Math 294 Week 12

$4 / 9 / 2019$ or $4 / 11 / 2019$

Today we'll talk more about set theory!
Definition. Given a set \mathcal{X} whose elements are sets, we let $\bigcup \mathcal{X}$ be the union of all the elements of \mathcal{X}. In symbols, $x \in \mathcal{X}$ iff $x \in X$ for some $X \in \mathcal{X}$. For example, if $\mathcal{X}=\{(-3,1),(0,5]\}$, then $\bigcup \mathcal{X}=(-3,1) \cup(0,5]=(-3,5]$.

Definition. A set X is called transitive if, whenever $y \in x \in X$, then $y \in X$. Notice the similarities to $<$ being a transitive relation on \mathbb{R} !

Theorem. X is transitive iff, for each $x \in X$, we also have $x \subseteq X$.
Theorem. \varnothing is a transitive set.
Theorem. If X is a transitive set, then so is $X^{+}=X \cup\{X\}$ (called the successor of X).

Theorem. If A and B are transitive sets, then so are $A \cap B$ and $A \cup B$.

Problem Set:

Problem 1. Prove the following:

- For any X, if X is transitive, then so is $\mathcal{P}(X)$.
- For any X, if X is transitive, then so is $\bigcup X$.
- Justify why $\bigcup\{\varnothing, \mathcal{P}(\varnothing), \mathcal{P}(\mathcal{P}(\varnothing)), \mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing))), \ldots\}$ is a transitive set.

Problem 2. Denote \varnothing by 0. Define ω to be the following set:

$$
\omega=\left\{0,0^{+}, 0^{++}, 0^{+++}, \ldots\right\} .
$$

Prove the following:

- For shorthand, let 0^{+n} denote the element of ω which is followed by n many +'s. Prove by induction on $n \in \mathbb{N}$ that 0^{+n} is transitive for each n.
- Justify (using the second bullet of problem 1) that ω is a transitive set.
- Prove that $\bigcup \omega=\omega$.

Problem 3. Let X be any set. X may or may not be transitive, but we'll show that every X is contained in a least transitive set $t c(X)$, called the transitive closure of X. For some additional notation, let's write $\bigcup_{n} A=\bigcup \cdots \bigcup A$, where the \bigcup symbol occurs n times.

- For any X, if X is transitive, then so is $\bigcup X$. (Notice that this implies by induction that $\bigcup_{n} X$ will also be transitive.)
- Let $t c(X)=X \cup \bigcup_{1} X \cup \bigcup_{2} X \cup \cdots$. Intuitively, $x \in t c(X)$ if either x is an element of X, x is an element of an element of X, x is an element of an element of an element of X, etc. Use the first bullet of this problem to justify why $t c(X)$ is a transitive set.
- Prove that if Y is a transitive set and $X \subseteq Y$, then $t c(X) \subseteq Y$. (Hint, by induction show $\bigcup_{n} X \subseteq Y$.)

