Here are some calculations of rational normal curves in complete intersections of quadrics with balanced normal bundle. The following are a list of maps $\alpha: N_{R_n/ \PP^n} \to N_{X/\PP^n}|_{R_n} = \OO(2n)^k$. To compute the splitting type of the normal bundle in each case, you enter the following code into Sage: R = QQ[s,t] M = matrix{{as given below}} kernel M Then the output will describe the relations among the columns. If the degrees of the relations are $a_1, \dots, a_{n-k-1}$, then the normal bundle $N_{R_n/X}$ will be $\bigoplus_i \OO(n+2 - a_i)$. For k=3, we exhibit maps \alpha that give a balanced normal bundle for n < 19 matrix{{s^5, 0,0,0,0,t^5}, {s^4*t, s^5, 0,0,t^5, s*t^4}, {s^3*t^2, s^4*t, s^5, t^5, s*t^4, s^2*t^3}} image {5} | 0 0 -t5 | {5} | 0 -t5 -st4 | {5} | -t5 -st4 -s2t3 | {5} | s5 s4t s3t2 | {5} | 0 s5 s4t | {5} | 0 0 s5 | matrix{{s^6, 0,0,s^3*t^3, 0,0,t^6}, {s^5*t, s^6, 0,0 , s^2*t^4,t^6, s*t^5}, {s^4*t^2, s^5*t, s^6, 0, t^6, s*t^5, s^2*t^4}} image {6} | -st3 0 -t5 t5 | {6} | t4 0 -st4-t5 0 | {6} | 0 0 0 -st4+t5 | {6} | s4 t4 s3t2-st4 -s3t2-s2t3+st4 | {6} | 0 0 s5+s4t -s4t | {6} | 0 s4 0 0 | {6} | 0 -s3t s4t s5-s4t | matrix{{s^7, 0,0,s^4*t^3, 0, 0,0,t^7}, {s^6*t, s^7, 0,0 , s^3*t^4,0, t^7, s*t^6}, {s^5*t^2, s^6*t, s^7, 0,0, t^7, s*t^6, s^2*t^5}} image {7} | -st3 0 -t4 0 0 | {7} | t4 0 0 -t4 -st4 | {7} | 0 0 0 0 t5 | {7} | s4 0 s3t -t4 0 | {7} | 0 t4 s3t-st3 s4-s2t2 s5 | {7} | 0 s4 0 0 0 | {7} | 0 -s3t s4 0 0 | {7} | 0 0 0 s4 0 | matrix{{s^8, 0,0,0, s^4*t^4,0, 0,0,t^8}, {s^7*t, s^8, 0, s^4*t^4 , s^5*t^3,0,0, t^8, s*t^7}, {s^6*t^2, s^7*t, s^8, 0,s^3*t^5, s^4*t^4, t^8, s*t^7, s^2*t^6}} image {8} | -t4 0 0 0 0 0 | {8} | -st3 -t4 0 0 0 0 | {8} | t4 0 -t4 0 0 0 | {8} | s3t s4 0 0 -t4 0 | {8} | s4 0 0 0 0 -t4 | {8} | -s3t+s2t2 s3t s4 -t4 -st3 -s2t2 | {8} | 0 0 0 s4 0 s3t | {8} | 0 0 0 0 s4 0 | {8} | 0 0 0 0 0 s4 | matrix{{s^9, 0,0, 0,s^5*t^4, 0, s^3*t^6, 0,0,t^9}, {s^8*t, s^9, 0, s^5*t^4,s^6*t^3 ,0,0,0, t^9, s*t^8}, {s^7*t^2, s^8*t, s^9,0, s^4*t^5 , s^5*t^4 , 0, t^9, s*t^8, s^2*t^7}} image {9} | 0 -t4 0 0 0 0 0 | {9} | 0 -st3 -t4 0 0 0 0 | {9} | 0 t4 0 -t4 0 0 0 | {9} | s2t s3t s4 0 st3 0 -t4 | {9} | -st2 s4 0 0 -t4 0 0 | {9} | t3 -s3t+s2t2 s3t s4 0 0 -st3 | {9} | s3 0 0 0 s2t2 t4 -st3 | {9} | 0 0 0 0 s4 0 0 | {9} | 0 0 0 0 0 s4 0 | {9} | 0 0 0 0 0 -s3t s4 | matrix{{s^10, 0,0, 0,s^6*t^4, 0, s^4*t^6, 0, 0,0,t^10}, {s^9*t, s^10, 0, s^6*t^4,s^7*t^3 ,0,0,s^3*t^7, 0, t^10, s*t^9}, {s^8*t^2, s^9*t, s^10,0, s^5*t^5, s^6*t^4,0, 0, t^10, s*t^9, s^2*t^8}} image {10} | 0 0 -t4 0 0 0 0 0 | {10} | 0 0 -st3 -t4 0 0 0 0 | {10} | 0 0 t4 0 -t4 0 0 0 | {10} | s2t -t3 s3t s4 0 0 st3 0 | {10} | -st2 0 s4 0 0 0 -t4 0 | {10} | t3 0 -s3t+s2t2 s3t s4 0 0 -t4 | {10} | s3 0 0 0 0 0 s2t2 -t4 | {10} | 0 s3 0 0 0 t4 -st3 -s2t2 | {10} | 0 0 0 0 0 s4 0 0 | {10} | 0 0 0 0 0 -s3t s4 0 | {10} | 0 0 0 0 0 0 0 s4 | matrix{{s^11, 0,0, 0,s^7*t^4, 0, 0, s^4*t^7, 0, 0,0,t^11}, {s^10*t, s^11, 0, s^7*t^4 , s^8*t^3,0,s^4*t^7, s^5*t^6,0,0, t^11, s*t^10}, {s^9*t^2, s^10*t, s^11,0, s^6*t^5, s^7*t^4,0, 0, s^3*t^8, t^11, s*t^10, s^2*t^9}} image {11} | 0 0 0 -t4 0 0 0 0 0 | {11} | 0 0 0 -st3 -t4 0 0 0 0 | {11} | 0 0 0 t4 0 -t4 0 0 0 | {11} | -t3 0 0 s3t s4 0 0 0 0 | {11} | 0 -t3 0 s4 0 0 -st3 0 -t4 | {11} | 0 0 0 -s3t+s2t2 s3t s4 t4 0 0 | {11} | s3 0 0 0 0 0 0 -t4 0 | {11} | 0 s3 0 0 0 0 s4 0 s3t-t4 | {11} | 0 s3 -t3 0 0 0 0 -s2t2 0 | {11} | 0 0 s3 0 0 0 0 0 0 | {11} | 0 0 0 0 0 0 0 s4 0 | {11} | 0 0 0 0 0 0 0 0 s4 | matrix{{s^12, 0,0,0, s^8*t^4, 0, s^6*t^6, 0, 0, s^3*t^9, 0,0,t^12}, {s^11*t, s^12, 0, s^8*t^4, s^9*t^3 ,0,0,s^5*t^7, 0,0,0, t^12, s*t^11}, {s^10*t^2, s^11*t, s^12,0, s^7*t^5, s^8*t^4,0, 0, s^4*t^8,0, t^12, s*t^11, s^2*t^10}} image {12} | 0 0 0 0 -t4 0 0 0 0 0 | {12} | 0 0 0 0 -st3 -t4 0 0 0 0 | {12} | 0 0 0 0 t4 0 -t4 0 0 0 | {12} | s2t -t3 st2 0 s3t s4 0 0 0 0 | {12} | -st2 0 -t3 0 s4 0 0 0 0 0 | {12} | t3 0 0 0 -s3t+s2t2 s3t s4 0 0 0 | {12} | s3 0 s2t -t3 0 0 0 0 0 0 | {12} | 0 s3 0 0 0 0 0 0 0 -t4 | {12} | 0 0 s3 0 0 0 0 -t4 0 -s2t2 | {12} | 0 0 0 s3 0 0 0 0 t4 -st3 | {12} | 0 0 0 0 0 0 0 s4 0 0 | {12} | 0 0 0 0 0 0 0 0 s4 0 | {12} | 0 0 0 0 0 0 0 0 -s3t s4 | matrix{{s^13, 0,0,0, s^9*t^4, 0, s^7*t^6, 0, 0, s^4*t^9, 0, 0,0,t^13}, {s^12*t, s^13, 0, s^9*t^4, s^10*t^3 ,0,0,s^6*t^7, 0,0,s^3*t^10, 0, t^13, s*t^12}, {s^11*t^2, s^12*t, s^13,0, s^8*t^5,s^9*t^4, 0, 0, s^5*t^8,0, 0, t^13, s*t^12, s^2*t^11}} image {13} | 0 0 0 0 0 -t4 0 0 0 0 0 | {13} | 0 0 0 0 0 -st3 -t4 0 0 0 0 | {13} | 0 0 0 0 0 t4 0 -t4 0 0 0 | {13} | s2t -t3 st2 0 0 s3t s4 0 0 0 0 | {13} | -st2 0 -t3 0 0 s4 0 0 0 0 0 | {13} | t3 0 0 0 0 -s3t+s2t2 s3t s4 0 0 0 | {13} | s3 0 s2t -t3 0 0 0 0 0 0 0 | {13} | 0 s3 0 0 -t3 0 0 0 0 0 0 | {13} | 0 0 s3 0 0 0 0 0 0 -t4 -st3 | {13} | 0 0 0 s3 0 0 0 0 0 0 -t4 | {13} | 0 0 0 0 s3 0 0 0 t4 -st3 -s2t2 | {13} | 0 0 0 0 0 0 0 0 s4 0 0 | {13} | 0 0 0 0 0 0 0 0 -s3t s4 0 | {13} | 0 0 0 0 0 0 0 0 0 0 s4 | matrix{{s^14, 0,0,0, s^10*t^4, 0, s^8*t^6, 0, 0,0, s^4*t^10, 0, 0,0,t^14}, {s^13*t, s^14, 0, s^10*t^4, s^11*t^3 ,0,0,s^7*t^7, 0,s^4*t^10,s^5*t^9, 0,0, t^14, s*t^13}, {s^12*t^2, s^13*t, s^14,0, s^9*t^5, s^10*t^4, 0,0, s^6*t^8,0, 0,s^3*t^11, t^14, s*t^13, s^2*t^12}} image {14} | 0 0 0 0 0 0 -t4 0 0 0 0 0 | {14} | 0 0 0 0 0 0 -st3 -t4 0 0 0 0 | {14} | 0 0 0 0 0 0 t4 0 -t4 0 0 0 | {14} | s2t -t3 st2 0 0 0 s3t s4 0 0 0 0 | {14} | -st2 0 -t3 0 0 0 s4 0 0 0 0 0 | {14} | t3 0 0 0 0 0 -s3t+s2t2 s3t s4 0 0 0 | {14} | s3 0 s2t 0 0 0 0 0 0 -t4 0 0 | {14} | 0 s3 0 -t3 0 0 0 0 0 -s2t2 0 0 | {14} | 0 0 s3 0 -t3 0 0 0 0 0 0 -t4 | {14} | 0 0 0 s3 0 0 0 0 0 0 -t4 0 | {14} | 0 0 0 0 0 0 0 0 0 s4 0 -t4 | {14} | 0 0 0 0 s3 -t3 0 0 0 0 -s2t2 0 | {14} | 0 0 0 0 0 s3 0 0 0 0 0 0 | {14} | 0 0 0 0 0 0 0 0 0 0 s4 0 | {14} | 0 0 0 0 0 0 0 0 0 0 0 s4 | matrix{{s^15, 0,0,0, s^11*t^4, 0, s^9*t^6, 0, 0, s^6*t^9, 0, 0, s^3*t^12,0,0,t^15}, {s^14*t, s^15, 0, s^11*t^4, s^12*t^3 ,0,0,s^8*t^7, 0,0,s^5*t^10,0, 0,0, t^15, s*t^14}, {s^13*t^2, s^14*t, s^15,0, s^10*t^5, s^11*t^4, 0,0, s^7*t^8,0, 0,s^4*t^11, 0,t^15, s*t^14, s^2*t^13}} image {15} | 0 0 0 0 0 0 0 -t4 0 0 0 0 0 | {15} | 0 0 0 0 0 0 0 -st3 -t4 0 0 0 0 | {15} | 0 0 0 0 0 0 0 t4 0 -t4 0 0 0 | {15} | s2t -t3 st2 0 0 0 0 s3t s4 0 0 0 0 | {15} | -st2 0 -t3 0 0 0 0 s4 0 0 0 0 0 | {15} | t3 0 0 0 0 0 0 -s3t+s2t2 s3t s4 0 0 0 | {15} | s3 0 s2t -t3 0 0 0 0 0 0 0 0 0 | {15} | 0 s3 0 0 -t3 0 0 0 0 0 0 0 0 | {15} | 0 0 s3 0 0 -t3 0 0 0 0 0 0 0 | {15} | 0 0 0 s3 0 0 -t3 0 0 0 0 0 0 | {15} | 0 0 0 0 s3 0 0 0 0 0 0 0 -t4 | {15} | 0 0 0 0 0 s3 0 0 0 0 -t4 0 -s2t2 | {15} | 0 0 0 0 0 0 s3 0 0 0 0 t4 -st3 | {15} | 0 0 0 0 0 0 0 0 0 0 s4 0 0 | {15} | 0 0 0 0 0 0 0 0 0 0 0 s4 0 | {15} | 0 0 0 0 0 0 0 0 0 0 0 -s3t s4 | matrix{{s^16, 0,0,0, s^12*t^4, 0, s^10*t^6, 0, 0, s^7*t^9, 0, 0, s^4*t^12,0 , 0,0,t^16}, {s^15*t, s^16, 0, s^12*t^4, s^13*t^3 ,0,0,s^9*t^7, 0,0,s^6*t^10,0, 0,s^3*t^13, 0, t^16, s*t^15}, {s^14*t^2, s^15*t, s^16,0, s^11*t^5, s^12*t^4, 0,0, s^8*t^8,0, 0,s^5*t^11, 0, 0,t^16, s*t^15, s^2*t^14}} image {16} | 0 0 0 0 0 0 0 0 -t4 0 0 0 0 0 | {16} | 0 0 0 0 0 0 0 0 -st3 -t4 0 0 0 0 | {16} | 0 0 0 0 0 0 0 0 t4 0 -t4 0 0 0 | {16} | s2t -t3 st2 0 0 0 0 0 s3t s4 0 0 0 0 | {16} | -st2 0 -t3 0 0 0 0 0 s4 0 0 0 0 0 | {16} | t3 0 0 0 0 0 0 0 -s3t+s2t2 s3t s4 0 0 0 | {16} | s3 0 s2t -t3 0 0 0 0 0 0 0 0 0 0 | {16} | 0 s3 0 0 -t3 0 0 0 0 0 0 0 0 0 | {16} | 0 0 s3 0 0 -t3 0 0 0 0 0 0 0 0 | {16} | 0 0 0 s3 0 0 -t3 0 0 0 0 0 0 0 | {16} | 0 0 0 0 s3 0 0 -t3 0 0 0 0 0 0 | {16} | 0 0 0 0 0 s3 0 0 0 0 0 0 -t4 -st3 | {16} | 0 0 0 0 0 0 s3 0 0 0 0 0 0 -t4 | {16} | 0 0 0 0 0 0 0 s3 0 0 0 t4 -st3 -s2t2 | {16} | 0 0 0 0 0 0 0 0 0 0 0 s4 0 0 | {16} | 0 0 0 0 0 0 0 0 0 0 0 -s3t s4 0 | {16} | 0 0 0 0 0 0 0 0 0 0 0 0 0 s4 | For k=4, we exhibit maps \alpha that give a balanced normal bundle for n < 20. matrix{{s^7, 0,0,0, 0, 0,0,t^7}, {s^6*t, s^7, 0,0 , 0,0, t^7, s*t^6}, {s^5*t^2, s^6*t, s^7, 0,0, t^7, s*t^6, s^2*t^5},{s^4*t^3, s^5*t^2, s^6*t, s^7, t^7, s*t^6, s^2*t^5, s^3*t^4} } matrix{{s^8, 0,0,0 ,s^4*t^4, 0, 0,0,t^8}, {s^7*t, s^8, 0,s^4*t^4 ,s^5*t^3, 0,0, t^8, s*t^7}, {s^6*t^2, s^7*t, s^8, 0,t^5*s^3, s^4*t^4, t^8, s*t^7, s^2*t^6},{s^5*t^3, s^6*t^2, s^7*t, s^8, s^4*t^4, t^8, s*t^7, s^2*t^6, s^3*t^5} } matrix{{s^9, 0,0,0, s^5*t^4, 0, 0, 0,0, t^9}, {s^8*t, s^9, 0,0,0, s^4*t^5 ,0,0, t^9, s*t^8}, {s^7*t^2, s^8*t, s^9, s^5*t^4, s^6*t^3, s^3*t^6, s^4*t^5, t^9, s*t^8, s^2*t^7}, {s^6*t^3, s^7*t^2, s^8*t, s^9, s^4*t^5, s^5*t^4, t^9, s*t^8, s^2*t^7, s^3*t^6}} matrix{{s^10, 0,0,0, s^6*t^4, 0, 0, 0, 0,0, t^10}, {s^9*t, s^10, 0,0,0, s^5*t^5,0 ,0,0, t^10, s*t^9}, {s^8*t^2, s^9*t, s^10,0, s^5*t^5, s^6*t^4, s^4*t^6, 0, t^10, s*t^9, s^2*t^8}, {s^7*t^3, s^8*t^2, s^9*t, s^10, 0, 0,0, t^10, s*t^9, s^2*t^8, s^3*t^7}} matrix{{s^11, 0,0,0, 0, s^6*t^5, 0, 0, 0, 0,0, t^11}, {s^10*t, s^11, 0,0, s^6*t^5, s^7*t^4, 0, 0 ,0,0, t^11, s*t^10}, {s^9*t^2, s^10*t, s^11,0, 0, s^5*t^6, s^6*t^5,0, 0, t^11, s*t^10, s^2*t^9}, {s^8*t^3, s^9*t^2, s^10*t, s^11, 0, s^4*t^7, s^5*t^6,s^6*t^5, t^11, s*t^10, s^2*t^9, s^3*t^8}} matrix{{s^12, 0,0,0, s^8*t^4, 0, 0, 0, s^4*t^8, 0, 0,0, t^12}, {s^11*t, s^12, 0,0, s^7*t^5, s^8*t^4, 0, 0,s^4*t^8 ,0,0, t^12, s*t^11}, {s^10*t^2, s^11*t, s^12,0, s^8*t^4,0, s^6*t^6, 0,0, 0, t^12, s*t^11, s^2*t^10}, {s^9*t^3, s^10*t^2, s^11*t, s^12, 0, 0, 0,s^5*t^7, 0, t^12, s*t^11, s^2*t^10, s^3*t^9}} matrix{{s^13, 0,0,0, 0, s^8*t^5, 0, 0, 0, s^4*t^9, 0, 0,0, t^13}, {s^12*t, s^13, 0,0, s^8*t^5, s^9*t^4, 0, 0 ,0,s^3*t^10, s^4*t^9,0, t^13, s*t^12}, {s^11*t^2, s^12*t, s^13,0, 0, s^7*t^6, s^8*t^5, 0, s^4*t^9, s^5*t^8, 0, t^13, s*t^12, s^2*t^11}, {s^10*t^3, s^11*t^2, s^12*t, s^13, 0, s^6*t^7, s^7*t^6,s^8*t^5, 0,0, t^13, s*t^12, s^2*t^11, s^3*t^10}} matrix{{s^14,0, 0,0,0, s^9*t^5, 0, s^7*t^7, 0, s^5*t^9, 0, 0,0, 0, t^14}, {s^13*t, s^14, 0,0, s^9*t^5, s^10*t^4, 0, 0, 0 ,s^4*t^10,s^5*t^9 ,0,0,t^14, s*t^13}, {s^12*t^2, s^13*t, s^14,0, 0, s^8*t^6, s^9*t^5,0, s^5*t^9,s^6*t^8,0, 0 ,t^14, s*t^13, s^2*t^12}, {s^11*t^3, s^12*t^2, s^13*t, s^14, s^10*t^4, s^7*t^7, s^8*t^6, s^9*t^5,0,s^5*t^9, s^4*t^10, t^14, s*t^13, s^2*t^12, s^3*t^11}} matrix{{s^15,0, 0,0,0, s^10*t^5, 0, 0, 0, 0, s^5*t^10, 0,0, 0, 0, t^15}, {s^14*t, s^15, 0,0, s^10*t^5, s^11*t^4, 0, 0 ,0, 0 ,s^4*t^11,s^5*t^10,0,0, t^15, s*t^14}, {s^13*t^2, s^14*t, s^15,0, 0, s^9*t^6, s^10*t^5,0, 0,s^5*t^10,s^6*t^9,0, 0,t^15, s*t^14, s^2*t^13}, {s^12*t^3, s^13*t^2, s^14*t, s^15, 0, s^8*t^7, s^9*t^6,s^10*t^5,s^5*t^10,s^6*t^9,s^7*t^8,0, t^15, s*t^14, s^2*t^13, s^3*t^12}} matrix{{s^16,0, 0,0,0, s^11*t^5, 0, 0, 0, 0, s^6*t^10, 0,s^4*t^12, 0, 0, 0, t^16}, {s^15*t, s^16, 0,0, s^11*t^5, s^12*t^4, 0, 0 ,0, 0 ,s^5*t^11,s^6*t^10,0,0,0, t^16, s*t^15}, {s^14*t^2, s^15*t, s^16,0, 0, s^10*t^6, s^11*t^5,0, 0,s^6*t^10,s^7*t^9,0,s^3*t^13 , s^4*t^12,t^16, s*t^15, s^2*t^14}, {s^13*t^3, s^14*t^2, s^15*t, s^16, 0, s^9*t^7, s^10*t^6,s^11*t^5,s^6*t^10,s^7*t^9,s^8*t^8,s^4*t^12,s^5*t^11, t^16, s*t^15, s^2*t^14, s^3*t^13}} matrix{{s^17,0, 0,0,0, s^12*t^5, 0, 0, 0, 0, s^7*t^10, 0,0, s^4*t^13, 0, 0, 0, t^17}, {s^16*t, s^17, 0,0, s^12*t^5, s^13*t^4, 0, 0 ,0, 0 ,s^6*t^11,s^7*t^10,s^4*t^13,s^5*t^12,0,0, t^17, s*t^16}, {s^15*t^2, s^16*t, s^17,0, 0, s^11*t^6, s^12*t^5,0, 0,s^7*t^10,s^8*t^9,0,0,s^4*t^13 , s^5*t^12,t^17, s*t^16, s^2*t^15}, {s^14*t^3, s^15*t^2, s^16*t, s^17, 0, s^10*t^7, s^11*t^6,s^12*t^5,s^7*t^10,s^8*t^9,s^9*t^8,s^5*t^12,s^6*t^11, 0, t^17, s*t^16, s^2*t^15, s^3*t^14}} For k = 5, we give examples for n < 17 matrix{{s^9, 0,0,0,0,0,0,0,0,t^9}, {s^8*t, s^9, 0,0,0,0,0,0,t^9, s*t^8}, {s^7*t^2, s^8*t, s^9, 0,0,0,0,t^9, s*t^8, s^2*t^7}, {s^6*t^3, s^7*t^2, s^8*t, s^9, 0, 0, t^9, s*t^8, s^2*t^7, s^3*t^6}, {s^5*t^4, s^6*t^3, s^7*t^2, s^8*t, s^9, t^9, s*t^8, s^2*t^7, s^3*t^6, s^4*t^5}} matrix{{s^10, 0,0,0,0,s^5*t^5, 0,0,0,0,t^10}, {s^9*t, s^10, 0,s^5*t^5,s^6*t^4,s^7*t^3,0,0,0,t^10, s*t^9}, {s^8*t^2, s^9*t, s^10, 0,0,s^3*t^7, s^4*t^6,s^5*t^5,t^10, s*t^9, s^2*t^8}, {s^7*t^3, s^8*t^2, s^9*t, s^10, 0, 0, 0, t^10, s*t^9, s^2*t^8, s^3*t^7}, {s^6*t^4, s^7*t^3, s^8*t^2, s^9*t, s^10, 0, t^10, s*t^9, s^2*t^8, s^3*t^7, s^4*t^6}} matrix{{s^11, 0,0,0,0,s^6*t^5,0, 0,0,0,0,t^11}, {s^10*t, s^11, 0,0,0,0,s^5*t^6,0, 0,0,t^11, s*t^10}, {s^9*t^2, s^10*t, s^11,s^6*t^5,s^7*t^4,s^8*t^3, 0,0,0, t^11, s*t^10, s^2*t^9}, {s^8*t^3, s^9*t^2, s^10*t, s^11,0, 0, s^4*t^7, s^5*t^6, t^11, s*t^10, s^2*t^9, s^3*t^8}, {s^7*t^4, s^8*t^3, s^9*t^2, s^10*t, s^11,s^5*t^6, s^6*t^5, t^11, s*t^10, s^2*t^9, s^3*t^8, s^4*t^7}} matrix{{s^12, 0,0,0,0,0,s^6*t^6, 0, 0,0,0,0,t^12}, {s^11*t, s^12, 0,0,0,s^6*t^6,s^7*t^5,0, 0, 0,0,t^12, s*t^11}, {s^10*t^2, s^11*t, s^12,0,0,0, s^5*t^7,s^6*t^6,0, 0, t^12, s*t^11, s^2*t^10}, {s^9*t^3, s^10*t^2, s^11*t, s^12,s^6*t^6, s^7*t^5, s^8*t^4, 0, 0, t^12, s*t^11, s^2*t^10, s^3*t^9}, {s^8*t^4, s^9*t^3, s^10*t^2, s^11*t, s^12,s^5*t^7, s^6*t^6,s^7*t^5, t^12, s*t^11, s^2*t^10, s^3*t^9, s^4*t^8}} matrix{{s^13,0, 0,0,0,0,s^7*t^6,0, 0, 0,0,0,0,t^13}, {s^12*t, s^13, 0,0,0,s^7*t^6,s^8*t^5,0, 0, 0, 0,0,t^13, s*t^12}, {s^11*t^2, s^12*t, s^13,0,0,0, 0,s^6*t^7,0, 0,0, t^13, s*t^12, s^2*t^11}, {s^10*t^3, s^11*t^2, s^12*t, s^13,0, 0, 0, s^5*t^8, s^6*t^7,0, t^13, s*t^12, s^2*t^11, s^3*t^10}, {s^9*t^4, s^10*t^3, s^11*t^2, s^12*t, s^13,s^5*t^8, s^6*t^7,s^7*t^6, s^8*t^5, t^13, s*t^12, s^2*t^11, s^3*t^10, s^4*t^9}} matrix{{s^14,0, 0,0,0,0,0,s^7*t^7, 0, 0, 0,0,0,0,t^14}, {s^13*t, s^14, 0,0,0,0,s^7*t^7,s^8*t^6,0, 0, 0, 0,0,t^14, s*t^13}, {s^12*t^2, s^13*t, s^14,0,0,0,0, s^6*t^8,s^7*t^7,0, 0,0, t^14, s*t^13, s^2*t^12}, {s^11*t^3, s^12*t^2, s^13*t, s^14,0, s^7*t^7, s^8*t^6, s^9*t^5, 0, 0,0, t^14, s*t^13, s^2*t^12, s^3*t^11}, {s^10*t^4, s^11*t^3, s^12*t^2, s^13*t, s^14,0, 0,s^5*t^9, s^6*t^8,s^7*t^7, t^14, s*t^13, s^2*t^12, s^3*t^11, s^4*t^10}}