Math 294 Week 14

$$
4 / 23 / 2019 \text { or } 4 / 25 / 2019
$$

Today we'll talk about limits!
Definition. A sequence $\left\{a_{n}\right\}$ in \mathbb{R} converges to a if for every $\varepsilon>0$ there's an $N \in \mathbb{N}$ such that, for each $n \geq N,\left|a_{n}-a\right|<\varepsilon$. This is written $a_{n} \rightarrow a$.

Remark. An important fact about absolute value signs is the triangle inequality, which says that $|a+b| \leq|a|+|b|$.

Definition. A sequence $\left\{a_{n}\right\}$ is bounded if there's an $M>0$ such that $\left|a_{n}\right| \leq$ M for each $n \in \mathbb{N}$.

Problem 1. Prove the following:

- If $a_{n} \rightarrow a$, prove that $\left\{a_{n}\right\}$ is bounded.
- If $a_{n} \rightarrow 0$ and $\left\{b_{n}\right\}$ is a bounded sequence, prove that $a_{n} b_{n} \rightarrow 0$.
- Give a counterexample to the previous bullet when $\left\{b_{n}\right\}$ is unbounded.

Problem 2. If $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, prove the following:

- $\left\{a_{n}\right\}$ is bounded.
- $a_{n}+b_{n} \rightarrow a+b$
- $a_{n} b_{n} \rightarrow a b$. (Hint: $\left.\left|a_{n} b_{n}-a b\right|=\left|a_{n} b_{n}-a_{n} b+a_{n} b-a b\right|\right)$

Problem 3. Let $\left\{a_{n}\right\} \rightarrow a$ and $\left\{b_{n}\right\} \rightarrow b$. Prove the following:

- If $a_{n} \geq 0$ for each n, then $a \geq 0$.
- $b_{n}-a_{n} \rightarrow b-a$
- Use the previous two bullets to prove that if $a_{n} \leq b_{n}$ for each $n \in \mathbb{N}$, then $a \leq b$.

