Math 294 Week 3

$1 / 29 / 2019$ or $1 / 31 / 2019$

This worksheet will emphasize function composition and its relationship with injective/surjective functions discussed last week. As a reminder from last week, recall the following definitions:

Definition. A function $f: A \rightarrow B$ is:

1. injective (or 1-1) if for all $a, a^{\prime} \in A, a \neq a^{\prime}$ implies that $f(a) \neq f\left(a^{\prime}\right)$;
2. surjective (or onto) if for all $b \in B$ there's an $a \in A$ such that $f(a)=b$;
3. bijective if it's both injective and surjective.

If we have two functions, say f and g, it's natural to ask if there is a way to combine the two functions together. Depending on the context, there can be different ways to do this, but common way to do this is to compose f and g together:
Definition. Let functions $f: A \rightarrow B$ and $g: B \rightarrow C$ where the codomain of f equals the domain of g. The composition of f and g is defined to be the following function, denoted $g \circ f$. Given $a \in A$, then we define $g \circ f(a)=g(f(a))$
Like all concepts involving functions, we may think of it as a picture!

Theorem 1. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

1. If f and g are both injective, then so is $g \circ f$.
2. If f and g are both surjective, then so is $g \circ f$.
3. If f and g are both bijective, then so is $g \circ f$.

Before I list the problems, Let's collect two more definitions that will be helpful in solving some of the problems:

Definition. Given two functions f and g with the same domain A, then we say that f equals g, written $f=g$, if for any $a \in A, f(a)=g(a)$.

Definition. Given any set A, we may define a particular function, called the identity function. The function is denoted $i d_{A}: A \rightarrow A$, and is defined by

Here are the problems to work on this week. You must submit one of the problems with the word "prove" in it (problems 1-5) by the end of class to be marked present for this week.

Something to think about. For the definition $f=g$, why do you think we require the domain of f and g to be the same but not the codomain? Also, is $i d_{A}$ a bijection?

Problem 1. Prove: if $f: A \rightarrow B$ is an injective function and A is nonempty (i.e. has at least one element), then there's a surjection $g: B \rightarrow A$ such that $g \circ f=i d_{A}$. (g is called a left inverse.)

Problem 2. Prove: if $f: A \rightarrow B$ is a surjective function and B is nonempty (i.e. has at least one element), then there's an injection $g: B \rightarrow A$ such that $f \circ g=i d_{B}$. (g is called a right inverse.)

Problem 3. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. Prove the following: if $g \circ f=i d_{A}$, then f is injective and g is surjective. Explain why this is the same as proving the following statement: "if if $f \circ g=i d_{B}$, then g is injective and f is surjective."

Problem 4. If $f: A \rightarrow B$ is 1-1 and $g: B \rightarrow C$ is onto, then is $g \circ f$ necessarily 1-1? onto? For both questions, either prove or disprove give a counterexample.

Problem 5. If $f: A \rightarrow B$ is onto and $g: B \rightarrow C$ is $1-1$, then is $g \circ f$ necessarily $1-1$? onto? For both questions, either prove or disprove give a counterexample.

