Critical Orbit Structure of $f_c(z)=z^2+c$ over \mathbb{C}_p

Cara E. Mullen

Department of Mathematics, University of Illinois at Chicago

Working with L. DeMarco, Professor at UIC and H. Krieger, Post-doc at MIT

Question

Fix a prime p > 2 and consider $f_c(z) = z^2 + c$ with $c \in \mathbb{C}_p$. How is the critical portrait of f_c (over \mathbb{C}_p) related to the critical portrait of the reduction map \bar{f}_c (over the residue field $k = \mathcal{O}_{\mathbb{C}_n}/\mathfrak{m}_p = \overline{\mathbb{F}}_p$)?

Theorem: Periodic Critical Orbits

If 0 has exact period n for $f_c: \mathbb{C}_p \to \mathbb{C}_p$, then 0 has exact period n for $\overline{f_c}: k \to k$.

Note, this result also appears in [3]. We give a different proof.

Remark: In general, the critical portrait may not be preserved. For example, consider $f(z) = z^2 - 2$, p = 2. The critical portrait is changed considerably by reduction, with $\bar{f}(z) = z^2$:

For
$$f(z): * \rightarrow \cdot \rightarrow \cdot \circlearrowleft$$
 For $\bar{f}(z): * \circlearrowleft$ 0 \circlearrowleft

Setting

Let K be a finite extension of \mathbb{Q}_p . Let $|\cdot|_v$ be a non-Archimedean absolute value which extends a p-adic absolute value. It satisfies the strong triangle inequality:

$$|\alpha + \beta|_v \le \max\{|\alpha|_v, |\beta|_v\} \text{ for all } \alpha, \beta \in K.$$

Define

 $\mathcal{O}_K = \{ \alpha \in K : |\alpha|_v \leq 1 \}$, the valuation ring of K. $\mathfrak{m}_v = \{ \alpha \in K : |\alpha|_v < 1 \}$, the maximal ideal of \mathcal{O}_K . $\mathcal{O}_K^* = \{ \alpha \in K : |\alpha|_v = 1 \}$, the group of units of \mathcal{O}_K . $k = \mathcal{O}_K/\mathfrak{m}_v$, the residue field of \mathcal{O}_K .

Note $|\cdot|_v = \pi^{-v(\alpha)}$ for some $\pi > 1$, where $v(\alpha) = \operatorname{ord}_p(\alpha) = \operatorname{the}$ exponent of the highest power of p dividing α .

Newton Polygon for $p_n(c)$

Figure 1: The Newton Polygon for $p_n(c)=c^N+a_{N-1}c^{N-1}+\cdots+c^2+c=0$. The slope from i=0 to i=1 is $-\infty$, so one root is such that $|c|_p=p^{-\infty}=0$. The slope from i=1 to i=N is 0, so the remaining N-1 roots are such that $|c|_p=p^0=1$.

Intermediate Results

Basic Lemma

If 0 has exact period n > 1 for $f_c(z) = z^2 + c \in \mathbb{C}_p[z]$, then $|c|_p = 1$.

For fixed period n, $f_c^n(0)$ is a polynomial in c of degree $N = 2^{n-1}$, whose roots are the c values for which 0 has period m = n or m|n for $f_c(z)$. Write $f_c^n(0) = p_n(c)$.

Using the method of Newton Polygons, we show that there is exactly one root c = 0 for each $p_n(c)$, and N - 1 roots such that $|c|_p = 1$. See Figure 1. Note c = 0 corresponds to $f(z) = z^2$, with fixed point z = 0.

Rigidity Lemma

Fix $p \ge 2$. Let $f_c(z) = z^2 + c \in \mathbb{C}_p[z]$ be such that 0 has an infinite orbit, and $|c|_p = 1$. If k is the least integer such that $\operatorname{ord}_p(f_c^k(0)) > 0$, then for all $n \in \mathbb{N}$,

$$\operatorname{ord}_{p}(f_{c}^{n}(0)) = \begin{cases} 0 & \text{if } k \nmid n \\ \operatorname{ord}_{p}(f_{c}^{k}(0)) & \text{if } k \mid n \end{cases}$$

Define a polynomial $g_n(z)$ by $f^n(z) = z \cdot g_n(z) + f^n(0)$.

- $k \mid n$: Write n = mk, and show by induction on m that $\operatorname{ord}_p(f^{mk}(0)) = \operatorname{ord}_p(f^k(0))$. Use the above definition of $f^n(z)$.
- $k \nmid n$: Write n = qk + r and note that $\operatorname{ord}_p(f^r(0)) = 0$. Use the previous case.

Corollary of Rigidity

The critical orbit of $f_c(z)$ over \mathbb{C}_p cannot be recurrent.

Under iteration, the critical point will either land back on itself or remain a fixed distance away from 0.

Proof of Theorem

• Let K_n be the finite extension of \mathbb{Q}_p containing all roots of $p_n(c)$ for fixed n. For each root c of $p_n(c)$, write

$$c = \sum_{i=m}^{\infty} a_i \pi^i$$

- From theory on height functions: there exist only finitely many c values with finite critical orbit in K_n .
- Truncate the expansion of c to $c_k = \sum_{i=m}^{\kappa} a_i \pi^i$ such that $|c_k|_p = 1$ and 0 has infinite orbit for f_{c_k} .
- Apply the Rigidity Lemma to $f_{c_k}(z)$ and relate back to $f_c(z)$. The result follows.

Rigidity Only Holds for z = 0

Let $f(z) = z^2 - 1$, $z_0 = 2$, and fix prime p = 3. Then z_0 has infinite orbit, $|c|_3 = 1$, and k = 1 is minimal such that $\operatorname{ord}_3(f^k(2)) > 0$. However, k = 1 gives no additional information about the highest power of 3 that divides $f^n(2)$:

Iterates of f(2)

$$f^{1}(2) = 3$$
 $\Rightarrow \operatorname{ord}_{3}f^{1}(2) = 1 = 2^{0}$
 $f^{2}(2) = 8$ $\Rightarrow \operatorname{ord}_{3}f^{2}(2) = 0$
 $f^{3}(2) = 63$ $\Rightarrow \operatorname{ord}_{3}f^{3}(2) = 2 = 2^{1}$
 $f^{4}(2) = 3968$ $\Rightarrow \operatorname{ord}_{3}f^{4}(2) = 0$
 $f^{5}(2) = 15745023$ $\Rightarrow \operatorname{ord}_{3}f^{5}(2) = 4 = 2^{2}$

Note that the odd iterates are 3-adically getting closer to 0.

Motivation

Hubbard trees classify hyperbolic components of the Mandelbrot set in the complex setting. What are the analogous trees in Berkovich space, in the p-adic setting?

Figure 2: The complex Mandelbrot set; the Julia set for a period-6 critical orbit in the 1/2 limb; and its Hubbard tree.

The convex hull of the critical orbit in Berkovich space always has the same structure, exactly n branches surrounding the Gauss Point.

Figure 3: A tree in Berkovich space for $f_c(z)$ with periodic critical orbit.

Future study: What happens in the case of a pre-periodic critical orbit? Is it possible to have a Berkovich tree with more branches?

References

- [1] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. Springer-Verlag New York, Inc.,1984.
- [2] H. Krieger. Primitive prime divisors in the critical orbit of $z^d + c$. International Mathematics Research Notices 2012; article ID rns213.
- 3] P. Morton and J. Silverman. Rational periodic points of rational functions. International Mathematics Research Notices 1994; pages 97-110.
- [4] J. Silverman. The Arithmetic of Dynamical Systems. Springer-Verlag New York, Inc., 2007.