f and g be monomorphisms of pointed simplicial sets.
Then f � g is a monomorphism, which is a weak equivalence if either f or g is a
weak equivalence.

Prolongation gives a corollary for symmetric spectra. A map f of symmetric
spectra is a monomorphism if fn is a monomorphism of simplicial sets for each
n ≥ 0.
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Definition 1.3.5. A map f of symmetric spectra is a level equivalence if fn is a
weak equivalence of simplicial sets for each n ≥ 0.

Corollary 1.3.6. Let f be a monomorphism of symmetric spectra and let g be a
monomorphism of pointed simplicial sets. Then f � g is a monomorphism, which
is a level equivalence if either f is a level equivalence or g is a weak equivalence.

By definition, a 0-simplex of MapSpΣ(X, Y ) is a map X ∧ ∆[0]+ → Y , but
X∧∆[0]+ ∼= X and so a 0-simplex of MapSpΣ(X, Y ) is a map X → Y . A 1-simplex
of MapSpΣ(X, Y ) is a simplicial homotopy H : X ∧∆[1]+ → Y from H ◦ (X ∧ i0)
to H ◦ (X ∧ i1) where i0 and i1 are the two inclusions ∆[0] → ∆[1]. Simpli-
cial homotopy generates an equivalence relation on SpΣ(X, Y ) and the quotient is
π0 MapSpΣ(X, Y ). A map f : X → Y is a simplicial homotopy equivalence if it has
a simplicial homotopy inverse, i.e., a map g : Y → X such that gf is simplicially
homotopic to the identity map on X and fg is simplicially homotopic to the iden-
tity map on Y . If f is a simplicial homotopy equivalence of symmetric spectra,
then each of the maps fn is a simplicial homotopy equivalence, and so each of the
maps fn is a weak equivalence. Every simplicial homotopy equivalence is therefore
a level equivalence. The converse is false; a map can be a level equivalence and
NOT a simplicial homotopy equivalence.

1.4. Symmetric Ω-spectra. The stable homotopy category can be defined using
Ω-spectra and level equivalences.

Definition 1.4.1. A Kan complex (see Example 3.2.6) is a simplicial set that
satisfies the Kan extension condition. An Ω-spectrum is a spectrum X such that
for each n ≥ 0 the simplicial set Xn is a Kan complex and the adjoint Xn →
MapS∗(S

1, Xn+1) of the structure map S1 ∧ Xn → Xn+1 is a weak equivalence of
simplicial sets.

Let ΩSpN ⊆ SpN be the full subcategory of Ω-spectra. The homotopy cat-
egory Ho(ΩSpN) is obtained from ΩSpN by formally inverting the level equiva-
lences. By the results in [BF78], the category Ho(ΩSpN) is naturally equivalent to
Boardman’s stable homotopy category (or any other). Likewise, let ΩSpΣ ⊆ SpΣ

be the full subcategory of symmetric Ω-spectra (i.e., symmetric spectra X for
which UX is an Ω-spectrum). The homotopy category Ho(ΩSpΣ) is obtained from
ΩSpΣ by formally inverting the level equivalences. Since the forgetful functor
U : SpΣ → SpN preserves Ω-spectra and level equivalences, it induces a functor
Ho(U) : Ho(ΩSpΣ) → Ho(ΩSpN). As a corollary of Theorem 4.2.5, the functor
Ho(U) is a natural equivalence of categories. Thus the category Ho(ΩSpΣ) is nat-
urally equivalent to Boardman’s stable homotopy category. To describe an inverse
of Ho(U), let Ω∞ : SpN → S∗ be the functor that takes a spectrum to the 0-space
of its associated Ω-spectrum. For any spectrum E ∈ SpN, the symmetric spectrum
V E = Ω∞(E∧S) is the value of the prolongation of the S∗-functor Ω∞(E∧−) at the
symmetric sphere spectrum S; the underlying sequence is V En = Ω∞(E∧Sn). The
functor V preserves Ω-spectra, preserves level equivalences, and induces a functor
Ho(V ) : Ho(ΩSpN)→ Ho(ΩSpΣ) which is a natural inverse of Ho(U).

The category of symmetric Ω-spectra has major defects. It is not closed under
limits and colimits, or even under pushouts and pullbacks. The smash product,
defined in Section 2, of symmetric Ω-spectra is a symmetric spectrum but not an
Ω-spectrum, except in trivial cases. For these reasons it is better to work with
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the category of all symmetric spectra. But then the notion of level equivalence
is no longer adequate; the stable homotopy category is a retract of the homotopy
category obtained from SpΣ by formally inverting the level equivalences but many
symmetric spectra are not level equivalent to an Ω-spectrum. One must enlarge
the class of equivalences. The stable equivalences of symmetric spectra are defined
in Section 3.1. By Theorem 4.2.5, the homotopy category obtained from SpΣ by
inverting the stable equivalences is naturally equivalent to the stable homotopy
category.

2. The smash product of symmetric spectra

In this section we construct the closed symmetric monoidal product on the cate-
gory of symmetric spectra. A symmetric spectrum can be viewed as a module over
the symmetric sphere spectrum S, and the symmetric sphere spectrum (unlike the
ordinary sphere spectrum) is a commutative monoid in an appropriate category.
The smash product of symmetric spectra is the tensor product over S.

The closed symmetric monoidal category of symmetric sequences is constructed
in Section 2.1. A reformulation of the definition of a symmetric spectrum is given
in Section 2.2 where we recall the definition of monoids and modules in a symmetric
monoidal category. In Section 2.3 we see that there is no closed symmetric monoidal
smash product on the category of (non-symmetric) spectra.

2.1. Symmetric sequences. Every symmetric spectrum has an underlying se-
quence X0, X1, . . . , Xn, . . . of pointed simplicial sets with a basepoint preserving
left action of Σn on Xn; these are called symmetric sequences. In this section we
define the closed symmetric monoidal category of symmetric sequences of pointed
simplicial sets.

Definition 2.1.1. The category Σ =
∐

n≥0 Σn has the finite sets n = {1, 2, . . . , n}
for n ≥ 0 (0 = ∅) as its objects and the automorphisms of the sets n as its maps.
Let C be a category. A symmetric sequence of objects in C is a functor Σ→ C, and
the category of symmetric sequences of objects in C is the functor category CΣ.

A symmetric sequence X ∈ SΣ
∗ is a sequence X0, X1, . . . , Xn, . . . of pointed

simplicial sets with a basepoint preserving left action of Σn on Xn. The category
CΣ is a product category. In particular, SΣ

∗ (X, Y ) =
∏

p S
Σp∗ (Xp, Yp).

Proposition 2.1.2. The category SΣ
∗ of symmetric sequences in S∗ is bicomplete.

Proof. The category S∗ is bicomplete, so the functor category SΣ
∗ is bicomplete.

Definition 2.1.3. The tensor product X⊗Y of the symmetric sequences X, Y ∈ SΣ
∗

is the symmetric sequence

(X ⊗ Y )n =
∨

p+q=n

(Σn)+ ∧Σp×Σq (Xp ∧ Yq).

The tensor product f ⊗ g : X ⊗ Y −→ X ′ ⊗ Y ′ of the maps f : X −→ X ′ and
g : Y −→ Y ′ in SΣ

∗ is given by (f ⊗ g)(α, x, y) = (α, fpx, gqy) for α ∈ Σp+q, x ∈ Xp

and y ∈ Yq.

The tensor product of symmetric sequences has the universal property for “bi-
linear maps”:
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Proposition 2.1.4. Let X, Y, Z ∈ SΣ
∗ be symmetric sequences. Then there is a

natural isomorphism

SΣ
∗ (X ⊗ Y, Z) ∼=

∏
p,q

S
Σp×Σq∗ (Xp ∧ Yq, Zp+q).

The twist isomorphism τ : X⊗Y → Y ⊗X for X, Y ∈ SΣ
∗ is the natural map given

by τ(α, x, y) = (αρq,p, y, x) for α ∈ Σp+q, x ∈ Xp, and y ∈ Yq, where ρq,p ∈ Σp+q

is the (q, p)-shuffle given by ρq,p(i) = i + p for 1 ≤ i ≤ q and ρq,p(i) = i − q for
q < i ≤ p + q. The map defined without the shuffle permutation is not a map of
symmetric sequences.

Remark 2.1.5. There is another way of describing the tensor product and the twist
isomorphism. The category Σ is a skeleton of the category of finite sets and iso-
morphisms. Hence every symmetric sequence has an extension, which is unique up
to isomorphism, to a functor on the category of all finite sets and isomorphisms.
The tensor product of two such functors X and Y is the functor defined on a finite
set C as

(X ⊗ Y )(C) =
∨

A∪B=C,A∩B=∅
X(A) ∧ Y (B).

For an isomorphism f : C → D the map (X ⊗ Y )(f) is the coproduct of the
isomorphisms X(A)∧Y (B)→ X(fA)∧Y (fB). The twist isomorphism is the map
that sends the summand X(A)∧Y (B) of (X⊗Y )(C) to the summand Y (B)∧X(A)
of (Y ⊗X)(C) by switching the factors.

Lemma 2.1.6. The tensor product ⊗ is a symmetric monoidal product on the
category of symmetric sequences SΣ

∗ .

Proof. The unit of the tensor product is the symmetric sequence Σ(0,−)+ =
(S0, ∗, ∗, . . . ). The unit isomorphism is obvious. The associativity isomorphism
is induced by the associativity isomorphism in S∗ and the natural isomorphism

((X ⊗ Y )⊗ Z)n
∼=

∨
p+q+r=n

(Σn)+ ∧Σp×Σq×Σr (Xp ∧ Yq ∧ Zr).

The twist isomorphism is described in Remark 2.1.5. The coherence of the natural
isomorphisms follows from coherence of the natural isomorphisms for the smash
product in S∗.

We now introduce several functors on the category of symmetric sequences.

Definition 2.1.7. The evaluation functor Evn : SΣ∗ → S∗ is given by Evn X = Xn

and Evn f = fn. The free functor Gn : S∗ → SΣ
∗ is the left adjoint of the evaluation

functor Evn. The smash product X ∧K of X ∈ SΣ
∗ and K ∈ S∗ is the symmetric

sequence (X ∧ K)n = Xn ∧ K with the diagonal action of Σn that is trivial on
K. The pointed simplicial set MapSΣ∗

(X, Y ) of maps from X to Y is the pointed
simplicial set SΣ

∗ (X ∧∆[−]+, Y ).

For each n ≥ 0, the free symmetric sequence is Σ[n] = Σ(n,−) and the free
functor is Gn = Σ[n]+∧− : S∗ → SΣ∗ . So, for a pointed simplicial set K, (GnK)n =
(Σn)+ ∧ K and (GnK)k = ∗ for k 6= n. In particular, GnS0 = Σ[n]+, G0K =
(K, ∗, ∗, . . . ) and G0S

0 is the unit of the tensor product ⊗.
We leave the proof of the following basic proposition to the reader.
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Proposition 2.1.8. There are natural isomorphisms :

(1) GpK ⊗GqL ∼= Gp+q(K ∧ L) for K, L ∈ S∗.
(2) X ⊗G0K ∼= X ∧K for K ∈ S∗ and X ∈ SΣ

∗ .
(3) MapSΣ∗

(GnK, X) ∼= MapS∗(K, Xn) for K ∈ S∗ and X ∈ SΣ∗ .
(4) MapSΣ∗

(X ⊗ Y, Z) ∼= ∏
p,q MapΣp×Σq

(Xp ∧ Yq, Zp+q) for X, Y, Z ∈ SpΣ.

A map f of symmetric sequences is a level equivalence if each of the maps fn is a
weak equivalence. Since SΣ

∗ is a product category, a map f of symmetric sequences
is a monomorphism if and only if each of the maps fn is a monomorphism.

Proposition 2.1.9. Let X be a symmetric sequence, let f be a map of symmetric
sequences and let g be a map of pointed simplicial sets.

(1) X ⊗ (−) preserves colimits.
(2) If f is a monomorphism, then X ⊗ f is a monomorphism.
(3) If f is a level equivalence, then X ⊗ f is a level equivalence.
(4) If g is a monomorphism, then Gng is a monomorphism for n ≥ 0.
(5) If g is a weak equivalence, then Gng is a level equivalence for n ≥ 0.

Proof. Parts (1), (2) and (3) follow from the definition of ⊗ and the corresponding
properties for the smash product of pointed simplicial sets. For Parts (4) and (5)
use the isomorphism GnK = Σ[n]+ ∧K.

By part three of Proposition 2.1.8, Map(Σ[n]+, X) ∼= Xn. As n varies, Σ[−]+ is
a functor Σop → SΣ

∗ , and for X ∈ SΣ
∗ , the symmetric sequence MapSΣ∗ (Σ[−]+, X) is

naturally isomorphic to X .

Definition 2.1.10. Let X and Y be symmetric sequences. The symmetric se-
quence of maps from X to Y is

HomΣ(X, Y ) = MapSΣ∗
(Σ[−]+ ⊗X, Y ).

Theorem 2.1.11. The tensor product is a closed symmetric monoidal product on
the category of symmetric sequences.

Proof. The tensor product is a symmetric monoidal product by Lemma 2.1.6. The
product is closed if there is a natural isomorphism

SΣ
∗ (X ⊗ Y, Z) ∼= SΣ

∗ (X, HomΣ(Y, Z))

for symmetric sequences X, Y and Z.
By Proposition 2.1.4, a map of symmetric sequences f : X ⊗ Y → Z is a col-

lection of Σp × Σq-equivariant maps fp,q : Xp ∧ Yq → Zp+q. This is adjoint to
a collection of Σp-equivariant maps gp,q : Xp → MapΣq

(Yq, Zp+q). So there is a
natural isomorphism

SΣ
∗ (X ⊗ Y, Z) ∼=

∏
p

S
Σp∗ (Xp,

∏
q

MapΣq
(Yq, Zp+q)).

By Proposition 2.1.8, the functor sending p to
∏

q MapΣq
(Yq , Zp+q) is the functor

sending p to Map(Σ[p]+⊗Y, Z) which by definition is HomΣ(Y, Z). Combining the
isomorphisms gives the natural isomorphism that finishes the proof.
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2.2. Symmetric spectra. In this section we apply the language of “monoids”
and “modules” in a symmetric monoidal category to the category of symmetric
sequences. See [ML71, Bor94] for background on monoidal categories. In this
language, the symmetric sequence of spheres S = (S0, S1, . . . , Sn, . . . ) is a commu-
tative monoid in the category of symmetric sequences and a symmetric spectrum
is a (left) S-module.

Consider the symmetric sphere spectrum S. By Proposition 2.1.4, the natural
Σp × Σq-equivariant maps mp,q : Sp ∧ Sq → Sp+q give a pairing m : S ⊗ S → S.
The adjoint G0S

0 → S of the identity map S0 → Ev0 S = S0 is a two-sided unit of
the pairing. The diagram of natural isomorphisms

Sp ∧ Sq ∧ Sr −−−−→ Sp ∧ Sq+ry y
Sp+q ∧ Sr −−−−→ Sp+q+r

commutes, showing that m is an associative pairing of symmetric sequences.
In the language of monoidal categories, S is a monoid in the category of sym-

metric sequences and a symmetric spectrum is a left S-module.

Proposition 2.2.1. The category of symmetric spectra is naturally equivalent to
the category of left S-modules.

Proof. A pairing m : S⊗X → X is the same as a collection of Σp×Σq-equivariant
maps mp,q : Sp ∧ Xq → Xp+q. If X is a left S-module, there is a spectrum for
which X is the underlying symmetric sequence and the structure maps are the maps
σ = m1,n : S1∧Xn → Xn+1. The compositions σp are the Σp×Σq-equivariant maps
mp,q. Conversely, for X a symmetric spectrum, the map of symmetric sequences
m : S⊗X → X corresponding to the collection of Σp×Σq-equivariant maps mp,q =
σp : Sp ∧Xq → Xp+q, where σ0 is the natural isomorphism S0 ∧Xn → Xn, makes
X a left S-module. These are inverse constructions and give a natural equivalence
of categories.

Moreover, S is a commutative monoid, i.e., m = m ◦ τ , where τ is the twist
isomorphism. To see this, one can use either the definition of the twist isomorphism
or the description given in Remark 2.1.5. Then, as is the case for commutative
monoids in the category of sets and for commutative monoids in the category of
abelian groups (i.e., commutative rings), there is a tensor product ⊗S , having S as
the unit. This gives a symmetric monoidal product on the category of S-modules.
The smash product X ∧ Y of X, Y ∈ SpΣ is the symmetric spectrum X ⊗S Y .

The smash product on the category of symmetric spectra is a special case of the
following lemma.

Lemma 2.2.2. Let C be a symmetric monoidal category that is cocomplete and let
R be a commutative monoid in C such that the functor R ⊗ (−) : C→ C preserves
coequalizers. Then there is a symmetric monoidal product ⊗R on the category of
R-modules with R as the unit.

We leave the proof of this lemma to the reader; the main point is the following
definition.

Definition 2.2.3. The smash product X ∧ Y of symmetric spectra X and Y is
the symmetric spectrum X ⊗S Y . The tensor product X ⊗S Y is the colimit in
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symmetric sequences of the diagram

X ⊗ S ⊗ Y
m⊗1

//

1⊗m
// X ⊗ Y .

For X a left S-module the composition X⊗S
τ−→ S⊗X

α−→ X is the right action of
S; since S is commutative, the two actions commute and X is an (S, S)-bimodule.
Hence, the tensor product X ⊗S Y is a left S-module.

Apply Lemma 2.2.2 to the commutative monoid S in the bicomplete category of
symmetric sequences SΣ

∗ to obtain the following corollary.

Corollary 2.2.4. The smash product X ∧ Y is a symmetric monoidal product on
the category of symmetric spectra.

Next, some important functors on the category of symmetric spectra.

Definition 2.2.5. The functor S⊗ (−) : SΣ
∗ → SpΣ gives the free S-module S⊗X

generated by the symmetric sequence X . For each n ≥ 0, the evaluation functor
Evn : SpΣ → S∗ is given by Evn X = Xn and Evn f = fn. The free functor
Fn : S∗ → SpΣ is the left adjoint of the evaluation functor Evn. The functor
Rn : S∗ → SpΣ is the right adjoint of the evaluation functor Evn : SpΣ → S∗.

The functor S ⊗ (−) is left adjoint to the forgetful functor SpΣ → SΣ∗ . The free
functor Fn is the composition S ⊗ Gn of the left adjoints Gn : S∗ → SΣ

∗ (Defini-
tion 2.1.7) and S ⊗ (−) : SΣ

∗ → SpΣ. Thus, for X ∈ SpΣ and K ∈ S∗, the left
S-module X ∧FnK is naturally isomorphic to the left S-module X⊗GnK. In par-
ticular, X ∧F0K is naturally isomorphic to the symmetric spectrum X ∧K defined
by prolongation in Section 1.3. Furthermore F0K = S ∧K is the symmetric sus-
pension spectrum Σ∞K of K, and F0S

0 is the symmetric sphere spectrum S. For
a pointed simplicial set K, RnK is the symmetric sequence HomSΣ∗ (S, KΣ(−,n)+),
which is a left S-module since S is a right S-module.

We leave the proof of the following proposition to the reader.

Proposition 2.2.6. There are natural isomorphisms :
(1) Fm(K) ∧ Fn(L) ∼= Fm+n(K ∧ L) for K, L ∈ S∗.
(2) MapSpΣ(S ⊗X, Y ) ∼= MapSΣ∗

(X, Y ) for X ∈ SΣ
∗ and Y ∈ SpΣ.

(3) MapSpΣ(FnK, X) ∼= MapS∗(K, Evn X) for K ∈ S∗ and X ∈ SpΣ.

Proposition 2.2.7. Let f be a map of pointed simplicial sets.
(1) Fn : S∗ → SpΣ preserves colimits.
(2) If f is a monomorphism, then Fnf is a monomorphism.
(3) If f is a weak equivalence, then Fnf is a level equivalence.

Proof. Use the isomorphism Fnf = S ⊗Gnf and Proposition 2.1.9.

The internal Hom on the category of symmetric spectra is a special case of the
following lemma.

Lemma 2.2.8. Let C be a closed symmetric monoidal category that is bicomplete
and let R be a commutative monoid in C. Then there is a function R-module
HomR(M, N), natural for M, N ∈ C, such that the functor (−)⊗R M is left adjoint
to the functor HomR(M,−).
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Again, we leave the proof of this lemma to the reader, but the main definition
follows.

Definition 2.2.9. Let X and Y be symmetric spectra. The function spectrum
HomS(X, Y ) is the limit of the diagram in SpΣ

HomΣ(X, Y )
m∗

//

m∗
// HomΣ(S ⊗X, Y ) .

Combining Lemmas 2.2.2 and 2.2.8:

Theorem 2.2.10. The smash product is a closed symmetric monoidal product on
the category of symmetric spectra. In particular, there is a natural adjunction
isomorphism

SpΣ(X ∧ Y, Z) ∼= SpΣ(X, HomS(Y, Z)).

Proof. The smash product ∧ is a symmetric monoidal product by Corollary 2.2.4.
The adjunction isomorphism follows from Lemma 2.2.8.

The adjunction is also a simplicial adjunction and an internal adjunction.

Corollary 2.2.11. There are natural isomorphisms

MapSpΣ(X ∧ Y, Z) ∼= MapSpΣ(X, HomS(Y, Z))

and

HomS(X ∧ Y, Z) ∼= HomS(X, HomS(Y, Z)).

Remark 2.2.12. We use Proposition 2.2.6 to give another description of the function
spectrum HomS(X, Y ). For a symmetric spectrum X , the pointed simplicial set
of maps MapSpΣ(FnS0, X) is naturally isomorphic to MapS∗(S

0, Evn X) = Xn.
The symmetric spectrum FnS0 is the S-module S ⊗ Σ[n]+ and as n varies, S ⊗
Σ[−]+ is a functor Σop → SpΣ. The symmetric sequence MapSpΣ(S⊗Σ[−]+, X) is
the underlying symmetric sequence of X . In particular, the natural isomorphism
Xn = MapSpΣ(FnS0, X) is Σn-equivariant. Applying this to HomS(X, Y ) and using
Corollary 2.2.11, we find that the underlying symmetric sequence of HomS(X, Y )
is the symmetric sequence MapSpΣ(X ∧ (S ⊗ Σ[−]+), Y ).

We must also describe the structure maps of X from this point of view. Re-
call that MapSpΣ(FnS0, X) = Xn, MapSpΣ(FnS1, X) = MapS∗(S

1, Xn). Let
λ : F1S

1 → F0S
0 be the adjoint of the identity map S1 → Ev1 F0S

0 = S1. The
induced map MapSpΣ(λ, X) : X0 → MapS∗(S

1, X1) is adjoint to the structure map
S1 ∧X0 → X1. The map

λ ∧ FnS0 : F1S
1 ∧ FnS0 = Fn+1S

1 → F0S
0 ∧ FnS0 = FnS0

is Σ1 × Σn-equivariant; the induced map

MapSpΣ(λ ∧ FnS0, X) : Xn → MapS∗(S
1, Xn+1)

is Σ1 × Σn-equivariant and is adjoint to the structure map σ : S1 ∧ Xn → Xn+1.
In order to apply this to HomS(X, Y ), use Proposition 2.2.6 and Corollary 2.2.11
to find a natural isomorphism

MapSpΣ(X ∧ Fn+1S
1, Y ) ∼= MapS∗(S

1, MapSpΣ(X ∧ Fn+1S
0, Y )).



SYMMETRIC SPECTRA 165

Using this natural isomorphism, we find that the structure maps of HomS(X, Y )
are the adjoints of the maps

MapSpΣ(X ∧ FnS0, Y )→ MapSpΣ(X ∧ Fn+1S
1, Y )

induced by λ ∧ FnS0.
For example, HomS(FkS0, X) is the k-shifted spectrum; its underlying symmet-

ric sequence is the sequence of pointed simplicial sets

Xk, X1+k, . . . , Xn+k, . . .

with Σn acting on Xn+k by restricting the action of Σn+k to the copy of Σn that
permutes the first n elements of n + k. The structure maps of the k-shifted spec-
trum are the structure maps σ : S1 ∧ Xn+k → Xn+k+1 of X . More generally,
HomS(FkK, X) is the k-shifted spectrum of XK .

2.3. The ordinary category of spectra. An approach similar to the last two
sections can be used to describe (non-symmetric) spectra as modules over the sphere
spectrum in a symmetric monoidal category. But in this case the sphere spectrum
is not a commutative monoid, which is why there is no closed symmetric monoidal
smash product of spectra.

Definition 2.3.1. The category N is the category with the non-negative integers
as its objects and with the identity maps of the objects as its only maps. The
category of sequences SN

∗ is the category of functors from N to S∗. An object of SN
∗

is a sequence X0, X1, . . . , Xn, . . . of pointed simplicial sets and a map f : X −→ Y
is a sequence of pointed simplicial maps fn : Xn → Yn.

Definition 2.3.2. The graded smash product of sequences X and Y is the sequence
X ⊗ Y given in degree n by

(X ⊗ Y )n =
∨

p+q=n

Xp ∧ Yq.

Lemma 2.3.3. The category of sequences is a bicomplete category and the graded
smash product is a symmetric monoidal product on SN

∗ .

Proposition 2.3.4. The sequence S whose nth level is Sn is a monoid in the
category of sequences. The category of left S-modules is isomorphic to the ordinary
category of spectra, SpN.

The twist map on S1∧S1 is not the identity map and thus S is not a commutative
monoid in SN

∗ . In fact, S is a free monoid (Section 4.3). Therefore the approach
taken in Section 2.2 does not provide a closed symmetric monoidal smash product
on the ordinary category of spectra.

3. Stable homotopy theory of symmetric spectra

To use symmetric spectra for the study of stable homotopy theory, one should
have a stable model category of symmetric spectra such that the category obtained
by inverting the stable equivalences is naturally equivalent to Boardman’s stable
homotopy category of spectra (or to any other known to be equivalent to Board-
man’s). In this section we define the stable model category of symmetric spectra.
In Section 4 we show that it is Quillen equivalent to the stable model category of
spectra discussed in [BF78].
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In Section 3.1 we define the class of stable equivalences of symmetric spectra
and discuss its non-trivial relationship to the class of stable equivalences of (non-
symmetric) spectra. In Section 3.2 we recall the axioms and basic theory of model
categories. In Section 3.3 we discuss the level structure in SpΣ, and in Section 3.4
we define the stable model structure on the category of symmetric spectra which has
the stable equivalences as the class of weak equivalences. The rest of the section is
devoted to checking that the stable model structure satisfies the axioms of a model
category.

3.1. Stable equivalence. One’s first inclination is to define stable equivalence
using the forgetful functor U : SpΣ → SpN; one would like a map f of symmetric
spectra to be a stable equivalence if the underlying map Uf of spectra is a stable
equivalence, i.e., if Uf induces an isomorphism of stable homotopy groups. The
reader is warned: THIS WILL NOT WORK. Instead, stable equivalence is
defined using cohomology; a map f of symmetric spectra is a stable equivalence if
the induced map E∗f of cohomology groups is an isomorphism for every generalized
cohomology theory E. The two alternatives, using stable homotopy groups or using
cohomology groups, give equivalent definitions on the category of (non-symmetric)
spectra but not on the category of symmetric spectra.

It would be nice if the 0th cohomology group of the symmetric spectrum X with
coefficients in the symmetric Ω-spectrum E could be defined as π0 MapSpΣ(X, E),
the set of simplicial homotopy classes of maps from X to E. But, even though the
contravariant functor E0 = π0 MapSpΣ(−, E) takes simplicial homotopy equiva-
lences to isomorphisms, E0 may not take level equivalences to isomorphisms. This
is a common occurrence in simplicial categories, but is a problem as every level
equivalence should induce an isomorphism of cohomology groups; a level equiva-
lence certainly induces an isomorphism of stable homotopy groups. We introduce
injective spectra as a class of spectra E for which the functor E0 behaves correctly.

Definition 3.1.1. An injective spectrum is a symmetric spectrum E that has the
extension property with respect to every monomorphism f of symmetric spectra
that is a level equivalence. That is, for every diagram in SpΣ

X
g−−−−→ E

f

y
Y

where f is a monomorphism and a level equivalence there is a map h : Y → E such
that g = hf .

Some examples of injective spectra follow. Recall that Rn : S∗ → SpΣ is the
right adjoint of the evaluation functor Evn : SpΣ → S∗. Also recall that a Kan
complex has the extension property with respect to every map of pointed simplicial
sets that is a monomorphism and a weak equivalence.

Lemma 3.1.2. If the pointed simplicial set K is a Kan complex, then RnK is an
injective spectrum. If X is a symmetric sequence and E is an injective spectrum,
then HomS(S ⊗X, E) is an injective spectrum.

Proof. Since Evn is left adjoint to Rn, the spectrum RnK has the extension prop-
erty with respect to the monomorphism and level equivalence f if and only if K has
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the extension property with respect to the monomorphism and weak equivalence
Evn f . Since K is a Kan complex, it does have the extension property with respect
to Evn f . Hence RnK is injective.

Since the functor (S⊗X)∧(−) is the left adjoint of HomS(S⊗X,−), the spectrum
HomS(S⊗X, E) has the extension property with respect to the monomorphism and
level equivalence f if and only if E has the extension property with respect to the
map (S ⊗X)∧ f . There is a natural isomorphism of maps of symmetric sequences
(S⊗X)∧f ∼= X⊗f . Since f is a monomorphism and a level equivalence, X⊗f is a
monomorphism and a level equivalence by Proposition 2.1.9. Thus (S⊗X)∧f is also
a monomorphism and level equivalence of symmetric spectra. So HomS(S ⊗X, E)
is injective.

In fact, injective spectra are the fibrant objects of a model structure on SpΣ

for which every object is cofibrant (Section 5.1). In particular, as we will see in
Corollary 5.1.3, there are enough injectives; every symmetric spectrum embeds in
an injective spectrum by a map that is a level equivalence.

Definition 3.1.3. A map f : X → Y of symmetric spectra is a stable equivalence
if E0f : E0Y → E0X is an isomorphism for every injective Ω-spectrum E.

There are two other ways to define stable equivalence.

Proposition 3.1.4. Let f : X → Y be a map of symmetric spectra. The following
conditions are equivalent :
• E0f is an isomorphism for every injective Ω-spectrum E;
• MapSpΣ(f, E) is a weak equivalence for every injective Ω-spectrum E;
• HomS(f, E) is a level equivalence for every injective Ω-spectrum E.

Proof. Let K be a pointed simplicial set and let E be a symmetric Ω-spectrum.
The adjoints of the structure maps of E are weak equivalences of Kan complexes.
From Remark 2.2.12, for k, n ≥ 0 Evk HomS(FnK, E) = EK

n+k. The adjoints of
the structure maps of HomS(FnK, E) are the weak equivalences of Kan complexes
EK

n+k → ES1∧K
n+k+1 induced by the adjoints of the structure maps of E. Therefore,

HomS(FnK, E) is an Ω-spectrum.
Now let E be an injective Ω-spectrum. Using the natural isomorphism FnK ∼=

S⊗GnK and Lemma 3.1.2, HomS(FnK, E) is an injective spectrum. By the preced-
ing paragraph, HomS(FnK, E) is an Ω-spectrum. Hence ESn

= HomS(F0(Sn), E)
and the k-shifted spectrum HomS(FkS0, E) are injective Ω-spectra. Given a stable
equivalence f : X −→ Y , we want to show that MapSpΣ(f, E) is a weak equivalence.
Since

πn MapSpΣ(f, E) = π0 MapSpΣ(f, ESn

)

and the simplicial sets MapSpΣ(Y, E) and MapSpΣ(X, E) are Kan complexes by
Lemma 3.1.5, MapSpΣ(f, E) is a weak equivalence on the basepoint components.
We must extend this to all components. To do so, note that MapSpΣ(f, E)S1

is a
weak equivalence for any injective Ω-spectrum E, since the loop space only depends
on the basepoint component. Consider the commutative diagram

MapSpΣ(Y, E) −−−−→ MapSpΣ(Y, HomS(F1S
0, E))S1

MapSpΣ(f,E)

y y
MapSpΣ(X, E) −−−−→ MapSpΣ(X, HomS(F1S

0, E))S1
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where the horizontal maps are induced by the map E −→ HomS(F1S
0, E)S1

adjoint
to the structure map of E. Since E is an injective Ω-spectrum, this map is a
level equivalence of injective spectra. By Lemma 3.1.6, it is a simplicial homotopy
equivalence. Hence the horizontal maps in the diagram above are weak equivalences.
Since the right-hand vertical map is a weak equivalence, so is the left-hand vertical
map MapSpΣ(f, E). Thus the first two conditions in the proposition are equivalent.
Since Evk HomS(f, E) = MapSpΣ(f, HomS(FkS0, E)), the second two conditions
are equivalent.

Lemma 3.1.5. Suppose X is a symmetric spectrum and E is an injective spectrum.
Then the pointed simplicial set MapSpΣ(X, E) is a Kan complex. In particular, each
pointed simplicial set En is a Kan complex.

Proof. Suppose that f : K −→ L is a monomorphism and weak equivalence of sim-
plicial sets. We must show that MapSpΣ(X, E) has the extension property with
respect to f . By adjointness, this is equivalent to showing that E has the extension
property with respect to X∧f . But X∧f is a monomorphism and level equivalence
by Corollary 1.3.6 applied to the monomorphism ∗ −→ X and f , so E does have the
required extension property.

The basic properties of injective spectra which are needed in the rest of this
section are stated in the following lemma.

Lemma 3.1.6. Let f : X → Y be a map of symmetric spectra.
(1) If E ∈ SpΣ is an injective spectrum and f is a level equivalence, then E0f is

an isomorphism of sets.
(2) If f : X → Y is a map of injective spectra, f is a level equivalence if and only

if f is a simplicial homotopy equivalence.

The proof uses the following construction.

Construction 3.1.7 (Mapping cylinder construction). The mapping cylinder con-
struction for maps of symmetric spectra is the prolongation of the reduced mapping
cylinder construction for maps of pointed simplicial sets. Let i0 and i1 be the two
inclusions ∆[0]→ ∆[1]. The cylinder spectrum Mf of a map f : X → Y ∈ SpΣ is
the corner of the pushout square

X ∧∆[0]+ = X
f−−−−→ Y

X∧i0

y ys

X ∧∆[1]+ −−−−→
g

Mf

Let i = g ◦ (X ∧ i1) : X → Mf . Let r : Mf → Y be the map on the pushout
induced by the identity map on Y and the composition X ∧ ∆[1]+ → X → Y .
Then f = ri, i is a monomorphism, rs = idY , and there is a simplicial homotopy
from sr to the identity map of Mf .

Proof of Lemma 3.1.6. For part one of the lemma, let f : X → Y be a level equiv-
alence and let Mf be the mapping cylinder of f . As above f = ri, i : X → Mf
is a monomorphism, and r : Mf → Y is a simplicial homotopy equivalence. Then
E0r is an isomorphism and, if E0i is an isomorphism, the composition E0f is an
isomorphism. The map i is a monomorphism which, by the 2-out-of-3 property, is



SYMMETRIC SPECTRA 169

a level equivalence. By the extension property of E with respect to i, the map E0i
is surjective. The inclusion of the boundary j : ∂∆[1]→ ∆[1] is a monomorphism.
By Corollary 1.3.6, the map

i � j : X ∧∆[1]+ qX∧∂∆[1]+ Mf ∧ ∂∆[1]+ →Mf ∧∆[1]+

is a monomorphism and a level equivalence. The extension property of E with
respect to i � j implies that if g, h : Mf → E are maps such that gi and hi
are simplicially homotopic, then g and h are simplicially homotopic. So E0i is a
monomorphism and hence E0i is an isomorphism.

For the second part of the lemma, if f is a simplicial homotopy equivalence,
each fn is a simplicial homotopy equivalence of simplicial sets and so each fn is a
weak equivalence. Conversely, suppose f : X → Y is a level equivalence of injective
spectra. By part one, X0f : X0Y → X0X is an isomorphism. The inverse image
of the equivalence class of the identity map X → X is an equivalence class of maps
Y → X . Since Y is injective, Y 0f : Y 0Y → Y 0X is an isomorphism. Hence each
map in the equivalence class is a simplicial homotopy inverse of f .

Restricting part one of Lemma 3.1.6 to injective Ω-spectra gives:

Corollary 3.1.8. Every level equivalence of symmetric spectra is a stable equiva-
lence.

Next recall the definition of stable homotopy equivalence in the category of (non-
symmetric) spectra SpN.

Definition 3.1.9. For each integer k the kth homotopy group of the spectrum (or
symmetric spectrum) X is the colimit

πkX = colimn πk+nXn

of the directed system given by the compositions

πk+nXn
E−→ πk+n+1(S1 ∧Xn)

πk+n+1σ−−−−−→ πk+n+1Xn+1

of the suspension homomorphism and the map induced by σ.

A map of spectra f ∈ SpN is a stable homotopy equivalence if π∗f is an isomor-
phism. For example, every level equivalence in SpN is a stable homotopy equivalence
as it induces an isomorphism of homotopy groups. We do not define stable equiv-
alence of symmetric spectra in this way; as the following example shows, a stable
equivalence of symmetric spectra need not induce an isomorphism of homotopy
groups.

Example 3.1.10. The map λ : F1S
1 → F0S

0 (see 2.2.12) is the adjoint of the
identity map S1 → Ev1 S = S1. The nth space of F1S

1 is (Σn)+ ∧Σn−1 Sn,
which is a wedge of n copies of Sn. One can calculate that π0F1S

1 is an in-
finite direct sum of copies of the integers Z, whereas π0F0S

0 is Z. So π∗λ is
not an isomorphism of homotopy groups and thus Uλ is not a stable homotopy
equivalence of (non-symmetric) spectra. But λ is a stable equivalence of symmet-
ric spectra. For a symmetric Ω-spectrum E, MapSpΣ(F1S

1, E) = MapS∗(S
1, E1),

MapSpΣ(F0S
0, E) = E0, and the induced map MapSpΣ(λ, E) = E0 → ES1

1 is ad-
joint to the structure map S1∧E0 → E1. So MapSpΣ(λ, E) is a weak equivalence for
every Ω-spectrum E, including the injective ones, and so λ is a stable equivalence.
By the same argument, the maps λ ∧ FnS0 are stable equivalences.
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The forgetful functor U : SpΣ → SpN does not preserve stable equivalences. On
the other hand, the functor U does reflect stable equivalences.

Theorem 3.1.11. Let f be a map of symmetric spectra such that π∗f is an iso-
morphism of homotopy groups. Then f is a stable equivalence.

Proof. To ease notation, let RX =HomS(F1S
1, X), so that RnX =HomS(FnSn, X)

for n ≥ 0 and Evk RnX = MapS∗(S
n, Xn+k). In particular R0X = X and there

is a natural map λ∗ : X → RX induced by the map λ : F1S
1 −→ F0S

0 discussed
in Example 3.1.10 and Remark 2.2.12. The maps Rn(λ∗) : RnX → Rn+1X give a
directed system. Let

R∞X = colimn≥0 RnX = colimn≥0 HomS(FnSn, X)

and let rX : X → R∞X be the natural map from X to the colimit.
Let E be an injective Ω-spectrum. Since E is an Ω-spectrum, the map

Rn(λ∗) : RnE → Rn+1E

is a level equivalence for each n and the map rE : E → R∞E is a level equivalence.
Since E is injective, the proof of part one of Lemma 3.1.6 applied to rE shows
that there is a map g : R∞E → E such that the composition grE is simplicially
homotopic to the identity map on E, though the other composite rEg may not be
simplicially homotopic to the identity map on R∞E. There is a natural transfor-
mation E0X → E0(R∞X) sending the map f : X → E to the map gR∞f ; there is
a natural transformation E0(R∞X)→ E0X induced by composition with the map
rX : X → R∞X . Since grE is simplicially homotopic to the identity map on E, the
composition of the natural transformations is the identity natural transformation
of the functor E0. In the diagram

E0Y

E0f

��

// E0R∞Y

E0R∞f

��

// E0Y

E0f

��

E0X // E0R∞X // E0X

the composition of the horizontal maps is the identity, showing that E0f is a retract
of E0R∞f .

Let X be a symmetric spectrum that is a level Kan complex, i.e., each Xn

is a Kan complex. Since the functor πk commutes with filtered colimits, the ho-
motopy group πk Evn R∞X of the pointed simplicial set Evn R∞X is naturally
isomorphic to the homotopy group πk−nX of the symmetric spectrum X . A warn-
ing: even though the groups πk Evn R∞X and πk+1 Evn+1 R∞X are abstractly
isomorphic, the structure map of the symmetric spectrum R∞X need not induce
an isomorphism between them. In particular, despite its similarity to the standard
construction of the Ω-spectrum associated to a (non-symmetric) spectrum, R∞X
need not be an Ω-spectrum and rX : X → R∞X need not induce an isomorphism
of homotopy groups.

Now, let f be a map of symmetric spectra such that π∗f is an isomorphism.
Assume as well that X and Y are level Kan complexes. Then R∞f is a level
equivalence. By Corollary 3.1.8, E0R∞f is an isomorphism for every injective Ω-
spectrum E. Thus E0f , which is a retract of E0R∞f , is an isomorphism for every
injective Ω-spectrum E, and so f is a stable equivalence.



SYMMETRIC SPECTRA 171

To finish the proof, let f : X → Y be a map of arbitrary symmetric spectra
such that π∗f is an isomorphism. For every simplicial set X there is a natural weak
equivalence X → KX where KX is a Kan complex. There are several such functors:
K can be Kan’s Ex∞ functor; K can be the total singular complex of the geometric
realization; or K can be constructed using a simplicial small object argument. In
each case, K is an S∗-functor and X → KX is an S∗-natural transformation. By
prolongation, for every symmetric spectrum X there is a natural level equivalence
X → KX where KX is a level Kan complex. In the commutative diagram

X −−−−→ KX

f

y yKf

Y −−−−→ KY

the horizontal maps are stable equivalences by 3.1.8; the map Kf is a stable equiv-
alence by the preceding paragraph; hence f is a stable equivalence.

As a corollary some of the standard results about spectra translate into results
about symmetric spectra.

Definition 3.1.12. Let (X, A) be a pair of symmetric spectra where A is a sub-
spectrum of X . The kth relative homotopy group of the pair (X, A) is the colimit

πk(X, A) = colimn πk+n(Xn, An; ∗)
of the relative homotopy groups of the pointed pairs of simplicial sets (Xn, An; ∗).
Lemma 3.1.13 (Stable excision). Let (X, A) be a pair of symmetric spectra with
A a subspectrum of X. The map of homotopy groups πk(X, A) → πk(X/A) is an
isomorphism.

Proof. Consider the diagram:

πk+q(Xq, Aq) //

��

πk+q+p(Sp ∧Xq, S
p ∧ Aq) //

��

πk+q+p(Xp+q, Ap+q)

��

πk+q(Xq/Aq) // πk+q+p(Sp ∧Xq/Aq) // πk+q+p(Xp+q/Ap+q)

Let (K, L) be a pair of pointed simplicial sets. By the homotopy excision theorem
the map πn(Sp ∧K, Sp ∧ L)→ πn(Sp ∧K/L) is an isomorphism when n < 2p. So
the middle vertical arrow in the diagram is an isomorphism when p > k + q and
hence the map of colimits πk(X, A)→ πk(X/A) is an isomorphism.

Theorem 3.1.14. (1) Let f : X → B be a map of symmetric spectra such that
fn : Xn → Bn is a Kan fibration for each n ≥ 0 and let F be the fiber over
the basepoint. Then the map X/F → B is a stable equivalence.

(2) A map f ∈ SpΣ of symmetric spectra is a stable equivalence if and only if its
suspension f ∧ S1 is a stable equivalence.

(3) For symmetric spectra X and Y such that Y is a level Kan complex, a map
X → Y S1

is a stable equivalence if and only its adjoint X ∧ S1 → Y is a
stable equivalence.

Proof. By stable excision, the map X/F → B induces an isomorphism of homotopy
groups and hence is a stable equivalence by Theorem 3.1.11.
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For part two, let E be an injective Ω-spectrum. By Lemma 3.1.2, the spectra
ES1

, HomS(F1S
0, E) and HomS(F1S

1, E) are injective Ω-spectra. If f is a stable
equivalence of symmetric spectra, then the map

MapSpΣ(f, ES1
) = MapSpΣ(f ∧ S1, E)

is a weak equivalence of simplicial sets and so f ∧ S1 is a stable equivalence. Con-
versely if f ∧ S1 is a stable equivalence, then the map

MapSpΣ(f ∧ S1, HomS(F1S
0, E)) = MapSpΣ(f, HomS(F1S

1, E))

is a weak equivalence. The map E → HomS(F1S
1, E) is a level equivalence of

injective spectra and thus a simplicial homotopy equivalence, by Lemma 3.1.6. So,
for every symmetric spectrum X , the induced map

MapSpΣ(X, E)→ MapSpΣ(X, HomS(F1S
1, E))

is a simplicial homotopy equivalence. Therefore MapSpΣ(f, E) is a weak equiva-
lence, and so f is a stable equivalence.

For part three, let f : X → Y S1
be a map and let fa : X ∧ S1 → Y be the

adjoint of f . The diagram

X ∧ S1
f∧S1

//

fa

##F
F
F
F
F
F
F
F
F

Y S1 ∧ S1

ev
zzvv
v
v
v
v
v
v
v

Y

is commutative where the map ev is the evaluation map. By part one applied to
the prolongation of the path fibration, the map ev is a stable equivalence; by part
two, f is a stable equivalence if and only if f ∧S1 is a stable equivalence. Therefore
f is a stable equivalence if and only if fa is a stable equivalence.

Once we have the stable model category of symmetric spectra, part three of this
theorem tells us that it really is stable; i.e., that the suspension functor −∧ S1 is
an equivalence of model categories.

3.2. Model categories. In this section we recall the definition and the basic prop-
erties of model categories; see [DS95], [Hov98a], or [DHK] for a more detailed in-
troduction.

Definition 3.2.1. An ordered pair (f, g) of maps in the category C has the lifting
property if every commutative square

A //

f

��

X

g

��

B // Y

in C extends to a commutative diagram

A //

f

��

X

g

��

B //

>>
~
~
~
~
~
~
~
~

Y.

We also say that f has the left lifting property with respect to g and that g has
the right lifting property with respect to f . More generally, if I and J are classes
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of maps in C, the pair (I, J) has the lifting property if every pair (f, g) with f ∈ I
and g ∈ J has the lifting property. We also say that I has the left lifting property
with respect to J and that J has the right lifting property with respect to I.

It would be more accurate to say that the pair (f, g) has the lifting-extension
property but we prefer the shorter term.

Definition 3.2.2. Let f and g be maps in a category C. The map f is a retract of
g if it is a retract in the category of arrows, i.e., if there is a commutative diagram

A −−−−→ B −−−−→ A

f

y g

y f

y
X −−−−→ Y −−−−→ X

such that the horizontal compositions are the identity maps. A class of maps is
closed under retracts if whenever f is a retract of g and g is in the class, then f is
in the class.

Definition 3.2.3. A model category is a category M with three distinguished
classes of maps—the class of weak equivalences, the class of cofibrations, and the
class of fibrations—that satisfy the model category axioms below. We call a map
that is both a cofibration and a weak equivalence a trivial cofibration, and we call
a map that is both a fibration and a weak equivalence a trivial fibration.
M1 Limit axiom. The category M is bicomplete (closed under arbitrary small

limits and colimits).
M2 Two-out-of-three axiom. Let f and g be maps in M such that gf is defined. If

two of f , g and gf are weak equivalences, then the third is a weak equivalence.
M3 Retract axiom. The class of weak equivalences, the class of cofibrations, and

the class of fibrations are closed under retracts.
M4 Lifting axiom. A cofibration has the left lifting property with respect to

every trivial fibration. A fibration has the right lifting property with respect
to every trivial cofibration.

M5 Factorization axiom. Every map f ∈M has a factorization f = pi where i is
a cofibration and p is a trivial fibration and a factorization f = qj where j is
a trivial cofibration and q is a fibration.

Three classes of maps that satisfy axioms M2, M3, M4 and M5 are a model
structure on the category. One should keep in mind that a category can have more
than one model structure; there can even be distinct model structures with the
same class of weak equivalences.

A bicomplete category has an initial object ∅ and a terminal object ∗. In a model
category, an object X is cofibrant if the unique map ∅ → X is a cofibration and an
object X is fibrant if the unique map X → ∗ is a fibration. A model category is
pointed if the unique map ∅ → ∗ is an isomorphism.

The following proposition is standard; see [Hov98a, Lemma 1.1.9].

Proposition 3.2.4 (The Retract Argument). Let C be a category and let f = pi
be a factorization in C.

(1) If p has the right lifting property with respect to f , then f is a retract of i.
(2) If i has the left lifting property with respect to f , then f is a retract of p.

The following proposition is a converse to the lifting axiom.
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Proposition 3.2.5 (Closure property). In a model category:
(1) The cofibrations are the maps having the left lifting property with respect to

every trivial fibration.
(2) The trivial cofibrations are the the maps having the left lifting property with

respect to every fibration.
(3) The fibrations are the maps having the right lifting property with respect to

every trivial cofibration.
(4) The trivial fibrations are the maps having the right lifting property with respect

to every cofibration.

Proof. Use the factorization axiom and the retract argument.

In particular, any two of the three classes of maps in a model category determine
the third. For example, a weak equivalence is a map that factors as a trivial
cofibration composed with a trivial fibration.

Example 3.2.6. We recall the standard model structure on the category of sim-
plicial sets [Qui67, II.3]. A weak equivalence is a map whose geometric realization
is a homotopy equivalence of CW-complexes. The cofibrations are the monomor-
phisms and every simplicial set is cofibrant. Recall, the standard n-simplex is
∆[n] = ∆(−, n). The boundary of ∆[n] is the subfunctor ∂∆[n] ⊆ ∆[n] of non-
surjective maps. For 0 ≤ i ≤ n, the ith horn of ∆[n] is the subfunctor Λi[n] ⊆ ∂∆[n]
of maps for which i is not in the image. Geometrically, Λi[n] is obtained from the
boundary of ∆[n] by removing the ith face. The fibrations are the Kan fibrations,
the maps that have the right lifting property with respect to the maps Λi[n]→ ∆[n]
for n > 0 and 0 ≤ i ≤ n; the fibrant simplicial sets are the Kan complexes, the
simplicial sets that satisfy the Kan extension condition. A map is a trivial fibration
(a fibration and a weak equivalence) if and only if it has the right lifting property
with respect to the maps ∂∆[n] → ∆[n]. It follows that the pointed weak equiva-
lences, the pointed monomorphisms, and the pointed (Kan) fibrations are a model
structure on the category of pointed simplicial sets.

When constructing a model category, the factorization axiom can be the hardest
to verify. After some preliminary definitions, Lemma 3.2.11 constructs functorial
factorizations in the category of symmetric spectra.

Definition 3.2.7. Let I be a class of maps in a category C.
(1) A map is I-injective if it has the right lifting property with respect to every

map in I. The class of I-injective maps is denoted I-inj.
(2) A map is I-projective if it has the left lifting property with respect to every

map in I. The class of I-projective maps is denoted I-proj.
(3) A map is an I-cofibration if it has the left lifting property with respect to

every I-injective map. The class of I-cofibrations is the class (I-inj)-proj and
is denoted I-cof.

(4) A map is an I-fibration if it has the right lifting property with respect to
every I-projective map. The class of I-fibrations is the class (I-proj)-inj and
is denoted I-fib.

Injective and projective are dual notions; an I-injective map in C is an I-
projective map in Cop; an I-fibration in C is an I-cofibration in Cop. The class
I-inj and the class I-proj are analogous to the orthogonal complement of a set of
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vectors. This analogy helps explain the following proposition, whose proof we leave
to the reader.

Proposition 3.2.8. Let I and J be classes of maps in a category C.
(1) If I ⊆ J , then J-inj ⊆ I-inj and J-proj ⊆ I-proj.
(2) Repeating the operations : I ⊆ I-cof, I ⊆ I-fib, I-proj = (I-proj)-cof =

(I-fib)-proj, and I-inj = (I-inj)-fib = (I-cof)-inj.
(3) The following conditions are equivalent :

• The pair (I, J) has the lifting property.
• J ⊆ I-inj.
• I ⊆ J-proj.
• The pair (I-cof, J) has the lifting property.
• The pair (I, J-fib) has the lifting property.

(4) The classes I-inj and I-proj are subcategories of C and are closed under re-
tracts.

(5) The class I-inj is closed under base change. That is, if

A −−−−→ B

f

y g

y
X −−−−→ Y

is a pullback square and g is an I-injective map, then f is an I-injective map.
(6) The class I-proj is closed under cobase change. That is, if

A −−−−→ B

f

y g

y
X −−−−→ Y

is a pushout square and f is an I-projective map, then g is an I-projective
map.

Corollary 3.2.9. Let I be a class of maps in a category C. The class I-cof is a
subcategory of C that is closed under retracts and cobase change. The class I-fib is
a subcategory of C that is closed under retracts and base change.

Another useful elementary lemma about the lifting property is the following.

Lemma 3.2.10. Let L : C → D be a functor that is left adjoint to the functor
R : D → C. If I is a class of maps in C and J is a class of maps in D, the pair
(I, RJ) has the lifting property if and only if the pair (LI, J) has the lifting property.

The next lemma is used repeatedly to construct factorizations.

Lemma 3.2.11 (Factorization Lemma). Let I be a set of maps in the category
SpΣ. There is a functorial factorization of every map of symmetric spectra as an
I-cofibration followed by an I-injective map.

The factorization lemma is proved using the transfinite small object argument.
We begin by showing that every symmetric spectrum is suitably small.

Recall that an ordinal is, by recursive definition, the well-ordered set of all smaller
ordinals. In particular, we can regard an ordinal as a category. A cardinal is an
ordinal of larger cardinality than all smaller ordinals.
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Definition 3.2.12. Let γ be an infinite cardinal. An ordinal α is γ-filtered if every
set A consisting of ordinals less than α such that supA = α has cardinality greater
than γ.

Every γ-filtered ordinal is a limit ordinal. In fact, since γ is infinite, every γ-
filtered ordinal is a limit ordinal α for which there is no countable set A of ordinals
less than α such that supA = α. The smallest γ-filtered ordinal is the first ordinal
of cardinality greater than γ. For example, ω1 is the smallest ℵ0-filtered ordinal. If
γ < γ and α is γ-filtered, then α is γ-filtered.

Define the cardinality of a spectrum X to be the cardinality of its underlying set
qn qk (Evn X)k. Then the cardinality of X is always infinite, which is convenient
for the following lemma.

Proposition 3.2.13. Let X be a simplicial spectrum of cardinality γ. Let α be
a γ-filtered ordinal and let D : α → SpΣ be an α-indexed diagram of symmetric
spectra. Then the natural map

colimα SpΣ(X, D)→ SpΣ(X, colimα D)

is an isomorphism.

Proof. Every symmetric spectrum has a presentation as a coequalizer

S ⊗ S ⊗X
//
// S ⊗X // X

of free symmetric spectra in the category SpΣ. The symmetric spectra X and
S ⊗ X have the same cardinality. So the proposition follows once it is proved
for free symmetric spectra. There is a natural isomorphism SpΣ(S ⊗ X, Y ) =∏

p S
Σp∗ (Xp, Yp). The functors S

Σp∗ (Xn,−) have the property claimed for SpΣ(X,−).
This fact is the heart of the proposition. To begin the proof of it, suppose we

have a map f : Xn → colimα D, where D is an α-indexed diagram of Σp-simplicial
sets. For each simplex x of Xn, we can choose an ordinal βx < α and a simplex
yx ∈ Dβx such that f(x) is the image of yx. Because α is γ-filtered, we can then
find one ordinal β < α and a map g : X −→ Dβ factoring f . The map g may not
be simplicial or equivariant, but, again using the fact that α is γ-filtered, we can
go out far enough in the colimit so that g will be both simplicial and equivariant.
We leave the details to the reader.

Since γ is infinite, for every countable set A of ordinals that are strictly less than
α, the ordinal supA is strictly less than α. Therefore, the countable product of
functors SΣ

∗ (X,−) has the property claimed for SpΣ(X,−) and the proposition is
proved.

Proof of Lemma 3.2.11. We begin by constructing a functorial factorization

X
Ig−→ Eg

Pg−−→ Y

of g : X → Y such that Ig is an I-cofibration and g = Pg ◦ Ig. For a map
f : bf → cf in I, let Df be the set of commutative squares

bf −−−−→ X

f

y yg

cf −−−−→ Y.
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Let

B = qf∈I qDf bf , C = qf∈I qDf cf , and F = qf∈I qDf f : B → C.

By the definition of Df , there is a commutative square

B −−−−→ X

F

y yg

C −−−−→ Y.

Let Eg be the pushout X qB C, let Ig be the map X → Eg = X qB C, and
let Pg : Eg → Y be the natural map on the pushout. By construction, the map
Ig : X → X qB C is an I-cofibration and g = Pg ◦ Ig. However, the map Pg need
not be an I-injective map.

Use transfinite induction to define functorial factorizations of g

X
Iαg−−→ Eαg

P αg−−→ Y

for every ordinal α. The induction starts at 0 with E0g = X , I0g = idX , and P 0g =
g. For a successor ordinal α + 1, Eα+1g = E(P αg), Iα+1g = I(P αg) ◦ Iαg, and
P α+1g = P (Pαg). For β a limit ordinal, Eβg = colimα<β Eαg, Iβg = colimα<β Iαg
and P βg = colimα<β Pαg.

The map Iαg : X → Eαg is an I-cofibration for each α; the required lift is
constructed by transfinite induction. The proof of the lemma is completed by
finding an ordinal β for which Pβg is an I-injective map. Let

bf −−−−→ Eβg

f

y yP βg

cf −−−−→ Y

be a commutative square with f ∈ I. If the map bf → Eβg factors as bf → Eαg →
Eβg for α < β, then by construction there is a lift cf → Eα+1g and, since α+1 ≤ β,
a lift cf → Eβg. Let γf be the cardinality of bf and let γ = supI γf . Let β be
a γ-filtered ordinal. Then SpΣ(bf , P βg) = colimα<β SpΣ(bf , Pαg) for every f ∈ I
and hence P βg is an I-injective map.

3.3. Level structure. Prolongation of the model structure on S∗ (see 3.2.6) gives
the level structure on the category of symmetric spectra. It is not a model structure
but it is a basic tool in the construction of the stable model structure. Its use is
already implicit in Sections 1.3 and 3.1.

Definition 3.3.1. Let f : X −→ Y be a map of symmetric spectra.
(1) The map f is a level equivalence if each map fn : Xn → Yn is a weak equiva-

lence of simplicial sets.
(2) The map f is a level (trivial) cofibration if each map fn : Xn → Yn is a

(trivial) cofibration of simplicial sets.
(3) The map f is a level (trivial) fibration if each map fn : Xn → Yn is a (trivial)

fibration of simplicial sets.

The level cofibrations are the monomorphisms of symmetric spectra. Next, we
characterize the level fibrations and trivial fibrations.
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Definition 3.3.2. (1) Let IΛ denote the set of maps Λk[r]+ −→ ∆[r]+ for r > 0
and 0 ≤ k ≤ r. Let FIΛ =

⋃
n≥0 Fn(IΛ).

(2) Let I∂ denote the set of maps ∂∆[r]+ −→ ∆[r]+ for r ≥ 0. Let FI∂ =⋃
n≥0 Fn(I∂).

Proposition 3.3.3. The level fibrations are the FIΛ-injective maps. The level
trivial fibrations are the FI∂-injective maps.

Proof. A map g is a level (trivial) fibration if and only if Evn g = gn is a (trivial)
Kan fibration for each n ≥ 0. But Evn g is a (trivial) Kan fibration if and only if it
has the right lifting property with respect to the class (I∂) IΛ. Then by adjunction,
g is a level (trivial) fibration if and only if g has the right lifting property with
respect to the class (FI∂) FIΛ.

The level structure is not a model structure; it satisfies the two-out-of-three
axiom, the retract axiom, and the factorization axiom but not the lifting axiom.
A model structure is determined by any two of its three classes and so the level
structure is overdetermined. In Section 5.1 we prove there are two “level” model
structures with the level equivalences as the weak equivalences: one that is gener-
ated by the level equivalences and the level cofibrations and one that is generated
by the level equivalences and the level fibrations. In any case, the level homotopy
category obtained by inverting the level equivalences is not the stable homotopy
category of spectra.

The pushout smash product (Definition 1.3.3) has an adjoint construction.

Definition 3.3.4. Let f : U → V and g : X → Y be maps of pointed simplicial
sets. The map

Map�(f, g) : Map(V, X)→ Map(U, X)×Map(U,Y ) Map(V, Y )

is the map to the fiber product induced by the commutative square

Map(V, X)
f∗−−−−→ Map(U, X)

g∗
y yg∗

Map(V, Y ) −−−−→
f∗

Map(U, Y ).

Let f be a map of pointed simplicial sets and let g be a map of symmetric spectra.
Then Hom�(f, g) is the map of symmetric spectra that is defined by prolongation,
Evn Hom�(f, g) = Map�(f, gn).

Proposition 3.3.5. (1) If f ∈ S∗ is a monomorphism and g ∈ S∗ is a Kan
fibration, then Map�(f, g) is a Kan fibration. If, in addition, either f or g is
a weak equivalence, then Map�(f, g) is a weak equivalence.

(2) If f ∈ S∗ is a monomorphism and g ∈ SpΣ is a level fibration, then Hom�(f, g)
is a level fibration. If, in addition, either f is a weak equivalence or g is a
level equivalence, then Hom�(f, g) is a level equivalence.

Proof. Part one is a standard property of simplicial sets, proved in [Qui67, II.3].
Part two follows from part one by prolongation.

Definition 3.3.6. Let f : U → V and g : X → Y be maps in a category C. Then
C�(f, g) is the natural map of sets to the fiber product

C(V, X)→ C(U, X)×C(U,Y ) C(V, Y )
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coming from the commutative square

C(V, X)
f∗−−−−→ C(U, X)

g∗
y yg∗

C(V, Y ) −−−−→
f∗

C(U, Y ).

A pair (f, g) has the lifting property if and only if C�(f, g) is surjective.

Definition 3.3.7. Let f : U → V and g : X → Y be maps of symmetric spectra.
Then Map�(f, g) is the natural map to the fiber product

SpΣ
�(f ∧∆[−]+, g) : Map(V, X)→ Map(U, X)×Map(U,Y ) Map(V, Y ).

Proposition 3.3.8. Let f and h be maps of symmetric spectra and let g be a map
of pointed simplicial sets. There are natural isomorphisms

SpΣ
�(f � g, h) ∼= (S∗)�(g, Map�(f, h)) ∼= SpΣ

�(f, Hom�(g, h)).

In fact this proposition holds in any simplicial model category.

Proof. Let f : U → V and h : X → Y be maps in SpΣ and let g : K → L be a map
in S∗. Using adjunction and the defining property of pushouts and of pullbacks,
each of the three maps in the proposition is naturally isomorphic to the map from
SpΣ(V ∧ L, X) to the limit of the diagram:

SpΣ(U ∧ L, X)

�� ((R
RR

RR
RR

RR
RR

RR

SpΣ(V ∧K, X)

vvmm
mm
mm
mm
mm
mm
m

((Q
QQ

QQ
QQ

QQ
QQ

QQ

SpΣ(V ∧ L, Y )

��vvmm
mm
mm
mm
mm
mm
m

SpΣ(U ∧K, X)

((R
R
RR

RR
RR

RR
RR

R

SpΣ(U ∧ L, Y )

��

SpΣ(V ∧K, Y )

vvmm
mm
mm
mm
mm
mm
m

SpΣ(U ∧K, Y )

Corollary 3.3.9. Let f and h be maps of symmetric spectra and let g be a map of
pointed simplicial sets. The following are equivalent :
• (f � g, h) has the lifting property.
• (g, Map�(f, h)) has the lifting property.
• (f, Hom�(g, h)) has the lifting property.

3.4. Stable model category. In this section we define the stable cofibrations
and the stable fibrations of symmetric spectra. The main result is that the class of
stable equivalences, the class of stable cofibrations, and the class of stable fibrations
are a model structure on SpΣ.

Recall that f is a level trivial fibration if fn is a trivial Kan fibration for each
n ≥ 0.

Definition 3.4.1. A map of symmetric spectra is a stable cofibration if it has
the left lifting property with respect to every level trivial fibration. A map of
symmetric spectra is a stable trivial cofibration if it is a stable cofibration and a
stable equivalence. A symmetric spectrum X is stably cofibrant if ∗ → X is a stable
cofibration.
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The basic properties of the class of stable cofibrations are next.

Proposition 3.4.2. (1) The class of stable cofibrations is the class FI∂-cof.
(2) The class of stable cofibrations is a subcategory that is closed under retracts

and closed under cobase change.
(3) If f is a cofibration of pointed simplicial sets and n ≥ 0, then Fnf is a stable

cofibration. In particular, FnK is stably cofibrant for K ∈ S∗.
(4) If f ∈ SpΣ is a stable cofibration and g ∈ S∗ is a cofibration, then the pushout

smash product f � g is a stable cofibration.
(5) If f ∈ SpΣ is a stable cofibration and h ∈ SpΣ is a level fibration, then

Map�(f, h) is a Kan fibration.

Proof. The stable cofibrations are the maps having the left lifting property with re-
spect to the level trivial fibrations, which by Proposition 3.3.3 are the FI∂ -injective
maps. So the stable cofibrations are the FI∂ -cofibrations.

Every class I-cof has the properties stated in part two.
Suppose g ∈ SpΣ is a level trivial fibration, and f ∈ S∗ is a cofibration. Then

f has the left lifting property with respect to the trivial Kan fibration Evn g. By
adjunction, Fnf has the left lifting property with respect to g. Hence Fnf is a stable
cofibration. In particular, for every pointed simplicial set K, the map ∗ → FnK is
a stable cofibration, and so FnK is stably cofibrant.

Now suppose f ∈ SpΣ is a stable cofibration and g ∈ S∗ is a cofibration. Then,
given a level trivial fibration h ∈ SpΣ, the map Hom�(g, h) is a level trivial fibration
by Proposition 3.3.5. Therefore the pair (f, Hom�(g, h)) has the lifting property.
Then by Corollary 3.3.9, the pair (f � g, h) has the lifting property, and so f � g
is a stable cofibration.

Finally, suppose f ∈ SpΣ is a stable cofibration and h ∈ SpΣ is a level fibration.
Given a trivial cofibration g ∈ S∗, Hom�(g, h) is a level trivial fibration by Propo-
sition 3.3.5. Therefore, the pair (f, Hom�(g, h)) has the lifting property. Then,
by Corollary 3.3.9, the pair (g, Map�(f, h)) has the lifting property. Therefore
Map�(f, h) is a Kan fibration.

The next definition is natural in view of the closure properties in a model cate-
gory; see Proposition 3.2.5.

Definition 3.4.3. A map of symmetric spectra is a stable fibration if it has the
right lifting property with respect to every map that is a stable trivial cofibration.
A map of symmetric spectra is a stable trivial fibration if it is a stable fibration and
a stable equivalence. A spectrum X is stably fibrant if the map X → ∗ is a stable
fibration.

Theorem 3.4.4. The category of symmetric spectra with the class of stable equiv-
alences, the class of stable cofibrations, and the class of stable fibrations is a model
category.

Proof. The category SpΣ is bicomplete by Proposition 1.2.10. The two-out-of-
three axiom and the retract axiom are immediate consequences of the definitions.
By definition, (i, p) has the lifting property when i is a stable trivial cofibration and
p is a stable fibration. The lifting axiom for i a stable cofibration and p a stable
trivial fibration is verified in Corollary 3.4.7. The two parts of the factorization
axiom are verified in Corollary 3.4.6 and Lemma 3.4.8.
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Lemma 3.4.5. A map is a stable trivial fibration if and only if it is a level trivial
fibration.

Proof. Suppose g is a level trivial fibration. By definition, every stable cofibration
has the left lifting property with respect to g and in particular every stable trivial
cofibration has the left lifting property with respect to g. So g is a stable fibration
which is a level equivalence and hence a stable equivalence. So g is a stable trivial
fibration.

Conversely, suppose g is a stable trivial fibration. Recall that at this point we do
not know that g has the right lifting property with respect to stable cofibrations.
By Lemma 3.2.11, g can be factored as g = pi with i an FI∂-cofibration and p an
FI∂-injective map. Since p is a level equivalence, it is a stable equivalence. By the
two-out-of-three property, i is a stable equivalence. Therefore, i is a stable trivial
cofibration and has the left lifting property with respect to g. By the Retract
Argument 3.2.4, g is a retract of p and so g is a level trivial fibration.

Corollary 3.4.6. Every map f of symmetric spectra has a factorization f = pi as
a stable cofibration i followed by a stable trivial fibration p.

Proof. By the Factorization Lemma 3.2.11, every map f in SpΣ can be factored as
f = pi with i an FI∂-cofibration and p an FI∂-injective map. Then i is a stable
cofibration and p is a level trivial fibration, which, by Lemma 3.4.5, means that p
is a stable trivial fibration.

Corollary 3.4.7. A stable cofibration has the left lifting property with respect to
every stable trivial fibration.

Proof. By Lemma 3.4.5 every stable trivial fibration is a level trivial fibration. By
definition, stable cofibrations have the left lifting property with respect to every
level trivial fibration.

The following lemma will finish the proof of Theorem 3.4.4.

Lemma 3.4.8. Every map f of symmetric spectra has a factorization f = pi as a
stable trivial cofibration i followed by a stable fibration p.

To prove the lemma we need a set of maps J such that a J-cofibration is a
stable trivial cofibration and a J-injective map is a stable fibration. Using the
Factorization Lemma with the set J will prove Lemma 3.4.8. The set J is defined
in 3.4.9 and Corollary 3.4.16 verifies its properties. This takes up the rest of the
section.

The maps λ ∧ FnS0 used in the definition below appeared in the description
of the function spectrum in Remark 2.2.12. They are stable equivalences (see
Example 3.1.10) but are not stable cofibrations or even level cofibrations. We
modify them to get the set J .

Definition 3.4.9. Let λ : F1S
1 → F0S

0 be the adjoint of the identity map S1 →
Ev1 F0S

0 = S1 and let λn be the map λ∧FnS0 : Fn+1S
1 → FnS0, so that λ0 = λ.

The mapping cylinder construction 3.1.7 gives a factorization λn = rncn where
rn : Cλn → FnS0 is a simplicial homotopy equivalence and cn : Fn+1S

1 → Cλn is
a level cofibration. For n ≥ 0, let Kn = cn � I∂ , i.e., Kn is the set of maps cn � j
for j ∈ I∂ . Let K =

⋃
n Kn and, finally, let J = FIΛ ∪K.
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Lemma 3.4.10. For each n ≥ 0, the map cn : Fn+1S
1 → Cλn is a stable trivial

cofibration.

Proof. The map λn is a stable equivalence (Example 3.1.10) and the simplicial
homotopy equivalence rn is a stable equivalence. Using the factorization λn = rncn

and the two-out-of-three property of stable equivalences, cn is a stable equivalence.
Next we show that cn is a stable cofibration. The mapping cylinder Cλn can

also be defined as the corner in the pushout square

Fn+1S
1 ∨ Fn+1S

1 i0∨i1−−−−→ Fn+1S
1 ∧∆[1]+

λn∨1

y y
Fn+1S

1 kn−−−−→ FnS0 ∨ Fn+1S
1 gn−−−−→ Cλn,

where kn is the inclusion on the second factor, i0 and i1 come from the two inclusions
∆[0] → ∆[1], and gn is the natural map to the pushout. Using the properties of
stable cofibrations in Proposition 3.4.2, we find that the map ∗ → FnS0 is a stable
cofibration and, by cobase change, that kn is a stable cofibration. Let j be the
cofibration ∂∆[1]+ → ∆[1]+. Then (∗ → Fn+1S

1)�j = i0∨i1 is a stable cofibration
and, by cobase change, gn is a stable cofibration. Thus the composition cn = gnkn

is a stable cofibration.

Next we characterize the J-injective maps.

Definition 3.4.11. A commutative square of simplicial sets
X −−−−→ Z

p

y q

y
Y −−−−→

f
W

where p and q are fibrations is a homotopy pullback square if the following equivalent
conditions hold:
• The induced map X −→ Y ×W Z is a weak equivalence.
• For every 0-simplex v ∈ Y0, the map of fibers p−1v → q−1fv is a weak

equivalence.

Lemma 3.4.12. A map of symmetric spectra p : E → B is J-injective if and only
if p is a level fibration and the diagram

En
σa−−−−→ ES1

n+1

pn

y ypn+1

Bn
σa

−−−−→ BS1

n+1

(∗)

is a homotopy pullback square for each n ≥ 0, where the horizontal maps are the
adjoints of the structure maps.

Proof. Since J = FIΛ ∪K and K =
⋃

n Kn, a map is J-injective if and only if it
is FIΛ-injective and Kn-injective for each n ≥ 0. By Proposition 3.3.3, the FIΛ-
injective maps are the level fibrations. By definition, p ∈ SpΣ is a Kn-injective
map if and only if p has the right lifting property with respect to the class cn � I∂ .
Then, by Corollary 3.3.9, p is Kn-injective if and only if Map�(cn, p) has the right
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lifting property with respect to the class I∂ . Hence, p is Kn-injective if and only if
Map�(cn, p) is a trivial Kan fibration. If p is a level fibration, Map�(cn, p) is a Kan
fibration by Proposition 3.4.2. So, a level fibration p is Kn-injective if and only if
Map�(cn, p) is a weak equivalence. Taken together, p is J-injective if and only if p
is a level fibration and Map�(cn, p) is a weak equivalence for each n ≥ 0.

For each n ≥ 0, the map rn : Cλn → FnS0 has a simplicial homotopy inverse
sn : FnS0 → Cλn for which rnsn is the identity map on FnS0 (see 3.1.7). Then
Map�(cn, p) is simplicially homotopic to Map�(snλn, p). Since FnS0 is a simpli-
cial deformation retract of Cλn, λn is a simplicial deformation retract of snλn

and Map�(λn, p) is a simplicial deformation retract of Map�(snλn, p). Therefore,
Map�(cn, p) is a weak equivalence if and only if Map�(λn, p) is a weak equivalence.

The map

Map�(λn, p) : Map(FnS0, E)→ Map(FnS0, B)×Map(Fn+1S1,B) Map(Fn+1S
1, E)

is naturally isomorphic to the map

En → Bn ×BS1
n+1

ES1

n+1

induced by the diagram (∗). If p is a level fibration, then by definition the diagram
(∗) is a homotopy pullback square if and only if the map Map�(λn, p) is a weak
equivalence.

Combining the conclusions of the three paragraphs completes the proof.

Corollary 3.4.13. The map F → ∗ is J-injective if and only if F is an Ω-
spectrum.

We also get the following corollary, which is not needed in the sequel. Its proof
uses properness (see Section 5.5).

Corollary 3.4.14. A level fibration between two Ω-spectra is J-injective.

Lemma 3.4.15. Let p : X → Y be a map of symmetric spectra. If p is J-injective
and p is a stable equivalence, then p is a level equivalence.

Proof. Suppose p : X → Y is a J-injective stable equivalence. In particular, p is a
level fibration. Let F be the fiber over the basepoint. Since the class J-inj is closed
under base change, the map F → ∗ is J-injective and F is an Ω-spectrum. The
map p factors as X → X/F → Y . The map X/F → Y is a stable equivalence by
Theorem 3.1.14. Since p : X → Y is a stable equivalence, q : X → X/F is a stable
equivalence.

A Barratt-Puppe type sequence for symmetric spectra is constructed by prolon-
gation to give the diagram

X → X qF (F ∧∆[1]+)→ F ∧ S1 → X ∧ S1 → (X qF (F ∧∆[1]+)) ∧ S1.

Let E be an injective Ω-spectrum. Since the map X qF (F ∧∆[1]+) → X/F is a
level equivalence, after applying E0(−) to this sequence we can rewrite the terms
involving the homotopy cofiber as E0(X/F ). This gives an exact sequence

E0X
E0q←−−− E0(X/F )← E0(F ∧ S1)← E0(X ∧ S1)

E0(q∧S1)←−−−−−− E0(X/F ∧ S1).

Since q : X → X/F is a stable equivalence, E0q is an isomorphism by definition, and
E0(q∧S1) is an isomorphism by part two of Theorem 3.1.14. Hence, E0(F ∧S1) = ∗
for every injective Ω-spectrum E, and so, by part two of Theorem 3.1.14, E0F = ∗
for every injective Ω-spectrum E. By Corollary 5.1.3, there is a level equivalence
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F → E where E is an injective spectrum; since F is an Ω-spectrum, E is an injective
Ω-spectrum. By Lemma 3.1.6, E0E = E0F = ∗. So E is simplicially homotopic to
∗ and F is level equivalent to ∗.

This does not finish the argument as the base of the fibration Xn → Yn need not
be connected. Since p is J-injective,

Xn
σa

−−−−→ XS1

n+1

pn

y ypS1
n+1

Yn
σa−−−−→ Y S1

n+1

is a homotopy pullback square for each n ≥ 0. The proof is completed by showing
that pS1

n+1 is a trivial Kan fibration for every n ≥ 0 which implies that pn is a
trivial Kan fibration for every n ≥ 0. For a pointed simplicial set K, let cK
denote the connected component of the basepoint. If E → B is a pointed Kan
fibration, then cE → cB is a Kan fibration; if the fiber over the basepoint ∗ ∈ B
is contractible, then cE → cB is a trivial Kan fibration. In particular, cXn → cYn

is a trivial Kan fibration and, therefore, (cXn)S1 → (cYn)S1
is a trivial fibration.

Since KS1
= (cK)S1

for any pointed simplicial set K, pS1

n : XS1

n → Y S1

n is a trivial
Kan fibration for every n ≥ 0.

The next corollary finishes the proof of Lemma 3.4.8.

Corollary 3.4.16. The J-cofibrations are the stable trivial cofibrations and the
J-injective maps are the stable fibrations.

Proof. Every level trivial fibration is J-injective since it satisfies the condition in
Lemma 3.4.12. Thus, a J-cofibration has the left lifting property with respect to
every level trivial fibration, and hence a J-cofibration is a stable cofibration. Let E
be an Ω-spectrum. The maps p : E → ∗ and q = Hom(j, E) : E∆[1] → E×E, where
j : ∂∆[1]+ → ∆[1]+ is the inclusion, are J-injective by Lemma 3.4.12. Let E be an
injective Ω-spectrum and f be a J-cofibration. Since f has the left lifting property
with respect to p : E → ∗, E0f is surjective. Since f has the left lifting property
with respect to q : E∆[1] → E×E, E0f is injective. So E0f is an isomorphism and
every J-cofibration is a stable trivial cofibration.

Conversely, let f be a stable trivial cofibration. By the Factorization Lemma
3.2.11, f factors as f = pi where i is a J-cofibration and p is a J-injective map.
We have just seen that i is a stable equivalence. So, the J-injective map p is a
stable equivalence and by Lemma 3.4.15, p is a level equivalence. Therefore the
stable cofibration f has the left lifting property with respect to the map p. By the
Retract Argument 3.2.4, f is a J-cofibration.

Let F be the class of stable fibrations. Since J-cof is the class of stable trivial
cofibrations, one has by the definition of stable fibrations that F = (J-cof)-inj. But
(J-cof)-inj = J-inj by Proposition 3.2.8 (2). In other words, the stable fibrations
are the J-injective maps.

In particular, Lemma 3.4.12 characterizes the stable fibrations. The stably fi-
brant objects are the Ω-spectra by Corollary 3.4.13. Corollary 3.4.16 finishes the
proof of Lemma 3.4.8 and the verification of the axioms for the stable model cate-
gory of symmetric spectra.
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4. Comparison with the Bousfield-Friedlander category

The goal of this section is to show that the stable homotopy theory of symmetric
spectra and the stable homotopy theory of spectra are equivalent. We begin in
Section 4.1 by recalling the general theory of Quillen equivalences of model cate-
gories. In Section 4.2 we provide a brief recap of the stable homotopy theory of
(non-symmetric) spectra and we show that the forgetful functor U from symmetric
spectra to spectra is part of a Quillen equivalence. The left adjoint V of U plays
very little role in this proof, beyond its existence, so we postpone its construction
to Section 4.3.

4.1. Quillen equivalences. In this section, we briefly recall Quillen functors and
Quillen equivalences between model categories.

Definition 4.1.1. Let C and D be model categories. Let L : C→ D and R : D→ C

be functors such that L is left adjoint to R. The adjoint pair of functors L and R
is a Quillen adjoint pair if L preserves cofibrations and R preserves fibrations. We
refer to the functors in such a pair as left and right Quillen functors. A Quillen
adjoint pair is a Quillen equivalence if for every cofibrant object X ∈ C and every
fibrant object Y ∈ D, a map LX −→ Y is a weak equivalence if and only if its
adjoint X −→ RY is a weak equivalence.

The definition of a Quillen adjoint pair can be reformulated.

Lemma 4.1.2. Let L and R be a pair of functors between model categories such
that L is left adjoint to R.

(1) L preserves cofibrations if and only if R preserves trivial fibrations.
(2) L preserves trivial cofibrations if and only if R preserves fibrations.

This lemma is an immediate corollary of Lemma 3.2.10; see also [DS95, 9.8]. A
useful lemma associated to these questions is Ken Brown’s lemma.

Lemma 4.1.3 (Ken Brown’s Lemma). Let F be a functor between model cate-
gories.

(1) If F takes trivial cofibrations between cofibrant objects to weak equivalences,
then F preserves all weak equivalences between cofibrant objects.

(2) If F takes trivial fibrations between fibrant objects to weak equivalences, then
F preserves all weak equivalences between fibrant objects.

For the proof of this lemma, see [DS95, 9.9].
In particular, a left Quillen functor L preserves weak equivalences between cofi-

brant objects, and a right Quillen functor R preserves weak equivalences between
fibrant objects.

The following proposition is the reason Quillen equivalences are important.

Proposition 4.1.4. A Quillen adjoint pair of functors between model categories
induces an adjoint pair of functors on the homotopy categories which is an adjoint
equivalence if and only if the adjoint pair of functors is a Quillen equivalence.

For the proof of this proposition, see [DS95, Theorem 9.7].
We now describe a useful sufficient condition for a Quillen adjoint pair to be a

Quillen equivalence.
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Definition 4.1.5. Suppose F : C→ D is a functor between model categories. For
any full subcategory C′ of C, we say that F detects and preserves weak equivalences
of C′ if a map f in C′ is a weak equivalence if and only if Ff is.

In practice, very few functors detect and preserve weak equivalences on the whole
category. However, many functors detect and preserve weak equivalences between
cofibrant objects or fibrant objects, so the next lemma is often useful. Before stating
it, we need a definition.

Definition 4.1.6. Suppose C is a model category. A fibrant replacement functor
on C is a functor K : C → C whose image lies in the full subcategory of fibrant
objects, together with a natural weak equivalence i : X → KX .

There is a dual notion of a cofibrant replacement functor, but we do not use
it. Fibrant replacement functors are usually obtained by using a version of the
Factorization Lemma 3.2.11 appropriate for C to functorially factor the map X −→ 1
into a trivial cofibration followed by a fibration. We have already used fibrant
replacement functors in S∗ in the proof of Theorem 3.1.11.

Lemma 4.1.7. Suppose L : C → D is a left Quillen functor with right adjoint R,
and suppose K is a fibrant replacement functor on D. Suppose R detects and pre-
serves weak equivalences between fibrant objects and the composition X → RLX

Ri−→
RKLX is a weak equivalence for all cofibrant objects X of C. Then the pair (L, R)
is a Quillen equivalence.

There is also a dual statement, but this is the criterion we use.

Proof. Suppose f : LX −→ Y is a map, where X is cofibrant and Y is fibrant.
Consider the commutative diagram below:

X −−−−→ RLX
Rf−−−−→ RY

RiLX

y yRiY

RKLX −−−−→
RKf

RKY

The top composite is the adjoint g : X −→ RY of f . The map iY is a weak
equivalence between fibrant objects, so RiY is a weak equivalence. The composite
X −→ RLX

RiLX−−−→ RKLX is a weak equivalence by hypothesis. Thus g is a weak
equivalence if and only if RKf is a weak equivalence. But R detects and preserves
weak equivalences between fibrant objects, so RKf is a weak equivalence if and
only if Kf is a weak equivalence. Since i is a natural weak equivalence, Kf is a
weak equivalence if and only if f is a weak equivalence.

4.2. The Quillen equivalence. In this section we first recall from [BF78] the sta-
ble homotopy theory of (non-symmetric) spectra. The goal of this section is to show
that the forgetful functor U from symmetric spectra to spectra is part of a Quillen
equivalence. Obviously this requires that U have a left adjoint V : SpN −→ SpΣ.
We will assume the existence of V in this section, and construct V in Section 4.3.

Definition 4.2.1. Suppose f : X −→ Y is a map of spectra.
(1) The map f is a stable equivalence if π∗f is an isomorphism where πkX =

colimn πk+nXn.
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(2) The map f is a stable cofibration if f0 : X0 −→ Y0 is a monomorphism and
the induced map Xn qXn−1∧S1 (Yn−1 ∧ S1) −→ Yn is a monomorphism for all
n > 0.

(3) The map f is a stable fibration if f is a level fibration and
Xn −−−−→ QXny y
Yn −−−−→ QYn

is a homotopy pullback square for each n.

Theorem 4.2.2 ([BF78]). The stable equivalences, stable cofibrations, and stable
fibrations define a model structure on SpN.

Before turning to the Quillen equivalence we need the following proposition.

Proposition 4.2.3. If a map f : E −→ B in SpN is a level fibration and, for all
n ≥ 0, the diagram

En −−−−→ ES1

n+1y y
Bn −−−−→ BS1

n+1

is a homotopy pullback square, then f is a stable fibration.

The most elegant way to prove this proposition is to follow the development of
Section 3 for spectra. Theorem 3.1.11 becomes stronger in this situation; we find
that stable equivalences coincide with stable homotopy isomorphisms. The above
proposition is then the analogue of Lemma 3.4.12.

Proposition 4.2.4. The functors U : SpΣ −→ SpN and its left adjoint V are a
Quillen adjoint pair.

Proof. Proposition 4.2.3 implies that U preserves stable fibrations. The stable
trivial fibrations in SpΣ and in SpN are the level trivial fibrations; see [BF78, A.8
ii]. So U preserves stable trivial fibrations as well.

Theorem 4.2.5. The functor U : SpΣ → SpN and its left adjoint V form a Quillen
equivalence of the stable model categories.

We prove this theorem by using Lemma 4.1.7. In particular, we need to under-
stand stable equivalences between stably fibrant objects.

Lemma 4.2.6. Suppose f : X −→ Y is a stable equivalence between stably fibrant
objects in either SpΣ or SpN. Then f is a level equivalence.

Proof. Factor f as a stably trivial cofibration, i, followed by a stable fibration, p.
Since f is a stable equivalence, p is also. Hence, p is a level trivial fibration by
Lemma 3.4.5. Also, i is a stably trivial cofibration between stably fibrant objects,
hence it is a strong deformation retract; see [Qui67, II p. 2.5]. To see this, note
that i has the left lifting property with respect to X → ∗, so the lift constructs
a homotopy inverse to i. Because the simplicial structure is given on levels, a
strong deformation retract here is a level equivalence. So both i and p are level
equivalences, hence so is f .
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Corollary 4.2.7. U : SpΣ −→ SpN detects and preserves stable equivalences be-
tween stably fibrant objects.

Let L denote a fibrant replacement functor in SpΣ, obtained by factoring X −→ ∗
into a stable trivial cofibration followed by a stable fibration. By Lemma 4.1.7 and
Corollary 4.2.7, to prove Theorem 4.2.5 it suffices to show that X → ULV X is a
stable equivalence for all cofibrant (non-symmetric) spectra X . We prove this in
several steps.

Definition 4.2.8. Given a simplicial set X , define F̃n(X) to be the (non-symmetric)
spectrum whose mth level is Sm−n ∧ X for m ≥ n and the basepoint otherwise,
with the obvious structure maps. This defines a functor F̃n : S∗ −→ SpN left adjoint
to the evaluation functor Evn.

Note that F̃0X = Σ∞X . Also, since U ◦ Evn = Evn, the left adjoints satisfy
V ◦ F̃n = Fn.

Lemma 4.2.9. The map X −→ ULV X is a stable equivalence when X = Σ∞Y =
F̃0Y for any Y ∈ S∗.

Proof. Consider the functor on simplicial sets QZ = colim ΩnKΣnZ, where K is
a simplicial fibrant replacement functor. Because Q is simplicial we can prolong it
to a functor on SpΣ. The map F0Y −→ QF0Y induces an isomorphism on stable
homotopy. Also QF0Y is an Ω-spectrum since QZ → ΩQΣZ is a weak equivalence
for any Z ∈ S∗. Hence QF0Y is level equivalent to LF0Y , so F0Y → LF0Y induces
an isomorphism in stable homotopy. Since F̃0Y → UF0Y is a level equivalence and
UF0Y → ULF0Y is a stable homotopy equivalence, the lemma follows.

Because both SpΣ and SpN are stable model categories, the following lemma is
expected.

Lemma 4.2.10. Suppose X is a cofibrant spectrum in SpN. Then the map X −→
ULV X is a stable equivalence if and only if X ∧ S1 −→ ULV (X ∧ S1) is a stable
equivalence.

Proof. For notational convenience, we write ΣX for X∧S1 and ΩX for XS1
in this

proof, for X a (possibly symmetric) spectrum. Consider the stable trivial cofibra-
tion ΣV X −→ LΣV X in SpΣ. By Theorem 3.1.14, part three, V X → ΩLΣV X
is also a stable equivalence. By the lifting property of the stable trivial cofi-
bration V X → LV X and the 2-out-of-3 property, there is a stable equivalence
LV X → ΩLΣV X . This map is a stable equivalence between stably fibrant objects,
so by Corollary 4.2.7, f : ULV X → UΩLΣV X is a stable equivalence.

So g : X → ULV X is a stable equivalence if and only if fg : X → UΩLΣV X
is a stable equivalence. Since Ω and U commute, gf is a stable equivalence if and
only if ΣX → ULΣV X is a stable equivalence by part three of Theorem 3.1.14
for (non-symmetric) spectra. But, since U commutes with Ω, the left adjoint V
commutes with Σ, so we have a natural isomorphism ULΣV X → ULV ΣX . This
completes the proof.

Lemma 4.2.11. Let f : X → Y be a stable equivalence between cofibrant spectra
in SpN. Then X → ULV X is a stable equivalence if and only if Y → ULV Y is a
stable equivalence.
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Proof. Consider the following commuting square:

X −−−−→ Yy y
ULV X −−−−→ ULV Y

Since V is a left Quillen functor by Proposition 4.2.4, it preserves trivial cofibra-
tions. Hence, by Ken Brown’s Lemma 4.1.3, V preserves stable equivalences be-
tween cofibrant objects. Hence V X → V Y is a stable equivalence. L takes stable
equivalences to level equivalences, by Lemma 4.2.6. So ULV X → ULV Y is a level
equivalence since U preserves level equivalences. Hence the top and bottom maps
are stable equivalences, so the right map is a stable equivalence if and only if the
left map is.

Using the preceding three lemmas we can extend Lemma 4.2.9 to any cofibrant
strictly bounded below spectrum.

Definition 4.2.12. Define a spectrum X ∈ SpN to be strictly bounded below if
there is an n such that for all m ≥ n the structure map S1 ∧ Xm −→ Xm+1 is an
isomorphism.

Lemma 4.2.13. Suppose X ∈ SpN is cofibrant and strictly bounded below. Then
the map X −→ ULV X is a stable equivalence.

Proof. Suppose X is strictly bounded below at n. Then we have a map F̃nXn
g−→ X

which is the identity on all levels ≥ n. In particular, g is a stable homotopy
equivalence. Applying Lemma 4.2.11, this shows that to prove the lemma it is
enough to show that F̃nXn → ULFnXn is a stable equivalence. But there is an
evident map F̃nXn ∧Sn ∼= F̃n(Xn ∧Sn)→ Σ∞Xn which is the identity map above
level n−1, and so is a stable equivalence. Lemmas 4.2.9, 4.2.10, and 4.2.11 complete
the proof.

We now extend this lemma to all cofibrant objects, completing the proof of
Theorem 4.2.5. First, we need to recall a basic fact about simplicial sets. Re-
call that the homotopy group πnX of a pointed simplicial set X is defined to be
π0 MapS∗(S

n, KX), where K is a fibrant replacement functor. This ensures that
weak equivalences are homotopy isomorphisms. If X is already a Kan complex, X
is simplicially homotopy equivalent to KX , and so πnX ∼= π0 MapS∗(S

n, X). Since
the simplicial sets ∂∆[n]+ and ∆[n]+ are finite, the colimit of a sequence of Kan
complexes is again a Kan complex. Since the simplicial sets Sn and Sn ∧ ∆[1]+
are finite, homotopy commutes with filtered colimits of Kan complexes, and in
particular with transfinite compositions of maps of Kan complexes.

In fact, homotopy commutes with transfinite compositions of arbitrary monomor-
phisms of simplicial sets. To see this, apply the geometric realization to get a
sequence of cofibrations of CW complexes. Since homotopy commutes with such
transfinite compositions, the result follows.

Lemma 4.2.14. Suppose X is a cofibrant object of SpN. Then the map X −→
ULV X is a stable equivalence.

Proof. Let X i denote the truncation of X at i. That is, we have X i
n = Xn for

n ≤ i and X i
n = Xi ∧ Sn−i for n ≥ i. Then the X i are strictly bounded below and



190 MARK HOVEY, BROOKE SHIPLEY, AND JEFF SMITH

cofibrant, and there are monomorphisms X i −→ X i+1 with colimi X i = X . Thus
each map X i −→ ULV X i is a stable equivalence.

We claim that the induced map X −→ colimi ULV X i is a stable equivalence. To
see this, note that

πnX = colimi πn+iXi = colimi πn+i colimj Xj
i .

Since homotopy commutes with transfinite compositions of monomorphisms, we
find that πnX ∼= colimj πnXj. Similarly, since homotopy of Kan complexes com-
mutes with arbitrary filtered colimits, we find πn colimi ULV X i∼=colimi πnULV X i.
It follows that X −→ colimi ULV X i is a stable homotopy equivalence, as required.

We now examine the relationship between ULV X and colimi ULV X i. Since V
is a left adjoint, V X ∼= colimi V X i. Each map V X i −→ LV X i is a stable trivial
cofibration; by Lemma 4.2.15 below then colimi V X i −→ colimi LV X i is a stable
equivalence.

We now claim that colimi LV X i is an Ω-spectrum, and thus is stably fibrant. In-
deed, colimi LV X i is a level Kan complex by the comments preceding this lemma.
Similarly, (colimLV X i)S1

n+1 = colimi((LV X i)S1

n+1). Since homotopy of Kan com-
plexes commutes with filtered colimits, it follows that colimi LV X i is an Ω-
spectrum.

Hence the stable equivalence V X −→ colimi LV X i extends to a stable equiva-
lence LV X −→ colimi LV X i. By Lemma 4.2.6, this map is actually a level equiv-
alence. Since U preserves level equivalences and colimits, the map ULV X −→
colimi ULV X i is also a level equivalence. We have seen above that the map
X −→ colimi ULV X i is a stable equivalence, so X −→ ULV X must also be a stable
equivalence.

Lemma 4.2.15. Suppose given two sequential colimits in SpΣ, A = colimi Ai and
B = colimi Bi with each Bi level fibrant and commuting maps f i : Ai → Bi which
are stable equivalences. Then colimi f i : A→ B is a stable equivalence.

Proof. We inductively define a new sequence Ci and maps Ai → Ci and Ci → Bi.
Define C0 = A0. Having defined Ci, define Ci+1 by factoring the map Ci qAii

Ai+1 −→ Bi+1 into a stable trivial cofibration to Ci+1 followed by a stable fibration
Ci+1 −→ Bi+1. Then the induced map colimi Ai −→ colimi Ci is a stable trivial
cofibration, by a lifting argument. On the other hand, each map Ci −→ Bi is a
stable equivalence, by the two-out-of-three axiom. In fact, the maps Ci −→ Bi are
stable trivial fibrations, and hence level equivalences. Since homotopy of level Kan
complexes commutes with filtered colimits, we find that colimCi −→ colimi Bi is a
level equivalence, and therefore that A = colimi Ai −→ colimi Bi = B is a stable
equivalence.

Remark 4.2.16. It follows from the results of Section 5.3 that the smash product
on SpΣ induces a smash product on Ho SpΣ. The handicrafted smash products
of [Ada74] induce a smash product on Ho SpN. We now consider to what extent the
equivalence RU : Ho SpΣ −→ Ho SpN induced by U preserves these smash products.
Since U is a simplicial functor, there is a natural isomorphism RU(X ∧ Y ) ∼=
(RU)(X)∧ (RU)(Y ) for all (arbitrary desuspensions of) suspension spectra X . On
the other hand, in either Ho SpΣ or Ho SpN, X∧Y is determined by the collection of
F∧Y for all finite spectra F mapping to X . To be precise, X∧Y is the minimal weak
colimit [HPS97] of the F∧Y . As an equivalence of categories, RU preserves minimal
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weak colimits, so there is an isomorphism RU(X ∧ Y ) ∼= (RU)(X) ∧ (RU)(Y ).
However, we do not know if this is natural, as the minimal weak colimit is only a
weak colimit. This isomorphism is natural up to phantom maps, however.

4.3. Description of V . This short section is devoted to the construction of the
left adjoint V : SpN −→ SpΣ to the forgetful functor U : SpΣ −→ SpN.

Recall that, in any cocomplete symmetric monoidal category C, the free monoid
or tensor algebra generated by an object X is T (X) = e∨X∨X⊗2∨· · ·∨X⊗n∨· · · ,
where e is the unit and ∨ is the coproduct. The multiplication on T (X) is the
concatenation X⊗n ⊗ X⊗m → X⊗(n+m). Similarly, the free commutative monoid
on an object X is Sym(X) = e ∨X ∨ (X⊗2/Σ2) ∨ · · · ∨ (X⊗n/Σn) ∨ · · · .

Recall that the evaluation functor Evn : SΣ∗ −→ S∗ has a left adjoint Gn, where
GnX is (Σn)+ ∧ X at level n and the basepoint everywhere else. Similarly, the
evaluation functor Evn : SN

∗ −→ S∗ has a left adjoint G̃n, where G̃n is X at level n
and the basepoint everywhere else.

Lemma 4.3.1. In the category SN∗ of sequences, the sphere spectrum S is the tensor
algebra on the sequence G̃1S

1 = (∗, S1, ∗, . . . , ∗, . . . ). In the category SΣ
∗ of sym-

metric sequences, the sphere symmetric spectrum S is the free commutative monoid
on the symmetric sequence G1S

1 = (∗, S1, ∗, . . . , ∗, . . . ).
Proof. The first statement follows directly from the definitions. In the category of
symmetric sequences, (G1S

1)⊗n = GnSn, so T (G1S
1) is (Σn)+ ∧ Sn in degree n.

Therefore Sym(G1S
1) is Sn in degree n. Since we already know S is a commu-

tative monoid, the map G1S
1 −→ S induces a map Sym(G1S

1) −→ S which is an
isomorphism.

This lemma explains why left S-modules and right S-modules are equivalent in
the category of sequences, since this is true for any tensor algebra. This lemma also
explains why Remark 1.2.3 holds, since an analogous statement holds for any free
commutative monoid.

Now, the forgetful functor U : SΣ
∗ −→ SN

∗ has a left adjoint G, defined by GX =∨
GnXn, so that the nth level of GX is just (Σn)+∧Xn. The functor G is monoidal;

that is, there is a natural isomorphism G(X)⊗G(Y ) −→ G(X⊗Y ) compatible with
the associativity and unit isomorphisms. However, G is definitely not a symmetric
monoidal functor; this natural isomorphism is not compatible with the commuta-
tivity isomorphisms. This explains how S can be commutative in SΣ∗ yet US = S
is not commutative in SN

∗ .
Since G is a monoidal functor, G preserves monoids and modules, and so de-

fines a functor G : SpN −→ T (G1S
1)-mod, left adjoint to the forgetful functor

T (G1S
1)-mod −→ SpN. On the other hand, the map of monoids T (G1S

1)
p−→

Sym(G1S
1) = S defines the usual adjoint pair of induction and restriction. In-

duction takes a (left) T (G1S
1)-module X to S ⊗T (G1S1) X , where the tensor prod-

uct uses the right action of T (G1S
1) on S determined by p. It follows that the

left adjoint V : SpN −→ SpΣ of the forgetful functor U : SpΣ −→ SpN is V (X) =
S ⊗T (G1S1) GX .

5. Additional properties of symmetric spectra

In this section we discuss some properties of the category of symmetric spectra.
In Section 5.1, we consider the level model structures on SpΣ. In particular, we



192 MARK HOVEY, BROOKE SHIPLEY, AND JEFF SMITH

show that every symmetric spectrum embeds in an injective spectrum by a level
equivalence, completing the proof that the stable structures define a model structure
on SpΣ. In Section 5.2 we characterize the stable cofibrations. In Sections 5.3
and 5.4, we study the relationship between the stable model structure on SpΣ and
the smash product. This is necessary for constructing model categories of monoids,
algebras, and modules, as is done in [SS97]. In Section 5.5, we show that the stable
model structure on SpΣ is proper. Finally, in Section 5.6 we define semistable
spectra and investigate their relationship to stable homotopy equivalences.

5.1. Level model structure. In this section we construct the two level model
structures on the category of symmetric spectra.

Definition 5.1.1. A projective cofibration of symmetric spectra is a map that has
the left lifting property with respect to every level trivial fibration. The projective
cofibrations are the stable cofibrations from Section 3.4. The projective level struc-
ture on SpΣ is the class of level equivalences, the class of projective cofibrations,
and the class of level fibrations. An injective fibration of symmetric spectra is a map
that has the right lifting property with respect to every level trivial cofibration (the
adjective “injective” refers to the lifting properties of the map and not to its being
a monomorphism). The injective level structure is the class of level equivalences,
the class of level cofibrations, and the class of injective fibrations.

Theorem 5.1.2. The projective level structure and the injective level structure are
model structures on the category of symmetric spectra.

Proof. The category of symmetric spectra is bicomplete. The class of level equiva-
lences has the two-out-of-three property. The retract axiom holds by construction
in both the projective and injective level structures.

We now prove the lifting and factorization axioms, beginning with the projective
level structure. We use the sets of maps FI∂ and FIΛ defined in Definition 3.3.2.
The lifting axiom for a projective cofibration and a level trivial fibration holds
by definition. The other lifting and factorization axioms follow by identifying the
respective classes in terms of FI∂ and FIΛ. By part (4) of Lemma 5.1.4, an FIΛ-
cofibration is a projective cofibration which is a level equivalence and an FIΛ-
injective map is a level fibration. Since (J-cof, J-inj) has the lifting property for
any class J , the lifting axiom for a map that is both a level equivalence and a
projective cofibration and a map that is a level fibration follows by setting J = FIΛ.
Moreover, every map can be factored as the composition of an FIΛ-cofibration and
an FIΛ-injective map. Similarly, every map can be factored as the composition of
an FI∂ -cofibration and an FI∂-injective map, by Lemma 3.2.11. By part (3) of
Lemma 5.1.4, an FI∂-cofibration is a projective cofibration and an FI∂ -injective
map is a level trivial fibration.

Now consider lifting and factorization for the injective level model structure.
Here we use a set C containing a map from each isomorphism class of monomor-
phisms i : X → Y with Y a countable symmetric spectrum, and a set tC containing
a map from each isomorphism class of level trivial cofibrations i : X → Y with Y
a countable symmetric spectrum. The lifting axiom for a level trivial cofibration i
and an injective fibration p holds by definition. By part (5) of Lemma 5.1.4, a C-
cofibration is a level cofibration and a C-injective map is an injective fibration that
is a level equivalence. Since (J-cof, J-inj) has the lifting property for any class J ,
the lifting axiom for a level cofibration and a map that is both an injective fibration
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and a level equivalence follows with J = C. Also, every map can be factored as the
composition of a C-cofibration followed by a C-injective map, by Lemma 3.2.11.
Similarly, every map can be factored as the composition of a tC-cofibration and a
tC-injective map. By part (6) of Lemma 5.1.4, a tC-cofibration is a level trivial
cofibration and a tC-injective map is an injective fibration.

Corollary 5.1.3. Every symmetric spectrum embeds in an injective spectrum by a
map that is a level equivalence.

Proof. For a symmetric spectrum X , the map X → ∗ is the composition of a level
trivial cofibration X → E and an injective fibration E → ∗. The fibrant object E
is an injective spectrum.

Some parts of the next lemma have already been proved. They are repeated for
easy reference. Recall that Rn : S∗ → SpΣ is the right adjoint of the evaluation
functor Evn : SpΣ → S∗.

Lemma 5.1.4. (1) Let K ⊆ S∗ be the class of Kan fibrations and let RK =⋃
n RnK. Then a map is RK-projective if and only if it is a level trivial

cofibration.
(2) Let tK ⊆ S∗ be the class of trivial Kan fibrations and let R(tK) =

⋃
n Rn(tK).

Then a map is R(tK)-projective if and only if it is a level cofibration.
(3) Let FI∂ be the set defined in 3.3.2. Then a map is FI∂-injective if and only

if it is a level trivial fibration. A map is an FI∂-cofibration if and only if it
is a projective cofibration.

(4) Let FIΛ be the set defined in 3.3.2. Then a map is FIΛ-injective if and only
if it is a level fibration. A map is an FIΛ-cofibration if and only if it is a
projective cofibration and a level equivalence.

(5) Let C be a set containing a map from each isomorphism class of monomor-
phisms i : X → Y with Y a countable symmetric spectrum. Then a map is
C-injective if and only if it is an injective fibration and a level equivalence. A
map is a C-cofibration if and only if it is a level cofibration.

(6) Let tC be a set containing a map from each isomorphism class of level trivial
cofibrations i : X → Y with Y a countable symmetric spectrum. Then a
map is tC-injective if and only if it is an injective fibration. A map is a
tC-cofibration if and only if it is a level trivial cofibration.

Proof. Parts (1) and (2): By adjunction, a map g has the left lifting property
with respect to the class RK (R(tK)) if and only if for each n ≥ 0 the map
Evn g has the left lifting property with respect to K (tK). But Evn g has the left
lifting property with respect to K (tK) if and only if Evn g is a trivial cofibration
(arbitrary cofibration), i.e., if and only if g is a level trivial cofibration (arbitrary
level cofibration).

Part (3) is proved in Propositions 3.3.3 and 3.4.2.
Part (4): The first claim is proved in Proposition 3.3.3. Every FIΛ-cofibration

has the left lifting property with respect to level fibrations, so is in particular a
projective cofibration by part (3). Every map in FIΛ is a level trivial cofibration
by Proposition 2.2.7, so is RK-projective by part (1). So every FIΛ-cofibration is
also RK-projective and hence is a level trivial cofibration by part (1) again. So in
particular it is a level equivalence.

Conversely, suppose f is a projective cofibration and a level equivalence. We can
factor f as the composition of an FIΛ-cofibration i and an FIΛ-injective map p, by
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Lemma 3.2.11. By the two-out-of-three property, p is a level equivalence. Therefore
the projective cofibration f has the left lifting property with respect to the level
trivial fibration p. By the Retract Argument 3.2.4, f is a retract of i, and so is an
FIΛ-cofibration.

For part (5), first note that, by part (2), every C-cofibration is a level cofibration.
Conversely, suppose f : X −→ Y is a level cofibration. Then f is a C-cofibration if,
for every C-injective map g and commutative square

X −−−−→ E

f

y yg

Y −−−−→ Z,

there is a lift h : Y → E making the diagram commute. Let P be the partially
ordered set of partial lifts: an object of P is a pair (U, hU ) such that X ⊆ U ⊆ Y
and the diagram

X

iU

��

// E

g

��

U //

hU

>>
~
~
~
~
~
~
~

Z

is commutative. We define (U, hU ) ≤ (V, hV ) if U ⊆ V and hV extends hU . Every
chain in P has an upper bound and so Zorn’s lemma gives a maximum (M, hM ).
Suppose M is strictly contained in Y . Then, by taking the subspectrum generated
by a simplex not in M , we find a countable subspectrum D (by Lemma 5.1.6 below)
such that the level cofibration D∩M → D is not an isomorphism. By construction,
the map D∩M → D is isomorphic to a map in C. By cobase change, M → D∪M
is a C-cofibration. Thus hM extends to a partial lift on D ∪M , contradicting the
maximality of (M, hM ). Therefore M = Y , and so f is a C-cofibration.

We now identify C-inj. Since (C-cof)-inj = C-inj, every C-injective map has the
right lifting property with respect to every monomorphism. In particular, every
C-injective map is an injective fibration. Let f : E → B be a map having the right
lifting property with respect to every monomorphism. Let s : B → E be a lift in
the diagram

∗ −−−−→ Ey yf

B B.

Then fs is the identity map on B. To study the composite sf , let j be the monomor-
phism ∂∆[1]→ ∆[1]. The diagram

E ∨ E
sf∨1−−−−→ E

E∧j+

y yf

E ∧∆[1]+ −−−−→ B

is commutative since fsf = f and has a lift since E ∧ j+ is a monomorphism. The
lift is a simplicial homotopy from sf to the identity on E. Therefore f is a simplicial
homotopy equivalence and in particular f is a level equivalence. Conversely suppose
f is both an injective fibration and a level equivalence. We can factor f as the
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composition of a C-cofibration i and a C-injective map p. By the two-out-of-three
property, i is a level equivalence. The level trivial cofibration i has the left lifting
property with respect to the injective fibration f . By the Retract Argument 3.2.4,
f is a retract of p and so is a C-injective map.

The proof of part (6) is similar, though slightly more complex. By part (1),
every tC-cofibration is a level trivial cofibration. Conversely, suppose f : X → Y is
a level trivial cofibration. Then f is a tC-cofibration if, for every tC-injective map
g and commutative square

X −−−−→ E

f

y yg

Y −−−−→ Z,

there is a lift h : Y → E making the diagram commute. We again let P be the
partially ordered set of partial lifts: an object of P is a pair (U, hU ) such that
X ⊆ U ⊆ Y , and the diagram

X

iU

��

// E

g

��

U //

hU

>>
~
~
~
~
~
~
~

Z

is commutative, but we also require that the inclusion iU : X → U is a weak
equivalence. We define (U, hU ) ≤ (V, hV ) as before. Every chain in P has an upper
bound (using the fact that a transfinite composition of level trivial cofibrations is
a level trivial cofibration) and so Zorn’s lemma gives a maximum (M, hM ). The
inclusion X →M is a level trivial cofibration, so, by the two-out-of-three property,
the inclusion M → Y is a weak equivalence. If M is strictly contained in Y ,
Lemma 5.1.7, proved below, applied to the countable subspectrum of Y generated
by a simplex not in M , gives a countable subspectrum D of Y such that the
monomorphism D ∩ M → D is a weak equivalence but is not an isomorphism.
By construction, D ∩M → D is isomorphic to a map in tC. By cobase change,
M → D∪M is a tC-cofibration. So hM extends to a partial lift on D∪M . This is a
contradiction since (M, hM ) is maximal. Thus M = Y , and so f is a tC-cofibration.

Since (tC-cof)-inj = tC-inj, the tC-injective maps are the injective fibrations.

Corollary 5.1.5. Every injective fibration is a level fibration and every projective
cofibration is a level cofibration.

Proof. By Proposition 2.2.7, every map in FI∂ is a level cofibration. Therefore,
by part (2) of Lemma 5.1.4, every projective cofibration is a level cofibration. By
Proposition 2.2.7, every map in FIΛ is a level trivial cofibration. Therefore every
injective fibration is a level fibration.

The following lemmas are used in the proof of Lemma 5.1.4.

Lemma 5.1.6. Let X be a spectrum, and suppose x is a simplex of Xn for some
n ≥ 0. Then the smallest subspectrum of X containing x is countable.

Proof. First note that if L is a countable collection of simplices in a simplicial set
K, then the smallest subsimplicial set of K containing L is also countable. Indeed,
we need only include all degeneracies of all faces of simplices in L, of which there are
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only countably many. Similarly, if L is a countable collection of simplices in a Σn-
simplicial set K, then the smallest sub-Σn-simplicial set containing L is countable.
Indeed, we only need to include the orbits of all degeneracies of all faces of simplices
in L.

Now, let Yn denote the sub-Σn-simplicial set of Xn generated by x. We have
just seen that Yn is countable. We then inductively define Yn+k to be the smallest
sub-Σn+k-simplicial set of Xn+k containing the image of S1 ∧ Yn+k−1. Then each
Yn+k is countable, and the Yn+k define a subspectrum of X containing x.

It follows in similar fashion that the smallest subspectrum of a spectrum X
containing any countable collection of simplices of X is countable.

We need a similar lemma for inclusions which are level equivalences. To prove
such a lemma, we need to recall from the comments before Lemma 4.2.14 that
homotopy of simplicial sets commutes with transfinite compositions of monomor-
phisms. The same methods imply that relative homotopy commutes with transfinite
compositions of monomorphisms.

Lemma 5.1.7. Let f : X → Y be a level trivial cofibration of symmetric spectra.
For every countable subspectrum C of Y there is a countable subspectrum D of Y
such that C ⊆ D and D ∩X → D is a level trivial cofibration.

Proof. Let K ⊆ L be a pair of pointed simplicial sets and let v be a 0-simplex of
K. For n ≥ 1, let πn(L, K; v) denote the relative homotopy set of the pair with
the null element as the basepoint (ignore the group structure when n ≥ 2). To ease
notation let π0(L, K; v) be the pointed set π0L/π0K. The inclusion K → L is a
weak equivalence if and only if πn(L, K; v) = ∗ for every v ∈ K0 and n ≥ 0.

Now, construct a countable spectrum FC such that the map π∗(Cn, Cn∩Xn; v)→
π∗(FCn, FCn ∩ Xn; v) factors through the basepoint ∗ for every 0-simplex v of
Cn ∩ Xn and integer n ≥ 0. Since π∗(Y, X ; v) = ∗ and π∗ commutes with filtered
colimits, for each homotopy class α ∈ π∗(Cn, Cn ∩Xn; v) there is a finite simplicial
subset Kα ⊆ Yn such that π∗(Cn, Cn ∩Xn; v) → π∗(Kα ∪ Cn, (Kα ∪ Cn) ∩Xn; v)
sends α to the basepoint. Since Cn is countable, the set π∗(Cn, Cn ∩ Xn; v) is
countable. Let Bn be the union of Cn with all the finite simplicial sets Kα. The
Bn are countable simplicial sets and generate a countable subspectrum FC of Y
having the desired property.

Repeat the construction to get a sequence of countable subspectra of Y :

C → FC → F 2C → · · · → FnC → · · · .
Let D = colimn FnC. The spectrum D is countable. Since relative homotopy
commutes with transfinite compositions of monomorphisms, π∗(Dn, Dn ∩Xn; v) is
a set with only one element. Therefore the inclusion Dn ∩ Xn → Dn is a weak
equivalence, and so D ∩X → D is a level equivalence.

5.2. Stable cofibrations. The object of this section is to give a characterization
of stable cofibrations in SpΣ. To this end, we introduce the latching space.

Definition 5.2.1. Define S to be the symmetric spectrum such that Sn = Sn for
n > 0 and S0 = ∗. The structure maps are the evident ones. Given a symmetric
spectrum X , define the nth latching space, LnX , to be Evn(X ∧ S).

There is a map of symmetric spectra i : S → S which is the identity on positive
levels. This induces a natural transformation LnX → Xn of pointed Σn simplicial
sets.
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The following proposition uses a model structure on the category of pointed Σn

simplicial sets. A map f : X → Y of pointed Σn simplicial sets is a Σn-fibration
if it is a Kan fibration of the underlying simplicial sets. Similarly, f is a weak
equivalence if it is a weak equivalence of the underlying simplicial sets. The map
f is a Σn-cofibration if it is a monomorphism such that Σn acts freely on the
simplices of Y not in the image of f . It is well-known, and easy to check, that
the Σn-cofibrations, the Σn-fibrations, and the weak equivalences define a model
structure on the category of pointed Σn-simplicial sets.

Proposition 5.2.2. A map f : X → Y in SpΣ is a stable cofibration if and only if
for all n ≥ 0 the induced map Evn(f � i) : XnqLnX LnY → Yn is a Σn-cofibration.

Proof. Suppose first that Evn(f�i) is a Σn-cofibration for all n. Suppose g : E → B
is a level trivial fibration. We show that f has the left lifting property with respect
to g by constructing a lift using induction on n. A partial lift defines a commutative
square

Xn qLnX LnY −−−−→ Eny y
Yn −−−−→ Bn.

Since the left vertical map is a Σn-cofibration and the right vertical map is a
trivial Σn-fibration, there is a lift in this diagram and so we can extend our partial
lift. Hence f has the left lifting property with respect to g, and so f is a stable
cofibration.

To prove the converse, note that Evn is a left adjoint as a functor to pointed Σn

simplicial sets. Since the class of stable cofibrations is the class FI∂-cof, it suffices
to check that Evn(f � i) is a Σn-cofibration for f ∈ FI∂ . More generally, suppose
g : A → B is a monomorphism of pointed simplicial sets. Since Fmg = S ⊗Gmg,
we have Fmg � i = Gmg � i, where the second � is taken in SΣ

∗ . One can easily
check that Evn(Gmg � i) is an isomorphism when n 6= m and is the map (Σn)+ ∧ g
when n = m. In both cases, Evn(Gmg � i) is a Σn-cofibration, as required.

5.3. Pushout smash product. In this section we consider the pushout smash
product in an arbitrary symmetric monoidal category and apply our results to SpΣ.
We show that the projective level structure and the stable model structure on SpΣ

are both compatible with the symmetric monoidal structure. A monoid E in SpΣ

is called a symmetric ring spectrum, and is similar to an A∞-ring spectrum. Thus,
there should be a stable model structure on the category of E-modules. Similarly,
there should be a model structure on the category of symmetric ring spectra and the
category of commutative symmetric ring spectra. These issues are dealt with more
fully in [SS97] and in work in progress of the third author. Their work depends
heavily on the results in this section and in Section 5.4. The results of this section
alone suffice to construct a stable model structure on the category of modules over
a symmetric ring spectrum which is stably cofibrant. This section also contains
brief descriptions of two other stable model structures on SpΣ.

Definition 5.3.1. Let f : U → V and g : X → Y be maps in a symmetric
monoidal category C. The pushout smash product

f � g : V ∧X qU∧X U ∧ Y → V ∧ Y
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is the natural map on the pushout defined by the commutative square

U ∧X
f∧X−−−−→ V ∧X

U∧g

y yV ∧g

U ∧ Y −−−−→
f∧Y

V ∧ Y.

If C is a closed symmetric monoidal category,

Hom�(f, g) : Hom(V, X)→ Hom(U, X)×Hom(U,Y ) Hom(V, Y )

is the natural map to the fiber product defined by the commutative square

Hom(V, X)
f∗−−−−→ Hom(U, X)

g∗
y yg∗

Hom(V, Y ) −−−−→
f∗

Hom(U, Y ).

Definition 5.3.2. A model structure on a symmetric monoidal category is called
monoidal if the pushout smash product f � g of two cofibrations f and g is a
cofibration which is trivial if either f or g is.

In our situation, this is the correct condition to require so that the model struc-
ture is compatible with the symmetric monoidal structure. Since the unit, S, is cofi-
brant in symmetric spectra this condition also ensures that the symmetric monoidal
structure induces a symmetric monoidal structure on the homotopy category. For
a more general discussion of monoidal model structures, see [Hov98a].

Recall, from Definition 3.3.6, the map of sets C�(f, g).

Proposition 5.3.3. Let f, g and h be maps in a closed symmetric monoidal cate-
gory C. There is a natural isomorphism

C�(f � g, h) ∼= C�(f, Hom�(g, h)).

Proof. Use the argument in the proof of Proposition 3.3.8.

Proposition 5.3.4. Let I and J be classes of maps in a closed symmetric monoidal
category C. Then

I-cof � J-cof ⊆ (I � J)-cof.

Proof. Let K = (I � J)-inj. By hypothesis, (I � J, K) has the lifting property.
By adjunction, (I, Hom�(J, K)) has the lifting property. By Proposition 3.2.8,
(I-cof, Hom�(J, K)) has the lifting property. Then (J, Hom�(I-cof, K)) has the
lifting property, by using adjunction twice. Thus (J-cof, Hom�(I-cof, K)) has the
lifting property, by Proposition 3.2.8. By adjunction, (I-cof � J-cof, K) has the
lifting property. So I-cof � J-cof ⊆ (I � J)-cof and the proposition is proved.

Corollary 5.3.5. For classes I, J and K in SpΣ, if I � J ⊆ K-cof, then I-cof �
J-cof ⊆ K-cof.

We now examine to what extent the pushout smash product preserves stable
cofibrations and stable equivalences. To do so, we introduce a new class of maps in
SpΣ.
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Definition 5.3.6. Let M be the class of monomorphisms in the category of sym-
metric sequences SΣ∗ . A map of symmetric spectra is an S-cofibration if it is an
S ⊗M -cofibration. A symmetric spectrum X is S-cofibrant if the map ∗ → X is
an S-cofibration. A map is an S-fibration if it has the right lifting property with
respect to every map which is both an S-cofibration and a stable equivalence.

Note that every stable cofibration is an S-cofibration, since FI∂ = S⊗⋃
n GnI∂ .

On the other hand, by Proposition 2.1.9, every element of S ⊗M is a monomor-
phism, and so every S-cofibration is a level cofibration. There is a model struc-
ture on SpΣ, called the S model structure, where the cofibrations are the S-
cofibrations and the weak equivalences are the stable equivalences. The fibrations,
called S-fibrations are those maps with the right lifting property with respect to
S-cofibrations which are also stable equivalences. Every S-fibration is a stable fi-
bration. This model structure will be used in a forthcoming paper by the third
author to put a model structure on certain commutative S-algebras.

We mention as well that there is a third model structure on SpΣ where the weak
equivalences are the stable equivalences, called the injective (stable) model struc-
ture. The injective cofibrations are the level cofibrations and the injective stable
fibrations are all maps which are both injective fibrations and stable fibrations. In
particular, the fibrant objects are the injective Ω-spectra. The interested reader
can prove this is a model structure using the methods of Section 3.4, replacing the
set I with the union of I and the countable level cofibrations.

Theorem 5.3.7. Let f and g be maps of symmetric spectra.
(1) If f and g are stable cofibrations, then f � g is a stable cofibration.
(2) If f and g are S-cofibrations, then f � g is an S-cofibration.
(3) If f is an S-cofibration and g is a level cofibration, then f � g is a level

cofibration.
(4) If f is an S-cofibration, g is a level cofibration, and either f or g is a level

equivalence, then f � g is a level equivalence.
(5) If f is an S-cofibration, g is a level cofibration, and either f or g is a stable

equivalence, then f � g is a stable equivalence.

Proof. Parts (1) through (4) of the proposition are proved using Corollary 5.3.5.
Part (1): Let I = J = K = FI∂ . Then K-cof is the class of stable cofibrations.

We have a natural isomorphism

Fpf � Fqg = Fp+q(f � g)

for f, g ∈ S∗. By Proposition 1.3.4, f � g is a monomorphism when f and g are.
Part (3) of Proposition 3.4.2 then shows that I �J ⊆ K-cof. Now use the corollary.

Part (2): Let I = J = K = S⊗M (recall that M is the class of monomorphisms
in SΣ∗ ). By definition, K-cof is the class of S-cofibrations. For f and g in SΣ∗ , we
have a natural isomorphism

S ⊗ f � S ⊗ g = S ⊗ (f � g)

where the first � is taken in SpΣ and the second � is taken in SΣ
∗ . In degree n,

(f � g)n =
∨

p+q=n

(Σp+q)+ ∧Σp×Σq (fp � gq).

For f, g ∈ M , each map fp � gq is a monomorphism, so it follows that f � g is a
monomorphism. Thus I � J ⊆ K-cof. Now use the corollary.
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Part (3): Let I = S ⊗M and let J = K be the class of level cofibrations. By
part (5) of Lemma 5.1.4, K-cof = K. For f ∈ SΣ∗ and g ∈ SpΣ, we have a natural
isomorphism of maps of symmetric sequences

(S ⊗ f) � g = f � g

where the first � is taken in SpΣ and the second � is taken in SΣ
∗ . We have seen

in the proof of part (2) that f � g is a monomorphism of symmetric sequences if f
and g are monomorphisms. Hence I � J ⊆ K-cof. Now use the corollary.

Part (4): First assume g is a level trivial cofibration. Let I = S ⊗M and let
J = K be the class of level trivial cofibrations. By part (6) of Lemma 5.1.4, K =
K-cof. Proposition 1.3.4 and the method used in the proof of part (2) imply that,
if f and g are monomorphisms of symmetric sequences and g is a level equivalence,
then f � g is a level equivalence. Recall that, for h ∈ SΣ

∗ and g ∈ SpΣ, we have a
natural isomorphism of maps of symmetric sequences

(S ⊗ h) � g = h � g

where the first � is taken in SpΣ and the second � is in SΣ
∗ . Hence I � J ⊆ K-cof.

Now use the corollary to prove part (4) when g is a level equivalence.
It follows that, for any injective spectrum E and an arbitrary S-cofibration h,

the map HomS(h, E) is an injective fibration. Indeed, if g is a level cofibration and
a level equivalence, SpΣ(g, HomS(h, E)) ∼= SpΣ(g � h, E), and we have just seen
that g � h is a level cofibration and a level equivalence, so (g � h, E) has the lifting
property.

Now suppose f is an S-cofibration and a level equivalence. Then the map
HomSpΣ(f, E) is an injective fibration and a level equivalence. Indeed, we have
Evk HomSpΣ(f, E) = MapSpΣ(f ∧ (S ⊗ Σ[k]+), E), by Remark 2.2.12. Since S ⊗
Σ[k]+ is S-cofibrant, and f is both a level equivalence and a level cofibration, we
have just proved that f ∧ (S ⊗Σ[k]+) = f � (∗ → S ⊗Σ[k]+) is a level equivalence
and a level cofibration. This shows that π0 Evk HomSpΣ(f, E) is an isomorphism;
smashing with F0S

n and using a similar argument shows that πn Evk HomSpΣ(f, E)
is an isomorphism.

Thus every level cofibration g has the left lifting property with respect to the map
HomSpΣ(f, E). By adjunction, f � g and f � (g � j), where j : ∂∆[1]+ → ∆[1]+ is
the inclusion, have the extension property with respect to every injective spectrum
E. It follows that E0(f � g) is an isomorphism for every injective spectrum E and
hence that f � g is a level equivalence.

Part (5): Because we are working in a stable situation, a level cofibration i : X →
Y is a stable equivalence if and only if its cofiber Ci = Y/X is stably trivial. The
map f � g is a level cofibration by part (3). By commuting colimits, the cofiber of
f � g is the smash product Cf ∧ Cg of the cofiber Cf of f , which is S-cofibrant,
and the cofiber Cg of g. Let E be an injective Ω-spectrum. We will show that
HomS(Cf ∧ Cg, E) is a level trivial spectrum, and thus that Cf ∧ Cg is stably
trivial.

First suppose that f is a stable equivalence. Then HomS(Cf, E) is a level trivial
spectrum which is also injective, by part (4) and the fact that Cf is S-cofibrant.
Therefore HomS(Cf ∧ Cg, E) ∼= HomS(Cg, HomS(Cf, E)) is a level trivial spec-
trum, so Cf ∧Cg is stably trivial and thus f � g is a stable equivalence.

Now suppose that g is a stable equivalence, so that Cg is stably trivial. By
adjunction HomS(Cf ∧ Cg, E) = HomS(Cg, HomS(Cf, E)). We claim that D =
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HomS(Cf, E) is an injective Ω-spectrum. Indeed, we have already seen that D is
injective. From Remark 2.2.12, we have

Evn D ∼= MapSpΣ(Cf ∧ FnS0, E) ∼= MapSpΣ(Cf, HomS(FnS0, E)).

Similarly, we have

(Evn+1 D)S1 ∼= MapSpΣ(Cf, HomS(Fn+1S
1, E)).

Since E is an Ω-spectrum, (FnS0 ∧ λ)∗ : HomS(FnS0, E) −→ HomS(Fn+1S
1, E)

is a level equivalence. Since E is injective, both the source and target are in-
jective, and so this map is a simplicial homotopy equivalence by Lemma 3.1.6.
Hence Evn D −→ (Evn+1 D)S1

is still a level equivalence, so D = HomS(Cf, E)
is an injective Ω-spectrum. Since Cg is stably trivial, HomS(Cf ∧ Cg, E) ∼=
HomS(Cg, HomS(Cf, E)) is a level trivial spectrum, so Cf ∧ Cg is stably trivial
and thus f � g is a stable equivalence.

Corollary 5.3.8. The projective model structure and the stable model structure on
SpΣ are monoidal.

It also follows that the S model structure on SpΣ is monoidal, once it is proven
to be a model structure. Neither the injective level structure nor the injective stable
structure is monoidal.

Adjunction then gives the following corollary.

Corollary 5.3.9. Let f and g be maps of symmetric spectra.
(1) If f is a stable cofibration and g is a stable fibration, then Hom�(f, g) is

a stable fibration, which is a level equivalence if either f or g is a stable
equivalence.

(2) If f is a stable cofibration and g is a level fibration, then Hom�(f, g) is a level
fibration, which is a level equivalence if either f or g is a level equivalence.

(3) If f is an S-cofibration and g is an S-fibration, then Hom�(f, g) is an S-
fibration, which is a level equivalence if either f or g is a stable equivalence.

(4) If f is an S-cofibration and g is an injective fibration, then Hom�(f, g) is
an injective fibration, which is a level equivalence if either f or g is a level
equivalence.

(5) If f is a level cofibration and g is an injective fibration, then Hom�(f, g)
is a level fibration, which is a level equivalence if either f or g is a level
equivalence.

Corollary 5.3.10. If X is an S-cofibrant symmetric spectrum, the functor X ∧ −
preserves level equivalences and it preserves stable equivalences.

Proof. Part (4) of Theorem 5.3.7 implies that X ∧− preserves level trivial cofibra-
tions. Lemma 4.1.3 then implies that it preserves level equivalences, since every
symmetric spectrum is level cofibrant. An arbitrary stable equivalence can be fac-
tored as a stable trivial cofibration followed by a level equivalence. Part (5) of
Theorem 5.3.7 implies that X ∧ − takes stable trivial cofibrations to stable equiv-
alences.

5.4. The monoid axiom. In [SS97], techniques are developed to form model cat-
egory structures for categories of monoids, algebras, and modules over a monoidal
model category. One more axiom is required which is referred to as the monoid
axiom. In this section we verify the monoid axiom for symmetric spectra. The
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results of [SS97] then immediately give a model structure on symmetric ring spec-
tra. After proving the monoid axiom, we discuss the homotopy invariance of the
resulting model categories of modules and algebras.

Let K denote the class in SpΣ consisting of all maps f ∧X , where f is a stable
trivial cofibration and X is some symmetric spectrum. The following theorem
implies the monoid axiom for symmetric spectra.

Theorem 5.4.1. Each map in K-cof, for K as above, is a stable equivalence.

We then have the following two corollaries, which follow from [SS97, Theorem
3.1].

Corollary 5.4.2. Suppose R is a monoid in the category of symmetric spectra.
Then there is a model structure on the category of R-modules where a map f : X −→
Y is a weak equivalence (fibration) if and only if the underlying map of symmetric
spectra is a stable equivalence (stable fibration). Moreover, if R is a commutative
monoid, then this is a monoidal model category satisfying the monoid axiom.

Corollary 5.4.3. Suppose R is a commutative monoid in the category of symmet-
ric spectra. Then there is a model structure on the category of R-algebras where
a homomorphism f : X −→ Y is a weak equivalence (fibration) if and only if the
underlying map of symmetric spectra is a stable equivalence (stable fibration). Any
cofibration of R-algebras whose source is cofibrant as an R-module is a cofibration
of R-modules.

Taking R = S gives a model structure on the category of monoids of symmetric
spectra, the symmetric ring spectra.

Proof of Theorem 5.4.1. Each map in K is a level cofibration and a stable equiv-
alence. This follows from parts (3) and (5) of Theorem 5.3.7 applied to an S-
cofibration and stable equivalence f and the level cofibration ∗ → X . Let Ω denote
the class of maps E → ∗, where E is an injective Ω-spectrum. By part (5) of
Corollary 5.3.9 and Proposition 3.1.4, Hom�(K, Ω) consists of level trivial fibra-
tions. Equivalently, (I, Hom�(K, Ω)) has the lifting property where I is the class
of stable cofibrations. Manipulations as in the proof of Proposition 5.3.4 show that
(I, Hom�(K-cof, Ω)) also has the lifting property, and so Hom�(K-cof, Ω) consists
of level trivial fibrations. In particular, this shows that maps in K-cof are stable
equivalences.

We now show that the model categories of modules and algebras are homotopy
invariant.

Lemma 5.4.4. Suppose R is a monoid in SpΣ, and M is cofibrant in the model
category of left R-modules. Then − ∧R M preserves level equivalences and stable
equivalences of R-modules.

Proof. This is the analogue of Corollary 5.3.10 for R-modules. It follows by proving
the analogue of Theorem 5.3.7 for R-modules.

Since S, the sphere spectrum, is cofibrant in SpΣ, Theorems 3.3 and 3.4 of [SS97]
now apply to give the following theorem.

Theorem 5.4.5. Suppose f : R −→ R′ is a stable equivalence of monoids of sym-
metric spectra. Then induction and restriction induce a Quillen equivalence from
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the model category of R-modules to the model category of R′-modules. If, in addi-
tion, R and R′ are commutative, then induction and restriction induce a Quillen
equivalence from the model category of R-algebras to the model category of R′-
algebras.

5.5. Proper model categories. In this section we recall the definition of a proper
model category and show that the stable model category of symmetric spectra is
proper.

Definition 5.5.1. (1) A model category is left proper if, for every pushout square

A
g−−−−→ B

f

y yh

X −−−−→ Y

with g a cofibration and f a weak equivalence, h is a weak equivalence.
(2) A model category is right proper if, for every pullback square

A −−−−→ B

h

y yf

X −−−−→
g

Y

with g a fibration and f a weak equivalence, h is a weak equivalence.
(3) A model category is proper if it is both left proper and right proper.

The category of simplicial sets is a proper model category [BF78] (see [Hir99] for
more details). Hence the category of pointed simplicial sets and both level model
structures on SpΣ are proper.

Theorem 5.5.2. The stable model category of symmetric spectra is proper.

Proof. Since every stable cofibration is a level cofibration, the stable model category
of symmetric spectra is left proper by part one of Lemma 5.5.3. Since every stable
fibration is a level fibration, the stable model category of symmetric spectra is right
proper by part two of Lemma 5.5.3.

Lemma 5.5.3. (1) Let

A
g−−−−→ B

f

y yh

X −−−−→ Y

be a pushout square with g a level cofibration and f a stable equivalence. Then
h is a stable equivalence.

(2) Let

A
k−−−−→ B

f

y yh

X −−−−→
g

Y

be a pullback square with g a level fibration and h a stable equivalence. Then
f is a stable equivalence.
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Proof. Part (1): Let E be an injective Ω-spectrum. Apply the functor MapSpΣ(−, E)
to the pushout square. The resulting commutative square

Map(A, E)
Map(g,E)←−−−−−− Map(B, E)

Map(f,E)

x xMap(h,E)

Map(X, E) ←−−−− Map(Y, E)

is a pullback square of pointed simplicial sets with Map(f, E) a weak equivalence, by
Proposition 3.1.4. We claim that Map(g, E) is a Kan fibration. Indeed, let k : E →
∗ denote the obvious map, and let c denote a trivial cofibration of pointed simplicial
sets. Then Map(g, E) = Map�(g, k). We must show that (c, Map�(g, k)) has the
lifting property. By Corollary 3.3.9, this is equivalent to showing that (c � g, k)
has the lifting property. But, by Proposition 1.3.4, c � g is a level equivalence and
a level cofibration. Since E is injective, it follows that (c � g, k) has the lifting
property, and so Map(g, E) is a Kan fibration. By properness for simplicial sets,
Map(h, E) is a weak equivalence. It follows that h is a stable equivalence.

Part (2): Let F be the fiber over the basepoint of the map g : X → Y . Since
k is a pullback of g, F is isomorphic to the fiber over the basepoint of the map
k : A → B. The maps X/F → Y , A/F → B and B → Y are stable equivalences;
so A/F → X/F is a stable equivalence. Consider the Barratt-Puppe sequence
(considered in the proof of Lemma 3.4.15)

F → A→ A/F → F ∧ S1 → A ∧ S1 → A/F ∧ S1 → F ∧ S2

and the analogous sequence for the pair (F, X). Given an injective Ω-spectrum E,
apply the functor E0(−), and note that E0(Z ∧ S1) ∼= π1 Map(Z, E) is naturally
a group. The five-lemma then implies that f ∧ S1 : A ∧ S1 −→ X ∧ S1 is a stable
equivalence. Part two of Theorem 3.1.14 shows that f is a stable equivalence.

5.6. Semistable spectra. In this section we consider a subcategory of symmetric
spectra called the semistable spectra. This subcategory sheds light on the differ-
ence between stable equivalences and stable homotopy equivalences of symmetric
spectra. As in Section 1.4, the stable homotopy category is equivalent to the ho-
motopy category of semistable spectra obtained by inverting the stable homotopy
equivalences. Semistable spectra also play a role in [Shi].

Because stable equivalences are not always stable homotopy equivalences, the
stable homotopy groups are not algebraic invariants of stable homotopy types. So
the stable homotopy groups of a spectrum may not be “correct”. For any symmetric
spectrum X , though, if there is a map from X to an Ω-spectrum which induces an
isomorphism in stable homotopy, then the stable homotopy groups of X are the
“correct” stable homotopy groups. In other words, these groups are isomorphic to
the stable homotopy groups of the stable fibrant replacement of X . Spectra with
this property are called semistable.

Let L denote a fibrant replacement functor in SpΣ, obtained by factoring X → ∗
into a stable trivial cofibration followed by a stable fibration, as in Section 4.2.

Definition 5.6.1. A semistable symmetric spectrum is one for which the stable
fibrant replacement map, X −→ LX , is a stable homotopy equivalence.

Of course X −→ LX is always a stable equivalence, but not all spectra are
semistable. For instance, F1S

1 is not semistable. Certainly any stably fibrant
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spectrum, i.e., an Ω-spectrum, is semistable. In Section 3.1 we defined the functor
R∞ and noted that, although it is similar to the standard Ω-spectrum construction
for (non-symmetric) spectra, it is not always an Ω-spectrum and X −→ R∞X is not
always a stable homotopy equivalence, even if X is level fibrant. Let K be a level
fibrant replacement functor, the prolongation of a fibrant replacement functor for
simplicial sets. The following proposition shows that on semistable spectra R∞K
does have these expected properties.

Proposition 5.6.2. The following are equivalent.

(1) The symmetric spectrum X is semistable.
(2) The map X −→ RKX = Hom(F1S

1, KX) is a stable homotopy equivalence.
(3) X −→ R∞KX is a stable homotopy equivalence.
(4) R∞KX is an Ω-spectrum.

Before proving this proposition we need the following lemma.

Lemma 5.6.3. Let X ∈ SpΣ. Then πk(R∞KX)n and πk+1(R∞KX)n+1 are iso-
morphic groups, and iR∞KX : (R∞KX)n → Hom(F1S

1, R∞KX)n+1 induces a
monomorphism πk(R∞KX)n −→ πk+1(R∞KX)n+1.

Proof. As noted in the proof of Theorem 3.1.11, πk(R∞KX)n and πk+1(R∞KX)n+1

are isomorphic to the (k−n)th classical stable homotopy group of X . However, the
map πkiR∞KX need not be an isomorphism. Indeed, πkiR∞KX is the map induced
on the colimit by the vertical maps in the diagram

πkXn −−−−→ πk+1Xn+1 −−−−→ πk+2Xn+2 −−−−→ · · ·y y y
πk+1Xn+1 −−−−→ πk+2Xn+2 −−−−→ πk+3Xn+3 −−−−→ · · ·

where the vertical maps are not the same as the horizontal maps, but differ from
them by isomorphisms. The induced map on the colimit is injective in such a
situation, though not necessarily surjective. For an example of this phenomenon,
note that we could have πkXn

∼= Zn−k, with the horizontal maps being the usual
inclusions, but the vertical maps begin the inclusions that take (x1, . . . , xn−k) to
(0, x1, x2, . . . , xn−k). Then the element (1, 0, . . . , 0, . . . ) of the colimit is not in the
image of the colimit of the vertical maps.

Proof of Proposition 5.6.2. First we show that (1) implies (2) by using the following
diagram:

X −−−−→ Hom(F1S
1, KX)y y

LX −−−−→ Hom(F1S
1, KLX)

Since Hom(F1S
1, K(−)) preserves stable homotopy equivalences, both vertical ar-

rows are stable homotopy equivalences. The bottom map is a level equivalence since
LX is an Ω-spectrum. Hence the top map is also a stable homotopy equivalence.

Also, (2) easily implies (3). Since Hom(F1S
1, K(−)) preserves stable homotopy

equivalences, X → R∞KX is a colimit of stable homotopy equivalences provided
X → Hom(F1S

1, KX) is a stable homotopy equivalence.
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Next we show that (3) and (4) are equivalent. The map π∗X → π∗R∞KX factors
as π∗X → π∗(R∞KX)0 → π∗R∞KX where the first map here is an isomorphism
by definition. Then by Lemma 5.6.3 we see that π∗(R∞KX)0 → π∗R∞KX is an
isomorphism if and only if π∗(R∞KX)n → π∗+1(R∞KX)n+1 is an isomorphism
for each n.

To see that (3) implies (1), consider the following diagram:

X −−−−→ LXy y
R∞KX −−−−→ R∞KLX

By (3) and (4) the left arrow is a stable homotopy equivalence to an Ω-spectrum,
R∞KX . Since LX is an Ω-spectrum the right arrow is a level equivalence. Since
X → LX is a stable equivalence, the bottom map must also be a stable equivalence.
But a stable equivalence between Ω-spectra is a level equivalence, so the bottom
map is a level equivalence. Hence the top map is a stable homotopy equivalence.

Two classes of semistable spectra are described in the following proposition. The
second class includes the connective and convergent spectra.

Proposition 5.6.4. (1) If the classical stable homotopy groups of X are all fi-
nite, then X is semistable.

(2) Suppose that X is a level fibrant symmetric spectrum and there exists some
α > 1 such that Xn −→ ΩXn+1 induces an isomorphism πkXn −→ πk+1Xn+1

for all k ≤ αn for sufficiently large n. Then X is semistable.

Proof. By Lemma 5.6.3, πk(R∞KX)n → πk+1(R∞KX)n+1 is a monomorphism
between two groups which are isomorphic. In the first case these groups are finite,
so this map must be an isomorphism. Hence R∞KX is an Ω-spectrum, so X is
semistable.

For the second part we also show that R∞KX is an Ω-spectrum. Since for fixed k
the maps πk+iXn+i → πk+1+iXn+1+i are isomorphisms for large i, πk(R∞KX)n →
πk+1(R∞KX)n+1 is an isomorphism for each k and n.

The next proposition shows that stable equivalences between semistable spectra
are particularly easy to understand.

Proposition 5.6.5. Let f : X −→ Y be a map between two semistable symmet-
ric spectra. Then f is a stable equivalence if and only if it is a stable homotopy
equivalence.

Proof. Every stable homotopy equivalence is a stable equivalence by Theorem 3.1.11.
Conversely, if f is a stable equivalence, so is Lf . Since stable equivalences between
stably fibrant objects are level equivalences by Lemma 4.2.6, Lf is in particular a
stable homotopy equivalence. Since X and Y are semistable, both maps X → LX
and Y → LY are stable homotopy equivalences. Hence f is a stable homotopy
equivalence.
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