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Preliminaries

Let X be a smooth, irreducible, complex projective surface. Let H be an
ample divisor on X .

All sheaves will be coherent and torsion free unless explicitly specified.

The Hilbert polynomial and the reduced Hilbert polynomial of a sheaf F
are defined by

PH,F (m) = χ(F(mH)) = a2
m2

2
+ l.o.t. pH,F (m) =

PH,F (m)

a2

The slope and the discriminant are defined by the formulae

µ =
ch1

r
, µH =

ch1 ·H
r H2

, ∆ =
µ2

2
− ch2

r
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A sheaf F is called Gieseker H-semistable if for every proper subsheaf E ,
pE,H(m) ≤ pF ,H(m) for m� 0.

A sheaf F is µH -semistable if for every proper subsheaf E of smaller rank,
we have µH(E) ≤ µH(F).

A torsion free sheaf F admits a unique Harder-Narasimhan filtration with
respect to either Gieseker H-semistability or µH -semistability, i.e. a
filtration

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F` = F

such that the quotients Ei = Fi/Fi−1 are semistable with decreasing
invariants.

A semistable sheaf further admits a Jordan-Hölder filtration into stable
objects. Two semistable sheaves are called S-equivalent if they have the
same Jordan-Hölder factors.
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Projective moduli spaces MX ,H(γ) parameterize S-equivalence classes of
Gieseker H-semistable sheaves with Chern character γ.

Many questions: Nonempty? Irreducible? Dimension?

The main question today: What is the topology of MX ,H(γ)?
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The rank 1 case

Let X [n] denote the Hilbert scheme of n points on X .

When r = 1, a stable sheaf is of the form L⊗ IZ

The moduli space is isomorphic to Pic(X )× X [n] for some n.

Ellingsrud and Stromme computed Betti numbers of P2[n].

In general, Göttsche computed the Betti numbers of X [n].

Recall an explicit basis for the cohomology of P2[n] due to Mallavibarrena
and Sols.

Each basis element depends on 3 partitions, whose total sum is n.
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In general, Göttsche computed the Betti numbers of X [n].

Recall an explicit basis for the cohomology of P2[n] due to Mallavibarrena
and Sols.

Each basis element depends on 3 partitions, whose total sum is n.

Izzet Coskun (UIC) The stabilization of the cohomology of moduli spaces of sheavesZAG, June 30, 2020 5 / 32



The rank 1 case

Let X [n] denote the Hilbert scheme of n points on X .

When r = 1, a stable sheaf is of the form L⊗ IZ

The moduli space is isomorphic to Pic(X )× X [n] for some n.

Ellingsrud and Stromme computed Betti numbers of P2[n].
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In general, Göttsche computed the Betti numbers of X [n].

Recall an explicit basis for the cohomology of P2[n] due to Mallavibarrena
and Sols.

Each basis element depends on 3 partitions, whose total sum is n.

Izzet Coskun (UIC) The stabilization of the cohomology of moduli spaces of sheavesZAG, June 30, 2020 5 / 32



The rank 1 case

Let X [n] denote the Hilbert scheme of n points on X .

When r = 1, a stable sheaf is of the form L⊗ IZ

The moduli space is isomorphic to Pic(X )× X [n] for some n.

Ellingsrud and Stromme computed Betti numbers of P2[n].
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2, 2, 3 1, 2, 21, 2, 2

Codimension 1

Codimension 2



Göttsche’s formula

Göttsche computed the Betti numbers of Hilbert schemes of points X [n]

Recall Macdonald’s formula

ζX (q, t) =
∞∑
n=0

PX (n)(t)qn =
(1 + qt)b1(X )(1 + qt3)b3(X )

(1− q)(1− qt2)b2(X )(1− qt4)
.

Göttsche’s Formula

F (q, t) =
∞∑
n=0

PX [n](t)qn =
∞∏

m=1

ζX (t2m−2qm, t).
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The Betti numbers of X [n] and more generally MX ,H(1, c ,∆) stabilize to
bi ,Stab(X ) as n or ∆ tend to infinity.

Consider
(1− q)F (q, t)

The coefficient of t i is a polynomial in q.

In contrast, the Betti numbers of higher rank moduli spaces are generally
unknown.
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The Main Conjecture

Conjecture (C-Woolf)

Fix a rank r > 0 and a first Chern character c . Then the ith Betti number
of MX ,H(r , c ,∆) stabilizes as ∆ tends to ∞ and the limit is independent
of r , c ,H.

More precisely, given an integer k , there exists ∆0(k) such that for
∆ ≥ ∆0(k) and i ≤ k

bi (MX ,H(r , c ,∆)) = bi ,Stab(X ).

Furthermore, if H is in a compact subset C of the ample cone of X , then
∆0(k) can be chosen independently of H ∈ C.
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Numerical evidence

Ellingsrud-Stromme’s table for the Betti Numbers of P2[n]

n
1 1 1
2 1 2 3
3 1 2 5 6
4 1 2 6 10 13
5 1 2 6 12 21 24
6 1 2 6 13 26 39 47
7 1 2 6 13 28 49 74 83
8 1 2 6 13 29 54 94 131 150
9 1 2 6 13 29 56 105 167 232 257

10 1 2 6 13 29 57 110 189 298 395 440
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Yoshioka’s table for rank 2, c1 = H bundles on P2

c2
1 1
2 1 2 3
3 1 2 6 9 12
4 1 2 6 13 24 35 41
5 1 2 6 13 29 51 85 113 129
6 1 2 6 13 29 57 106 175 262 337 370
7 1 2 6 13 29 57 113 200 342 527 746 922 1002
8 1 2 6 13 29 57 113 208 372 625 995 1464 1978 2390 2556
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Manschot’s table for rank 3, c1 = H bundles on P2

c2
2 1 1
3 1 2 5 8 10
4 1 2 6 12 24 38 54 59
5 1 2 6 13 28 52 94 149 217 273 298
6 1 2 6 13 29 56 108 189 322 505 744 992 1200 1275
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K3 and abelian surfaces

The conjecture is known for smooth moduli spaces of sheaves on K3 and
abelian surfaces.

By Mukai, Huybrechts and Yoshioka, smooth moduli spaces of
sheaves on a K3 surface X are deformations of X [n] of the same
dimension. Hence, they are diffeomorphic to X [n].

By Yoshioka, a smooth moduli space of sheaves MX ,H(γ) is
deformation equivalent to X ∗ × X [n] of the same dimension, where
X ∗ is the dual abelian surface.
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History

Follows philosophy of Donaldson, Jun Li and Gieseker

O’Grady’s theorem says that the moduli spaces become irreducible as ∆
tends to infinity.

Jun Li showed the stabilization of the first and second Betti numbers in
rank 2.

Connection to the Atiyah-Jones Conjecture and work of Taubes
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Yoshioka computed the Betti numbers of moduli spaces of rank 2
sheaves on P2 and proved the stabilization of the Betti numbers.

Yoshioka and Göttsche computed the Betti and Hodge numbers of
MX ,H(γ) when r = 2 and X is a ruled surface.

Yoshioka observed the stabilization of the Betti numbers for rank 2
bundles on ruled surfaces.

Göttsche observed that the low degree Hodge numbers are
independent of the ample H and gives a nice formula for them.
Göttsche further extended his results to rank 2 bundles on rational
surfaces for polarizations that are KX -negative.

Manschot building on the work of Mozgovoy gave a formula for the
Betti numbers of the moduli spaces when X = P2.
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Remarks

Göttsche and Soergel computed the Hodge numbers of
MX ,H(1, c,∆). They stabilize as ∆ tends to ∞. We expect the
Hodge numbers of MX ,H(r , c ,∆) to also stabilize to the stable Hodge
numbers of MX ,H(1, c ,∆), at least when MX ,H(r , c ,∆) is smooth.

We expect the conjecture to hold for related moduli spaces:
Matsuki-Wentworth moduli space of twisted Gieseker semistable
sheaves, Bridgeland moduli spaces or moduli spaces of pure one
dimensional sheaves.

One can ask for effective expressions for ∆0(k). Sayanta Mandal
obtained such effective bounds for P2.

Are there geometric reasons for the equality of numbers?
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sheaves, Bridgeland moduli spaces or moduli spaces of pure one
dimensional sheaves.

One can ask for effective expressions for ∆0(k). Sayanta Mandal
obtained such effective bounds for P2.

Are there geometric reasons for the equality of numbers?
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Take the Grothendieck Ring of varieties R.

Invert L = [A1]

Complete the resulting with respect to the Z-graded decreasing filtration

[X ] La ∈ F i if dim(X ) + a ≤ −i

Denote the resulting ring A−.

We say a sequence of elements ai ∈ A− stabilizes to a if the sequence
L− dim(ai )ai converges to a.

Given smooth projective varieties Xi of dimension di , we want a notion of
stabilization in A− that guarantees that the low-degree Betti numbers of
Xi stabilize. Consider L−di [Xi ]. By Poincaré duality,

P[Xi ](t) = PL−di [Xi ]
(t−1), H[Xi ](x , y) = HL−di [Xi ]

(x−1, y−1).

If L−di [Xi ] converges in A−, then the low-degree Betti/Hodge numbers of
Xi stabilize.
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Vakil and Wood conjecture that the class of MX ,H(1, c ,∆) stabilizes in
A−.

One can ask whether the classes of MX ,H(r , c ,∆) also stabilize in A− to
the stable class of MX ,H(1, c ,∆) as ∆ tends to ∞?

Izzet Coskun (UIC) The stabilization of the cohomology of moduli spaces of sheavesZAG, June 30, 2020 17 / 32



Vakil and Wood conjecture that the class of MX ,H(1, c ,∆) stabilizes in
A−.

One can ask whether the classes of MX ,H(r , c ,∆) also stabilize in A− to
the stable class of MX ,H(1, c ,∆) as ∆ tends to ∞?

Izzet Coskun (UIC) The stabilization of the cohomology of moduli spaces of sheavesZAG, June 30, 2020 17 / 32



A more cautious conjecture would replace the Betti numbers in the
Conjecture with the virtual Betti numbers.

Speculation: as ∆ increases, the cohomology of MX ,H(r , c ,∆)
becomes pure and Poincaré duality holds in larger and larger ranges.

Little evidence for the conjecture for general type surfaces.

The geometry of the moduli space for small ∆ can be awful!

Theorem (C-Huizenga)

For any integer k , there is a number dk � 0 such that if d ≥ dk , then a
very general surface X ⊂ P3 of degree d has some moduli space
MX (2,H, s) with at least k components.
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Main Theorem

Theorem (C-Woolf)

Let X be a smooth, complex projective rational surface and let H be a
polarization such that H · KX < 0. The classes [MX ,H(r , c ,∆)] of the
moduli stacks of Gieseker semistable sheaves stabilize in A− to

∞∏
i=1

1

(1− L−i )χtop(X )

as ∆ tends to ∞.
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Corollary (C-Woolf)

The virtual Betti and Hodge numbers of MX ,H(r , c ,∆) stabilize, and the
generating functions for the stable numbers b̃i ,Stab and h̃p,qStab are given by

∞∑
i=0

b̃i ,Stabt
i =

∞∏
i=1

1

(1− t2i )χtop(X )

∞∑
p,q=0

h̃p,qStabx
pyq =

∞∏
i=1

1

(1− (xy)i )χtop(X )
.
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Corollary (C-Woolf–Yoshioka)

Let X be a rational surface and H a polarization such that KX · H < 0.
Assume that there are no strictly semistable sheaves of rank r and first
Chern class c . Then the Poincaré and Hodge polynomials of MX ,H(r , c ,∆)
stabilize as ∆ tends to ∞ and the generating functions for the stable Betti
and Hodge numbers are given by

(1− t2)
∞∏
i=1

1

(1− t2i )χtop(X )

(1− xy)
∞∏
i=1

1

(1− (xy)i )χtop(X )
,

respectively.
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Wall-Crossing

Joyce’s Wall-Crossing formula:

[MH2(γ)] =
∑

∑`
i=1 γi=γ

S(γ1, . . . , γ`)L−
∑

1≤i<j≤` χ(γj ,γi )
∏̀
i=1

[MH1(γi )]
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Proposition

Let H1 be ample and let H2 be big and nef. Assume that Hi · KX < 0.
Then for all integers v , there is a ∆0(v) > 0 such that for all γ ∈ K 0(X )
with rk(γ) = r , c1(γ) = c , and ∆(γ) ≥ ∆0(v), all the terms in the sum
with ` > 1 have dimension less than v .

Moreover, if C is a compact convex subset of the KX -negative part of the
big and nef cone and H1,H2 ∈ C, then ∆0(v) can be chosen to depend
only on C.
In particular, [MH1(γ)] stabilizes in A− as ∆ tends to ∞ if and only if
[MH2(γ)] does; and they have the same stabilization.
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Blowing up

YX ,H(q) =
∑

[Mµ,s
X ,H(r ,C , d)]q−d

ŶX ,H,m(q) =
∑

[Mµ,s

X̂ ,p∗H
(r ,C −mE , d)]q−d .

Blowup formula of Yoshioka and Mozgovoy

ŶX ,H,m(q) = Fm(q)YX ,H(q),

Fm(q) =
∏
k≥1

1

(1− Lrkqk)r

∑
∑r

i=1 ai=0, ai∈Z+m
r

L
∑

i<j (aj−ai
2

)q−
∑

i<j aiaj .
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Y ′X ,H(q) =
∑

[Mµ,s
X ,H(r ,C , d)]L2rd−C2+r2χ(OX )q−d

Ŷ ′X ,H,m(q) =
∑

[Mµ,s

X̂ ,p∗H
(r ,C −mE , d)]L2rd−C2+r2χ(OX )q−d .

Ŷ ′X ,H,m(q) = Fm(L−2rq)Y ′X ,H(q)
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Lemma

The sequence [Mµ,s

X̂ ,p∗H
(r ,C −mE , d)] stabilizes in A− if and only if the

sequence [Mµ,s
X ,H(r ,C , d)] does.

Proposition

Suppose that the [Mµ,s
X ,H(r ,C , d)] stabilize in A−. We have the relation

lim
q→1

(
(1− q)Ŷ ′X ,H,m(q)

)
=
∞∏
k=1

1

1− L−k
lim
q→1

(
(1− q)Y ′X ,H(q)

)
between the generating series for Mµ,s

X ,H(r ,C , d) and

Mµ,s

X̂ ,p∗H
(r ,C −mE , d).
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The sum ∑
∑r

i=1 ai=0, ai∈Z+m
r

L
∑

i<j (aj−ai
2

)+2r
∑

i<j aiaj

is independent of m.

Then use Macdonald identities to show that

∑
∑r

i=1 ai=0, ai∈Z

L−
∑

i<j (ai−aj
2

) =
∞∏
k=1

(1− L−rk)r

1− L−k
.

Fm(L−2r ) =
∞∏
k=1

1

1− L−k
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The minimal rational surfaces are P2 and the Hirzebruch surfaces
Fe = P(OP1 ⊕OP1(e)), e 6= 1.

Every rational surface can be obtained by successively blowing up one of
these surfaces.

We first understand the moduli spaces on F1.
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Theorem

Assume r | c · F . Then the classes [MF1,E+F (r , c,∆)] stabilize in A− to

∞∏
k=1

1

(1− L−i )4
.

Joyce’s wall-crossing starting with Mozgovoy’s calculation of
[MF1,F (r , c ,∆)]. In fact, Mozgovoy calculates [MX ,F (r , c ,∆)], for any
ruled surface X .

1 If r - c · F , then the stack is empty.

2 If r | c · F and X is a rational ruled surface, then the classes
[MX ,F (r , c,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i )4
.
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1 Using the blowup formula, we conclude that the classes
[MP2(r , c ,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i )3
.

2 Using the blowup formula and wall-crossing, we get that the classes
[MF1,H(r , c ,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i )4
.

3 Fe is obtained from Fe−1 by an elementary modification. Using the
blowup formula twice and induction, the same holds for Fe .
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Finally, by induction on the number of blowups, the blowup formula and
wall-crossing, we obtain:

Theorem (C-Woolf)

Let X be a rational surface and let H be a polarization such that
H · KX < 0. Then the classes [MX ,H(r , c,∆)] stabilize in A− to

∞∏
i=1

1

(1− L−i )χtop(X )
.
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Thank you!
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