
1. For those who enjoy thinking about the moduli space of curves.

Here are some basic questions that one can ask about the moduli space of curves
Mg and some papers that address these questions. The references that I suggest
are by no means complete, the most recent or even the most accessible. It is just a
list of fun papers to get started.

Question 1: What is the cohomology of Mg? A complete answer is currently far
from accessible, but a lot has been written on the subject. See [AC], [Dia], [Har1],
[Har2], [HZ]. If the cohomology is too hard, how about the tautological ring? See
[Fab], [FaP1], [FaP2]. See also recent work of Graber and Vakil.
Question 2: What is the Kodaira dimension of M g? See [EH5], [H], [HM2].
There is some recent work of Gabi Farkas extending the work of Eisenbud, Harris,
Mumford and Adam Logan. See his web page.

Question 3: What are the ample divisors on Mg? What are the effective divisors

on Mg? See [HMo], [GKM], [FaP3]. Deepee Khosla and Gabi Farkas have some
fascinating new work on the subject.

Question 4: What is Brill-Noether theory? How can it be used to understand the
geometry of curves? See [HM1], [EH3], [EH6], [EH4] , [EH2], [EH1].

Question 5: What is the moduli space of curves? How does one construct it? See
[HM1], [MFK].

2. For those who enjoy thinking about Kontsevich moduli spaces and

quantum cohomology.

Question 1. How do I start learning about stable maps and quantum cohomology?
See [FP].

Question 2. What is the cohomology of the Kontsevich moduli space? What is
the divisor theory of the Kontsevich moduli space? See [Pa1], [Pa2]. There is some
recent work on the Chow rings of the Kontsevich moduli spaces by Anca and Andrei
Mustata. See Intermediate Moduli Spaces of Stable Maps, math.AG/0409569 and
On the Chow ring of M0,m(n, d), math.AG/0507464.

Question 3. How does one compute Gromov-Witten invariants? See [Ga2], [Ga1],
[V], [GP].

Question 4. Can the moduli space of stable maps be used to give cool applications
to questions about vector bundles? See [PR].

Question 5. What other cool things are going on in the subject? Some more recent
work can be found on the following preprints by R. Pandharipande, A. Okunkov,
D. Maulik, J. Bryan and collaborators listed below.

(1) A topological view of Gromov-Witten theory, math.AG/0412503
(2) Quantum cohomology of the Hilbert scheme of points in the plane, math.AG/0411210
(3) The local Gromov-Witten theory of curves, math.AG/0411037
(4) Gromov-Witten theory and Donaldson-Thomas theory, I, math.AG/0312059
(5) Gromov-Witten theory and Donaldson-Thomas theory, II, math.AG/0406092
(6) The equivariant Gromov-Witten theory of P

1, math.AG/0207233
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3. For those who find dimension 1 claustrophobic.

How about the moduli spaces of surfaces? Here even existence is very recent and
almost nothing is known about their detailed geometry. See however [KSB], [Al1],
[Al2], [BK].

One can consider many other moduli problems such as moduli spaces of vector
bundles on a curve or surface, the moduli space of abelian varieties, moduli spaces of
polarized K3 surfaces, moduli spaces of pairs, etc. There has been a lot of progress
in questions relating to many of these moduli spaces in recent years. See the work
of Alexeev, Paul Hacking, Klaus Hulek among many others.

4. For those who like Mori theory and birational geometry.

For a great introduction to the subject see the two books [Deb], [KM]. If you are
interested, you can explore the papers of Kollár, Miyaoka, Mori, Reid, Shokurov
and others on the subject.

Recently there has been some new developments in the field. For example, see
the preprints of Hacon and McKernan.

(1) On the existence of Flips math.AG/0507597
(2) Boundedness of pluricanonical maps of varieties of general type math.AG/0504327
(3) Shokurov’s Rational Connectedness Conjecture math.AG/0504330

There is also some recent work of Boucksom, Campana, Demailly, Paun, Pe-
ternell and collaborators that would be great to explore. See for example, The
pseudo-effective cone of a compact Kähler manifold and varieties of negative Ko-
daira dimension math.AG/0405285.

5. For those who like the proper mix of birational geometry and

moduli theory.

Brendan Hassett has been doing some fascinating work combining Mori theory
and the moduli space of curves. It would be good to explore his work. Another
great paper to explore would be [Th].

6. For those who enjoy questions of rational connectivity and

finding sections.

Rational connectivity has emerged in the last decade as a very useful substitute
for rationality and unirationality in studying the geometry varieties. Rationally con-
nected varieties exhibit interesting properties. In the past decade we have learned
a lot about them, but many questions remain. Some good papers and books to ex-
plore would be [GHS], [KSC], [K]. There has been recent progress on the question
of weak approximation; see the work of Brendan Hassett and Yuri Tschinkel.

7. For those who enjoy questions of hyperbolicity.

The Mordell-Faltings theorem asserts that a curve of g ≥ 2 defined over a number
field has only finitely many points over any finite field extension of that number field.
Hyperbolicity is a way of extending the condition of g ≥ 2 to higher dimensional
varieties. For those who wish to explore the topic see [La], [Dem], [Siu1], [Siu2],
[SY], [CHM],
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8. For those who prefer questions with more arithmetic flavor.

Under what conditions can one find rational points on a variety? Rational points
on an elliptic curve are potentially dense. How about for the higher dimensional
analogues of elliptic curves, for example K3 surfaces? Are rational points on K3
surfaces potentially dense? No one knows, but there are many instances when one
can prove results about rational points on K3 surfaces. See for example, [BT], [HT],
[Br]. It would be fun to explore recent work of Ronald van Luijk, Brendan Hassett
and Yuri Tschinkel on the subject.
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