Math 294 Week 8

$3 / 5 / 2019$ or $3 / 7 / 2019$

This worksheet will emphasize partial orderings!
Definition. A set \mathbb{P} with a relation \leq is called a partial ordering (poset) if the following hold:

1. Reflexive: For all $p \in \mathbb{P}, p \leq p$.
2. Antisymmetric: For all $p, q \in \mathbb{P}$, if $p \leq q$ and $q \leq p$, then $p=q$.
3. Transitive: For all $p, q, r \in \mathbb{P}$, if $p \leq q$ and $q \leq r$, then $p \leq r$.

Definition. A poset (\mathbb{P}, \leq) is called a linear order if it satisfies this additional condition:

1. Comparability: For each $p, q \in \mathbb{P}$, either $p \leq q$ or $q \leq p$.

We say that \leq is an ordering and that \leq orders \mathbb{P}.
Definition. Given a poset $(\mathbb{P}, \leq), p \in \mathbb{P}$ is called a minimal element if there's no element q such that $q<p$. It is called maximal if there's no element q such that $p<q$.

Frequently, a poset with only finitely many elements can be represented by a Hasse Diagram, like below:

Problem 1. Let \mathbb{N}^{*} be the set of natural numbers greater than 1 and let's define a relation \preceq on \mathbb{N}^{*} by $n \preceq m$ iff n divides m. Prove that ($\left.\mathbb{N}^{*}, \preceq\right)$ is a partial ordering. What are its minimal elements? Draw the Hasse Diagram for the divisors of 120 ordered with \preceq.

Problem 2. Consider the posets $(\mathcal{P}(\{a, b, c\}), \subseteq)$ and $\left(\{0,1\}^{3}, \leq\right)$ with the ordering $(a, b, c) \leq(x, y, z)$ iff $a \leq x$ and $b \leq y$ and $c \leq z$. Draw the Hasse Diagrams for both of this posets. What are the minimal/maximal elements? How are they similar?

Problem 3. There are two frequently used orderings that we can define on \mathbb{N}^{2}. They are defined as follows:

Dictionary ordering: $(a, b) \leq_{1}(c, d) \Leftrightarrow a \leq c$ or $(a=c$ and $b \leq d)$

Product ordering: $(a, b) \leq_{2}(c, d) \Leftrightarrow a \leq c$ and $b \leq d$
First, how can \mathbb{N}^{2} be thought of as a subset of the Cartesian plane? Next, prove that both of these are partial orderings. Figure out which is a linear order and prove your answer. How can you represent these orderings with pictures?

Problem 4. Let Σ be the set of binary sequences of length ≤ 4 including the empty string. (Recall, a binary sequence is a sequence of 0's and 1's.) Order Σ by $u \leq v$ iff u is an initial segment of v. (For example, $010 \leq 0101$ but $010 \not \leq 0001$). Draw the Hasse Diagram for Σ, and prove that for any $u \in \Sigma$, the set $D=\{v \in \Sigma: v \leq u\}$ is linearly ordered.

Problem 5. Consider the set $\mathbb{R} \times \mathbb{Z}$ ordered with the ordering \leq_{1} from Problem 3. How can you think of this as a subset of the cartesian plane? Then, prove that, for every element $(x, n) \in \mathbb{R} \times \mathbb{Z},(x, n+1)$ is the least element bigger than (x, n).

Problem 6. Consider the set $\mathbb{Z} \times \mathbb{R}$ ordered with the ordering \leq_{1} from Problem 3. How can you think of this as a subset of the cartesian plane? Then, prove that between any two elements $\left(n_{1}, x_{1}\right)<_{1}\left(n_{2}, x_{2}\right)$, there's an element (n, x) such that $\left(n_{1}, x_{1}\right)<_{1}(n, x)<_{1}\left(n_{2}, x_{2}\right)$

