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Abstract. We discuss an analogue of Morita theory for ring spectra, a thick-

ening of the category of rings inspired by stable homotopy theory. This follows

work by Rickard and Keller on Morita theory for derived categories. We also
discuss two results for derived equivalences of DGAs which show they differ

from derived equivalences of rings.

1. Introduction

Although the usual paradigm in algebraic topology is to translate topological
problems into algebraic ones, here we discuss the translation of algebra into topol-
ogy. Specifically, we discuss an analogue of Morita theory for a thickening of the
category of rings inspired by stable homotopy theory. Here rings in the classical
sense correspond to ordinary cohomology theories, whereas “rings up to homo-
topy” correspond to generalized cohomology theories. Although these generalized
rings have a considerable history behind them, only recent progress has allowed the
wholesale transport of algebraic methods into this domain.

The topological analogue of Morita theory is very similar to the following two
algebraic versions. To emphasize this similarity we delay discussion of the technical
terminology used in these algebraic statements. We include the third condition
below since it is the most familiar criterion for classical Morita equivalences, but
we concentrate on the equivalence of the first two conditions in the other contexts.

Theorem 1.1. Two rings R and R′ are Morita equivalent if the following equivalent
conditions hold.

(1) The categories of right modules over R and R′ are equivalent.
(2) There is a finitely generated projective (strong) generator M in Mod-R′

such that the endomorphism ring homR′(M,M) is isomorphic to R.
(3) There is an R-R′ bimodule N such that −⊗R N : Mod-R −→ Mod-R′ is an

equivalence of categories.

Next we state a reformulation from [DS1] of Rickard’s characterization of equiv-
alences of derived categories [R1, R2]; see also [Ke1, 9.2].

Theorem 1.2. Two rings R and R′ are derived equivalent if the following equiv-
alent conditions hold.

(1) The unbounded derived categories of R and R′ are triangulated equivalent.
(2) There is a compact generator M of D(R′) such that the graded endomor-

phism ring in the derived category, D(R′)(M,M)∗, is isomorphic to R (con-
centrated in degree zero).
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If M satisfies the conditions in (2), it is called a tilting complex.

For the analogue in stable homotopy theory, one must make the appropriate
changes in terminology. The real difference lies in the meaning of “ring” and “equiv-
alence”; we devote a section below to defining each of these terms. In Section 2 we
introduce “abelian groups up to homotopy” or spectra and the associated “rings up
to homotopy” or ring spectra. Although spectra are the main object of study in sta-
ble homotopy theory and have been studied for almost forty years, only recent work
has made the definitions of ring spectra easily accessible. In Section 3 we consider
a notion of “up to homotopy” equivalences of categories, or Quillen equivalences.
Here “homotopy” is determined by defining Quillen model structures on the rele-
vant categories. This extra structure allows one to apply standard techniques of
homotopy theory in non-standard settings.

Theorem 1.3. [SS2, DS3] The following two statements are equivalent for ring
spectra R and R′.

(1) The Quillen model categories of R-module spectra and R′-module spectra
are Quillen equivalent.

(2) There is a compact generator M in Ho(R′-modules) such that the derived
endomorphism ring spectrum HomR′(M,M) is weakly equivalent to R.

The proofs of these three statements basically have the same format. In each
situation, one can prove that (1) implies (2) by noting that the image of R under
the given equivalence has the properties required of M . For (2) implies (1), the
conditions on M are exactly what is needed to show that the appropriate analogue
of homR′(M,−) induces the necessary equivalence. For example, in the classical
statement one asks that M is a finitely generated projective module to ensure that
homR′(M,−) preserves sums (and is exact). In a triangulated category T , M is
compact if T (M,−) preserves sums. (For example, in D(R) a bounded complex
of finitely generated projectives is compact [BN] and conversely [Ke1, 5.3], [Ne1].)
Also, if M is compact then it is a (weak) generator of T if it detects trivial objects;
that is, an object X of T is trivial if and only if there are no graded maps from
M to X, T (M,X)∗ = 0. (For triangulated categories with infinite coproducts this
is shown to be equivalent to the more common definition of a generator in [SS2,
2.2.1].) See [Sch3] for a more detailed survey developing the three theorems above.

The topological analogue of Morita theory has had many applications in stable
homotopy theory, see Remark 3.5, but here we discuss some algebraic applications.
In the last two sections of this paper we discuss results for derived equivalences
of rings and differential graded algebras. The first of these results shows that any
derived equivalence of rings lifts to the stronger “up to homotopy” equivalence men-
tioned above; see Theorem 4.1. As a consequence, all possible homotopy invariants
are preserved by derived equivalences of rings, including algebraic K-theory; see
Corollary 4.2. The next results show that this is not the case for differential graded
algebras. Example 4.5 produces two DGAs whose derived categories are equivalent
as triangulated categories but which have non-isomorphic K-theories. In Section 5
we also give an explicit example of a derived equivalence of differential graded al-
gebras that does not arise from an algebraic tilting complex. Instead there is a
topological tilting spectrum which comes from considering DGAs as examples of
ring spectra.
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2. Spectral Algebra

Before considering “rings up to homotopy” we must consider “abelian groups up
to homotopy”. The analogue of an abelian group here is a spectrum. Each spectrum
corresponds to a generalized cohomology theory. For example, the Eilenberg-Mac
Lane spectrum HA is associated with ordinary cohomology with coefficients in the
abelian group A. Another well-known cohomology theory is complex K-theory;
K∗(X) basically classifies the complex vector bundles on X and the associated
spectrum is denoted K. The analogue of a ring is then a generalized cohomology
theory with a product. Both HA and K are ring spectra; the associated products
are the cup product and the product induced by the tensor product of vector
bundles.

At a first approximation, a spectrum is a sequence of pointed spaces. Each of
these spaces represents one degree of the cohomology theory; for example Hn(X;A),
the nth ordinary cohomology of a space X, is isomorphic to homotopy classes of
maps from X with a disjoint base point added to K(A,n), denoted [X+,K(A,n)].
Here K(A,n) is the Eilenberg-Mac Lane space whose homotopy type is determined
by having homotopy concentrated in degree n, πnK(A,n) = A; for example, K(Z, 1)
is the circle S1. Complex K-theory is represented by the infinite unitary group U
in odd degrees and by the classifying space cross the integers, BU × Z, in even
degrees.

One needs additional structure on a sequence of pointed spaces though to make
sure the associated homology theory satisfies the Eilenberg-Steenrod axioms for a
homology theory. (Note that since we are considering generalized homology theories
here we remove the dimension axiom.) To introduce this structure we need the
following pointed version of the Cartesian product of spaces. The smash product
should be thought of as an analogue of the tensor product in algebra; here the base
point acts like a zero element.

Definition 2.1. The smash product X ∧ Y of two pointed spaces X and Y with
base points ptX and ptY is given by X ∧ Y = X × Y/(X × ptY ) ∪ (ptX × Y ). The
suspension of a pointed space X, ΣX is defined by S1 ∧X.

Finally we give the formal definition of a spectrum.

Definition 2.2. A spectrum Y is a sequence of pointed spaces (Y1, Y2, · · · , Yn, · · · )
with structure maps ΣYn −→ Yn+1. A map of spectra f : Y −→ Z is given by a
sequence of maps fn : Yn −→ Zn which commute with the structure maps.

Given any pointed space X, there is an associated suspension spectrum Σ∞X
given by (X, ΣX, Σ2X, · · · ). A particularly important example is the sphere spec-
trum, S = Σ∞S0 given by (S0, S1, S2, · · · ) since the suspension of the n-sphere is
the n + 1-sphere.
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We should mention here that in general the association of a cohomology theory
to a spectrum Y is not as simple as the formula given for HA and K. We explain
this point in Remark 3.2.

As mentioned above, a ring spectrum is a spectrum associated to a generalized
cohomology theory with a product. Ordinary cohomology theory with coefficients
in a ring R has such a product given by the cup product Hp(X;R)⊗Hq(X;R) −→
Hp+q(X;R). This product is induced by a compatible family of maps on the
associated spaces: K(R, p) ∧ K(R, q) −→ K(R, p + q). Basically then, a ring
spectrum R is a spectrum with compatibly associative and unital products Rp ∧
Rq −→ Rp+q. The unital condition here ensures that these products interact in
a compatible way with the suspension structure as well. Unfortunately, although
this simple outline is a good beginning for the definition of ring spectra, no one has
actually been able to finish it in a way that captures the objects we actually care
about.

One wants to define a smash product on the category of spectra which acts like
a tensor product, that is, is a symmetric monoidal product. Then the ring spectra
would be spectra R with an associative and unital product map R∧R −→ R. The
problem here is that one must choose a sequence of spaces to define a spectrum
R ∧ R from among the two-dimensional array of spaces Rp ∧ Rq. Boardman gave
the first approximation to defining such a smash product; his version is only com-
mutative and associative up to homotopy [Bo]; see also [Ad, III]. Using this smash
product one can instead consider A∞ or E∞ ring spectra, which are associative
or commutative rings up to all higher homotopies [Ma2]. These definitions are
cumbersome in comparison to the algebraic analogues though.

In 1991, Gaunce Lewis published a paper which seemed to imply that these def-
initions were as good as could be [Le]. He showed that no smash product exists
which satisfies five reasonable axioms. One of his axioms was that the smash prod-
uct is strictly commutative and associative; the other axioms asked for reasonable
relationships between the smash product for spectra and the smash product for
spaces.

Luckily, it turns out that Lewis’ axioms were just a bit too strong. In the last
few years, several new ways of defining categories of spectra with a good smash
product have been discovered. In these categories the smash product acts like a
tensor product and the usual algebraic definitions capture the correct notion of
ring, algebra and module spectra. This has made it possible to really do algebra in
the setting of stable homotopy theory.

Rather than give an overview of the different categories and products that have
been defined, we concentrate on the one version, symmetric spectra, which has
proved most useful for comparisons with algebra. The definitions for symmetric
spectra are also the closest to the simple approximate definitions above. Because
the different models for spectra all agree ‘up to homotopy’, in a way we discuss in
Remark 3.4, one can always choose to use whichever category is most convenient
to the problem at hand.
Definition 2.3. [HSS] A symmetric sequence is a sequence of pointed spaces,
(X1, X2, · · · ), with an action of Σn, the nth symmetric group, on Xn, the nth
space. For two symmetric sequences X and Y , define X ⊗ Y as the sequence with
(X ⊗ Y )n =

∨
p+q=n Σn ∧Σp×Σq (Xp ∧ Yq).
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The suspension spectra introduced above are examples of symmetric sequences
with the symmetric action taking place on the suspension coordinates. That is,
ΣnX = S1 ∧ S1 · · ·S1 ∧ X and the copies of S1 are permuted. In particular, the
sequence of spheres, S, is a commutative ring under this product; specifically, there
is an associative, commutative and unital map S⊗S −→ S induced by the Σp×Σq-
equivariant maps Sp ∧ Sq −→ Sp+q. Here we define Sn = (S1)∧n = S1 ∧ S1 · · ·S1.
Definition 2.4. [HSS] A symmetric spectrum is a module over the commutative
ring S in the category of symmetric sequences. This module structure on a sym-
metric sequence X is determined by an associative and unital map αX : S⊗X −→
X. Unraveling this further, a symmetric spectrum X is a symmetric sequence
(X1, X2, · · · ) with compatible Σp × Σq-equivariant maps Sp ∧ Xq −→ Xp+q. The
smash product X ∧ Y = X ⊗S Y is the coequalizer of the two maps 1⊗αY , αX ⊗ 1
from X ⊗ S ⊗ Y to X ⊗ Y . Similarly, a symmetric ring spectrum is an S-algebra;
specifically, a symmetric ring spectrum R is a symmetric sequence with compatible
unit map η : S −→ R and associative multiplication map µ : R⊗R −→ R.

The components of the multiplication map for a symmetric ring spectrum R
are Σp × Σq equivariant maps Rp ∧ Rq −→ Rp+q. For the rest of this article we
shorten “symmetric ring spectrum” to just “ring spectrum”; in particular, note
that a commutative symmetric ring spectrum would have the added condition that
µτ = µ where τ is the twist map on R ∧R. For R a (commutative) ring spectrum,
the definitions of R-modules and R-algebras follow similarly.

The Eilenberg-Mac Lane spectrum HR for R any classical ring plays an impor-
tant role in this paper. Since we want HR to be a ring spectrum (commutative if
R is), we need to be careful about our choice of the spaces K(R,n). It is easiest
to define K(R,n) as a simplicial set and then take its geometric realization if we
want to work with topological spaces; see [GJ, Ma1]. (Actually, throughout this
paper “space” can be taken to mean either simplicial set or topological space.) De-
fine the simplicial set S1 to be ∆[1]/∂∆[1], the one-simplex with its two endpoints
identified. Then define HRn = K(R,n) to be the simplicial set which in level k is
the free R-module with basis the non-basepoint k-simplices of Sn = (S1)∧n [HSS,
1.2.5].

3. Quillen model categories

In algebra one considers derived categories; given an abelian category A, the
derived category of A, D(A), is the localization obtained from the category Ch(A)
of (unbounded) chain complexes in A by inverting the quasi-isomorphisms, or maps
which induce isomorphisms in homology. The analogues in homotopy theory are
homotopy categories; beginning with a category C and a notion of weak equivalence
the homotopy category Ho(C) is obtained by inverting the weak equivalences. By re-
quiring more structure on C, namely a Quillen model structure, one can avoid the set
theoretic difficulties which exist when inverting a general class of morphisms. This
extra structure also enables the application of standard techniques of homotopy
theory and captures more homotopical information than the homotopy category
alone; see Section 5 for an example of two non-Quillen equivalent model categories
with equivalent homotopy categories.

A Quillen model category is a category C with three distinguished types of maps
called weak equivalences, cofibrations and fibrations which satisfy the five axioms
below [Q]. A modern variation on these axioms appears in [Ho], and [DwSp] is a
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very good, short introduction to model categories. It may be useful when reading
these axioms to keep a couple of archetypal examples in mind. The category of
bounded below chain complexes of R-modules Ch+(R), is a Quillen model category
with weak equivalences the quasi-isomorphisms, cofibrations the injections with
levelwise projective cokernels and fibrations the surjections. Similarly, Ch+(R)
with the same weak equivalences, cofibrations the injections and fibrations the
surjections with levelwise injective kernels is also a Quillen model category. These
structures can both be extended to the category of unbounded chain complexes
but the cofibrations in the first (projective) case and the fibrations in the second
(injective) case are less explicitly defined [Ho]. The homotopy categories associated
to these model categories are equal (as triangulated categories) to the corresponding
(bounded or unbounded) variants of the derived category of R; see [We, 10.3.2].
Axioms 3.1. [Q] Axioms for a Quillen model category.

(1) C admits all finite limits and colimits.
(2) If two out of three of f, g and gf are weak equivalences, so is the third.
(3) Cofibrations, fibrations and weak equivalences are closed under retract.
(4) Any map f may be factored in two ways: f = pi with i a cofibration and p

a fibration and a weak equivalence (a trivial fibration), and f = qj with j
a cofibration and weak equivalence (a trivial cofibration) and q a fibration.

(5) Given a commuting square

A //

��

X

��
B // Y

with A −→ B a cofibration and X −→ Y a fibration, then a morphism
B −→ X making both triangles commute exists if either of the two vertical
maps is a weak equivalence.

Remark 3.2. To give some feel for working with a model category, note that in
the projective model category on Ch+(R) the first factorization mentioned in (4)
above applied to a map 0 −→ M (with M an R-module concentrated in degree
zero) produces a projective resolution of M . Similarly, the second factorization
produces injective resolutions in the injective model category on Ch+(R).

Also, the formula mentioned above for associating a cohomology theory to a
spectrum works only for fibrant spectra. An object in a model category is fibrant
if the map Y −→ ∗ is a fibration, where ∗ is the terminal object. In the standard
model category structures on both symmetric spectra and the category of spectra in
Definition 2.2, it turns out that Y is fibrant if and only if Yn −→ map∗(S1, Yn+1) =
ΩYn+1 is a weak equivalence of spaces where this map is adjoint to the map ΣYn −→
Yn+1. Thus, for Y fibrant [X, Yn] ∼= [X, ΩYn+1] ∼= [ΣX, Yn+1]; this corresponds to
the fact that for any cohomology theory the cohomology group in degree n + 1
of ΣX agrees with the nth cohomology group of X. A weakly equivalent fibrant
replacement always exists due to axiom (4); one factors the map Y −→ ∗ as Y −→
Y f −→ ∗ with Y −→ Y f a weak equivalence and Y f −→ ∗ a fibration. Then,
for a general spectrum Y , the associated cohomology theory is given by homotopy
classes of maps into the levels of Y f .

We also have the following notion of equivalence between model categories.
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Definition 3.3. [Q, Ho] A Quillen adjunction between two Quillen model cate-
gories C and D is given by an adjoint pair of functors L : C � D : R where the left
adjoint, L, preserves cofibrations and the right adjoint, R, preserves fibrations. It
follows that L also preserves trivial cofibrations and R preserves trivial fibrations.
Under these conditions the adjoint functors induce adjoint derived functors on the
homotopy categories L̄ : Ho C � HoD : R̄. This pair is a Quillen equivalence if L̄
and R̄ form an equivalence of categories between Ho C and HoD. Two model cat-
egories are said to be Quillen equivalent if there is a string of Quillen equivalences
between them.

We call all of the homotopical information associated to a Quillen model struc-
ture a homotopy theory. For example, the identity functors between the projective
and injective model categories defined above on Ch+(R) form a Quillen equivalence.
That is, the projective and injective model categories define the same homotopy
theory, which encompasses the homological algebra associated with R.

Remark 3.4. The category of spectra in Definition 2.2 [BF], the category of sym-
metric spectra [HSS] and all of the other new categories of spectra [EKMM, Ly1,
Ly2, MMSS] have Quillen equivalent model structures [MMSS, Sch1]. Moreover,
the associated categories of rings, modules and algebras are also Quillen equiva-
lent. This is the sense referred to in Section 2 in which these models all agree
‘up to homotopy’; since Quillen equivalent model structures define the same homo-
topy theory, any homotopically invariant statement about one model applies to the
others as well.

These models for spectra actually define stable homotopy theories; that is, the-
ories where suspension is invertible in the homotopy category. Suspension corre-
sponds to shifting the spaces in a spectrum down by one; this is easiest to see with
suspension spectra. One can show that up to homotopy this functor is invertible
with inverse given by shifting up by one. The category Ch(R) is another example
of a stable homotopy theory; again suspension and desuspension are homotopic
to shifting. The homotopy category associated to a stable homotopy theory is a
triangulated category [Ho, 7.1.6]; the triangles are given by the homotopy fiber
sequences (which can be shown to agree with the homotopy cofiber sequences). In
particular, Quillen equivalences between stable model categories induce triangu-
lated equivalences on the homotopy categories.

We end this section with two remarks related to Theorem 1.3 and Quillen equiv-
alences.

Remark 3.5. There have been many applications of variations of Theorem 1.3 in
stable homotopy theory. A variation on this theorem shows that any stable model
category with a compact generator is Quillen equivalent to modules over a ring
spectrum [SS2]. This shows that many homotopical settings can be translated into
settings in spectral algebra. Applications of this variation include various charac-
terizations of the stable homotopy theory of spectra [SS3, Sh1, Sch2]. Since any
rational ring spectrum is an HQ-algebra, combining this theorem with Theorem 4.3
gives algebraic models for any rational stable homotopy theory [Sh3]. This is used
in [Sh2, GS] to form practical algebraic models for rational torus-equivariant spectra
for tori of any dimension.
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Remark 3.6. In [SS2] condition (1) of Theorem 1.3 actually requires that the
functors involved in the Quillen equivalences preserve the enrichment of these mod-
ule categories over spectra. In [DS3] we show that this requirement is not actually
necessary by using ideas similar to those in [Du1, Du2].

4. Differential graded algebras

In the rest of this paper we explore some results which lie between the Morita
theory for derived categories of rings and the Morita theory for ring spectra.

First, we consider the overlap between Theorems 1.2 and 1.3. Both of these the-
orems apply to rings since there is an Eilenberg-Mac Lane ring spectrum associated
to any ring. Then we extend the association between spectra and classical alge-
braic objects to differential graded rings, modules and algebras and their associated
homotopy theories. This shows that the category of DGAs lies between rings and
ring spectra. Finally, we discuss the Morita theory of DGAs.

Since any Quillen equivalence induces an equivalence on the homotopy (or de-
rived) categories, Theorem 1.3 may seem to give a stronger result for ring spectra
than Theorem 1.2 does for rings. Theorem 1.3, however, has a stronger hypothesis
on the endomorphism ring of the generator since the weak equivalence type of a
ring spectrum is a finer invariant in general than the homotopy ring. (Here the
graded ring of homotopy groups of HomR′(M,M) is isomorphic to the graded ring
of endomorphisms of M in Ho(R′-modules).) When that homotopy is concentrated
in degree zero though, the weak equivalence type of a ring spectrum is determined
by its homotopy. Thus, for an Eilenberg-Mac Lane spectrum the conditions on the
generator in the two theorems are equivalent. From this one can show that for rings
the notions of Quillen equivalence and derived equivalence actually agree.

Theorem 4.1. [DS1] For two rings R and R′ the following are equivalent.
(1) The derived categories D(R) and D(R′) are triangulated equivalent.
(2) Ch(R) and Ch(R′) are Quillen equivalent model categories.
(3) There is a compact generator M in D(R′) such that the graded endomor-

phism ring in the derived category D(R′)(M,M)∗ is isomorphic to R.

This is one case where the homotopy (or derived) category actually determines
the whole homotopy theory. For this reason, one expects a derived equivalence
between two rings to induce an isomorphism on any homotopy invariant of rings.
For example, Hochschild homology and cyclic homology have been shown to be
invariants of derived equivalences [R1, R2, Ke2]; see also [Ke3]. One can also show
that a Quillen equivalence preserves algebraic K-theory. We have the following
result. For regular rings this can also be derived from Neeman’s work on the K-
theory of abelian categories [Ne2, Ne3, Ne4, Ne5, Ne6]; this result also appears
in [DG] with flatness conditions.

Corollary 4.2. [DS1] If D(R) and D(R′) are triangulated equivalent, then K∗(R) ∼=
K∗(R′).

Just as the Eilenberg-Mac Lane ring spectrum HR represents ordinary cohomol-
ogy with coefficients in R, there is a ring spectrum HA associated to hypercoho-
mology with coefficients in a DGA A. Here H is defined as a composite of several
functors, so we do not define it explicitly for DGAs. In fact H induces a Quillen
equivalence between HZ-algebras and DGAs. The following statement collects the
various related results. For the relevant Quillen model structures, see [HSS, SS1].
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Theorem 4.3. (1) [SS2, Ro] For any classical ring R, the model categories of
Ch(R) and HR-modules are Quillen equivalent.

(2) [Sh3] The model categories of differential graded algebras and HZ-algebras
are Quillen equivalent.

(3) [Sh3] For any DGA A, the model categories of differential graded A-modules
and HA-modules are Quillen equivalent.

Using this theorem to consider DGAs as lying between rings and ring spectra,
one might conjecture that there is an intermediary Morita theory for DGAs similar
to Theorem 4.1 for rings. The homology ring, however, does not determine the
quasi-isomorphism type for a DGA; for example, a non-formal DGA is not quasi-
isomorphic to its homology (see Section 5 for an example). Thus, a Morita theorem
for DGAs must require a condition on the quasi-isomorphism type of the derived
endomorphism DGA of a generator rather than just its homology. (Here the derived
endomorphism DGA is an analogue of the derived endomorphism ring spectrum.)
This leads to the following question.

Question 4.4. For two DGAs A and B, are the following equivalent?
(1) D(A) is triangulated equivalent to D(B).
(2) The model categories of differential graded modules over A and B are

Quillen equivalent.
(3) There is a compact generator M in D(A) whose derived endomorphism

DGA is quasi-isomorphic to B.

If a generator M exists which satisfies (3), then one can show that the model
categories of differential graded modules over A and B are Quillen equivalent and
hence D(A) and D(B) are triangulated equivalent. In fact this follows from Theo-
rems 4.3 and 1.3 by considering the DGAs as examples of ring spectra and replacing
differential graded modules by module spectra. Hence, indeed (3) implies (2) im-
plies (1). The other implications fail though. In Example 4.5 below we give an
example of a derived equivalence with no underlying Quillen equivalence; so (1)
does not imply (2). In Section 5 below we’ll also give an example of a Quillen
equivalence between DGAs with no generator satisfying (3); so (2) does not imply
(3). This example arises from considering DGAs as special examples of ring spectra.

Example 4.5. There are two DGAs A and B whose derived categories are equiv-
alent even though the associated model categories of differential graded modules
are not Quillen equivalent. In particular, Corollary 4.2 does not extend to DGAs
because A and B have non-isomorphic K-theories. This example is based on Marco
Schlichting’s work in [Schl] which shows that for p > 3 the stable module categories
over (Z/p)[ε]/ε2 and Z/p2 are triangulated equivalent but the associated K-theories
are not isomorphic.
Proposition 4.6. [DS2] The model category underlying each of these stable module
categories is Quillen equivalent to a category of differential graded modules over a
DGA.

Stmod((Z/p)[ε]/ε2) 'Quillen d. g.Mod- A

Stmod(Z/p2) 'Quillen d. g.Mod- B

For the dual numbers, the DGA A is Z/p[x, x−1], a polynomial algebra on a class
in degree one and its inverse with trivial differential. Let k = Z[x, x−1], a similarly
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graded polynomial algebra over Z. For Z/p2, the DGA B is generated over k by
a class e in degree one with the relations that e2 = 0, ex + xe = x2, de = p and
dx = 0. Here A and B are the endomorphism DGAs of the Tate resolution of a
generator (Z/p) of the respective stable module categories [DS2]; see [Ke1, 4.3] for
a related general statement.

Because the stable module categories are triangulated equivalent, it follows that
D(A) andD(B) are also equivalent. Since Quillen equivalences induce isomorphisms
in K-theory [DS1], Schlichting’s work showing the stable module categories’ K-
theories are non-isomorphic implies that the model categories underlying the stable
module categories are not Quillen equivalent. Hence the differential graded modules
over A and B are not Quillen equivalent, either.

5. Two topologically equivalent DGAs

As mentioned above, in this section we discuss an example from [DS3] of two
DGAs A and B with Quillen equivalent categories of differential graded modules
where there is no generator satisfying the properties listed in Question 4.4. This
example arises from replacing the DGAs by their associated HZ-algebras HA and
HB. One can then forget the HZ-algebra structure and consider them as ring
spectra, or S-algebras. Since some structure has been forgotten it is reasonable
to expect that there are more maps and equivalences between HA and HB as
S-algebras than between the DGAs A and B. This leads to the following definition.

Definition 5.1. Two DGAs A and B are topologically equivalent if their associated
HZ-algebras HA and HB are equivalent as ring spectra (S-algebras).

Quasi-isomorphic DGAs are topologically equivalent as well, but the converse
does not hold. Below we give an example of two DGAs A and A′ which are topo-
logically equivalent but not quasi-isomorphic. Moreover we show that these two
DGAs have equivalent derived categories even though there is no compact genera-
tor in D(A′) whose derived endomorphism DGA is quasi-isomorphic to A. In fact,
any two topologically equivalent DGAs have equivalent derived categories.

Theorem 5.2. If A and B are topologically equivalent DGAs then D(A) is tri-
angulated equivalent to D(B.). Moreover, the associated categories of differential
graded modules are Quillen equivalent.

This is based on the following.

Corollary 5.3. If R −→ R′ is a weak equivalence of ring spectra, then the model
categories of R-module spectra and R′-module spectra are Quillen equivalent.

This follows from Theorem 1.3 by taking R′ as the compact generator required
in condition (2) since HomR′(R′, R′) = R′ is weakly equivalent to R. Although this
is stated as a corollary here, it is actually an ingredient in the proof of Theorem 1.3.

Proof of Theorem 5.2. By Theorem 4.3 differential graded modules over A and
module spectra over HA are Quillen equivalent and the same is true for B and
HB. Then Corollary 5.3 provides the bridge between these pairs showing that
HA-module spectra and HB-module spectra are Quillen equivalent since HA and
HB are weakly equivalent. Since Quillen equivalences between stable model cat-
egories induce triangulated equivalences on the homotopy (or derived) categories,
the first statement follows from the second. �
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Now we introduce the two DGAs from [DS3] which are topologically equivalent
but not quasi-isomorphic. The first DGA we consider is a truncated polynomial
ring over the integers on a class in degree one, A = Z[e]/(e4), with d(e) = 2. Note
that A is not graded commutative, since e2 is not trivial. Since d(e2) = 0 and
d(e3) = 2e2, the homology of A is an exterior algebra over Z/2 on a class in degree
2. Let A′ = H∗A = ΛZ/2(α2), with trivial differential.

One can show that A and A′ are not quasi-isomorphic. In fact, A is not quasi-
isomorphic to any DGA over Z/2. In particular, there are no maps from Z/2,
thought of as a DGA concentrated in degree zero, to A even up to homotopy;
that is, [Z/2, A] = 0 in the homotopy category of associative DGAs. On the other
hand, any DGA over Z/2 would have a unit map to it from Z/2. To calculate that
[Z/2, A] = 0, one replaces Z/2 by a quasi-isomorphic free associative DGA over Z
and shows that there are no maps from it to A. In low degrees, one possibility for
this replacement begins with a generator x in degree one with dx = 2, a generator
y in degree three with dy = x2 and other generators in degree four or higher.

This also shows that there is no compact generator M in D(A′) whose derived
endomorphism DGA is quasi-isomorphic to A. Since A′ is a DGA over Z/2, all of the
homomorphism groups between differential graded A′ modules are naturally Z/2
vector spaces. It follows that the derived endomorphism DGA of any differential
graded A′ module would also be a DGA over Z/2, so this endomorphism DGA
cannot be quasi-isomorphic to A. Once we show that A and A′ are topologically
equivalent, A and A′ give a counter example to the equivalence of conditions (2)
and (3) in Question 4.4 by Theorem 5.2.

We use topological Hochschild cohomology, THH∗, to show that the associated
ring spectra HA and HA′ are weakly equivalent, or A and A′ are topologically
equivalent. This is the analogue of Hochschild cohomology, HH∗, for spectral
algebra. For a ring R and an R-bimodule M , DGAs with non-zero homology
H0 = R and Hn = M are classified by HHn+2

Z (R;M). Similarly, ring spectra with
non-zero homotopy π0 = R and πn = M are classified by THHn+2

S (HR;HM) [La].
For R a k-algebra and M an R-bimodule over k, HH∗

k(R;M), is calculated as
the derived bimodule homomorphisms from R to M over the derived tensor product
R⊗kRop. In the case where k is a field, it is not necessary to derive the tensor
product R ⊗k Rop so this extra wrinkle is often suppressed. As an example, one
can calculate that Z/2⊗ZZ/2 is quasi-isomorphic to the exterior algebra ΛZ/2(x1),
so HH∗

Z(Z/2; Z/2) = ExtΛZ/2(x1)(Z/2, Z/2) = Z/2[σ2].
THH∗ is defined similarly, by considering maps of bimodule spectra. In partic-

ular, THH∗
HZ(HR;HM) = HH∗

Z(R,M), although THH∗ can be considered over
any ring spectrum. Here we need to consider THH∗

S (HZ/2,HZ/2); by [FLS], this
is ΓZ/2[τ2], a divided power algebra over Z/2 which is isomorphic to an exterior
algebra over Z/2 on classes ei for i ≥ 1 with ei in degree 2i.

The unit map S −→ HZ induces a map

Φ : HH∗
Z(Z/2, Z/2) −→ THH∗

S (HZ/2,HZ/2).

The two elements in HH2 classify the two rings Z/4 and Z/2 ⊕ Z/2. Since the
associated Eilenberg-Mac Lane ring spectra are also distinct, Φ must be injective
in degree two; hence Φ(σ) = τ . Since A and A′ are not quasi-isomorphic, one can
check that σ2 and 0 in HH4 correspond respectively to A and A′. Since τ2 = 0 and
Φ is a ring homomorphism, Φ(σ2) = 0. So HA and HA′ correspond to the same
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homotopy type as ring spectra; that is, HA and HA′ are weakly equivalent and A
and A′ are topologically equivalent.
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