Math 294 Week 6

$2 / 19 / 2019$ or $2 / 21 / 2019$

This worksheet will emphasize relations. Informally, a relation is any symbol or property that conveys some relationship between groups of objects.
Here are some examples:

1. \leq is a relation on \mathbb{R} because $x \leq y$ conveys some relationship between the real numbers x and y; namely, that x is to the left of y on the number line.

2 . \subseteq is a relation on sets because $X \subseteq Y$ is telling us that all of X 's elements are in fact elements of Y.
3. \in is a relation because $x \in A$ is saying that x is an element of A.

To movivate the definition of a relation, consider the set $A=\{1,2,3,4,5\}$. Elements of A can be compared to each other by the symbol " $<$." Imagine you had to explain this ordering to a friend who had never seen the numberline before. You might consider writing down for your friend the following set: $R=\{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}$.

The set R encodes the meaning of the $<$ relation for elements in A. In other words, an ordered pair (a, b) appears in the set if and only if $a<b$.

This motivates the following definition:
Definition. A relation R on a set A is any subset of ordered pairs of elements of A. In symbols, $R \subseteq A \times A$.

Problem 1. Let $A=\{0,1,2,3,4,5\}$. Write out the relation R that expresses $>$ on A. Then illustrate it with a diagram.

Problem 2. Let $A=\{1,2,3,4,5,6\}$. Write out the relation R that expresses | (divides) on A. Then illustrate it with a diagram.

Problem 3. Let $A=\{0,1,2,3,4,5\}$. Write out the relation R that expresses \geq on A . Then illustrate it with a diagram.

Problem 4. Given a finite set A, how many different relations are there on A?

Problem 5. Consider the subset $R=(\mathbb{R} \times \mathbb{R})-\{(x, x): x \in \mathbb{R}\}$. What familiar relation on \mathbb{R} is this? Explain.

Challenge Problem (not for submission): White to Play and Mate in 2. Write down all important variations.

