A.C. COJOCARU Professor of Mathematics
University of Illinois
Chicago, USA
Scientific Researcher
Institute of Mathematics of Romanian Academy
Bucharest, Romania


| Main | About | Contact | Research | Books | Training | Teaching | Events | Service |
papers   conferences   seminars

Papers





  • A.C. Cojocaru and M. Papikian, Finite Drinfeld modules with large exponents, manuscript in preparation, currently 8 pages.

  • A. Bucur, A.C. Cojocaru, M. Lalin and L. Pierce, On a geometric sieve and applications, manuscript in preparation, currently 21 pages.

  • M. Bhargava, A.C. Cojocaru, and F. Thorne, The number of non-maximal quintic extensions of bounded discriminant, 16 pages, manuscript under final revision (available upon request).

  • A.C. Cojocaru, Á. Tóth and F. Voloch, Squarefree orders for the reductions of an elliptic curves over a function field, 10 pages, manuscript under final revision (available upon request).

  • A.C. Cojocaru, H. Iwaniec and N. Jones, The average asymptotic behaviour of the Frobenius fields of an elliptic curve, 51 pages, manuscript under final revision (available upon request).

  • A.C. Cojocaru, R. Davis, A. Silverberg and K.E. Stange, Arithmetic properties of the Frobenius traces defined by a rational abelian variety, with two appendices by J-P. Serre, August 2015; pdf on arxiv

  • A.C. Cojocaru and A.M. Shulman, The distribution of the first elementary divisor of the reductions of a generic Drinfeld module of arbitrary rank, Canadian Journal of Mathematics, February 2015; pdf

  • A.C. Cojocaru and M. Papikian, Drinfeld modules, Frobenius endomorphisms, and CM liftings, International Mathematics Research Notices, October 2014; pdf

  • A.C. Cojocaru and A.M. Shulman, An average Chebotarev density theorem for generic rank 2 Drinfeld modules with complex multiplications, Journal of Number Theory 133, 2013, pp. 897--914; pdf

  • A.C. Cojocaru and Á. Tóth, The distribution and growth of the elementary divisors of the reductions of an elliptic curve over a function field, Journal of Number Theory 132, 2012, pp. 953--965; pdf
    (Note that in the journal version, the second part of Theorem 2 should be ignored.)

  • A.C. Cojocaru, D. Grant and N. Jones, One-parameter families of elliptic curves over Q with maximal Galois representations, Proceedings of the London Mathematical Society, 2011, 103(4), pp. 654--675; pdf

  • A. Balog, A.C. Cojocaru and C. David, Average twin prime conjecture for elliptic curves, American Journal of Mathematics, vol. 133, No. 5, 2011, pp. 1179--1229; pdf

  • A.C. Cojocaru and I.E. Shparlinski, On the embedding degree of the reductions of an elliptic curve, Inform. Proc. Letters vol 109, 2009, pp. 652--654

  • A.C. Cojocaru, F. Luca and I.E. Shparlinski, Pseudoprime reductions of elliptic curves, Mathematical Proceedings of Cambridge Philos. Soc. vol 146, 2009, pp. 513--522

  • A.C. Cojocaru and C. David, Frobenius fields for elliptic curves, American Journal of Mathematics 130, no 6, 2008, pp. 1535--1560; pdf

  • A.C. Cojocaru, Squarefree orders for CM elliptic curves modulo p, Mathematische Annalen 342, no 3, 2008, pp. 587--615; pdf

  • A.C. Cojocaru and C. David, Frobenius fields for Drinfeld modules of rank 2, Compositio Mathematica, vol 144, part 4, 2008, pp. 827--848; pdf

  • A.C. Cojocaru, The Erdös and Halberstam theorems for Drinfeld modules of any rank, with an appendix by Hugh Thomas, Acta Arithmetica 131, no 4, 2008, pp. 317--340; pdf

  • A.C. Cojocaru and I.E. Shparlinski, Distribution of Farey fractions in residue classes and Lang-Trotter conjectures on average, Proceedings of the AMS 136, no 6, 2008, pp. 1977--1986; pdf

  • A.C. Cojocaru, Reductions of an elliptic curve with almost prime orders, Acta Arithmetica 119, no. 3, 2005, pp. 265--289; pdf

  • A.C. Cojocaru and C. Hall, Uniform results for Serre's theorem for elliptic curves, International Mathematics Research Notices, 2005, no. 50, pp. 3065--3080; pdf

  • A.C. Cojocaru, E. Fouvry and M.R. Murty, The square sieve and the Lang-Trotter Conjecture, Canadian Journal of Mathematics, vol. 57, no. 6, 2005, pp. 1155--1177; pdf

  • A.C. Cojocaru, On the surjectivity of the Galois representations associated to non-CM elliptic curves, with an appendix by Ernst Kani, Canadian Mathematical Bulletin, 2005, vol. 48, no. 1, pp. 16--31; pdf

  • A.C. Cojocaru and E. Kani, The modular degree and the congruence number of a weight 2 cusp form, Acta Arithmetica 114, no. 2, 2004, pp. 159--167; pdf

  • A.C. Cojocaru and M.R. Murty, Cyclicity of elliptic curves modulo p and elliptic curve analogues of Linnik's problem, Mathematische Annalen 330, 2004, pp. 601--625; pdf

  • A.C. Cojocaru and W. Duke, Reductions of an elliptic curve and their Tate-Shafarevich groups, Mathematische Annalen 329, 2004, pp. 513--534; pdf

  • A.C. Cojocaru, Questions about the reductions modulo primes of an elliptic curve, Proceedings of the 7-th conference of the Canadian Number Theory Association (Montreal, 2002), ed. E. Goren and H. Kisilevsky, CRM Proceedings and Lecture Notes, Vol. 36, 2004, pp. 61--79; pdf

  • A.C. Cojocaru, Cyclicity of CM elliptic curves modulo p, Transactions of the American Mathematical Society 355, 2003, pp. 2651--2662; pdf

  • A.C. Cojocaru, On the cyclicity of the group of F_p -rational points of non-CM elliptic curves, Journal of Number Theory vol. 96, No. 2, 2002, pp. 335--350; pdf





| Main | About | Contact | Research | Books | Training | Teaching | Events | Service |