Math 294 Week 12

$4 / 9 / 2019$ or $4 / 11 / 2019$

Given sets X and Y, we have the following relations:
Definition. We say that $X \subseteq Y$ if every element in X is also in Y.
Definition. We say that $X=Y$ if $X \subseteq Y$ and $Y \subseteq X$.
Definition. We also have the following set theoretic operations:

1. $X \cup Y=\{a: a \in X$ or $a \in Y\}$
2. $X \cap Y=\{a: a \in X$ and $a \in Y\}$
3. $X \times Y=\{(x, y): x \in X$ and $y \in Y\}$
4. $\mathcal{P}(X)=\{A: A \subseteq X\}$

Definition. There's also a special set, called the empty set \varnothing. By definition, $\varnothing=\{ \}$, the set with no elements. If we want to be really formal, we could say that $\varnothing=\{x: x \neq x\}$.

For submission, you must complete either 1 or 2 , and also one of $3-6$.
Problem 1. True or false? Justify your answer.

1. $\varnothing=\{0\}$
2. $x \in\{x\}$
3. $\varnothing=\{\varnothing\}$
4. $\varnothing \in \varnothing$

Problem 2. List the elements of the following sets:

1. $\mathcal{P}(\varnothing)$
2. $\mathcal{P}(\{\varnothing\})$
3. $\mathcal{P}(\mathcal{P}(\varnothing))$
4. $\{\varnothing\} \times \mathcal{P}(\varnothing)$
5. $\varnothing \times \mathcal{P}(\varnothing)$
6. $\mathcal{P}(\varnothing) \times \mathcal{P}(\varnothing)$

Problem 3. Prove or disprove: If $A \cup B \subseteq A \cap B$, then $A=B$.
Problem 4. Let A and B be sets. Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
Problem 5. Let A and B be sets. Prove or disprove that $A \times A=B \times B$ implies $A=B$.

Problem 6. Let A, B, and C be sets. Prove that $A \times(B \cap C)=(A \times B) \cap$ $(A \times C)$. Draw a picture respresenting this.

