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Abstract. We prove that a general complete intersection of dimension n, codimension c and type
d1, . . . , dc in PN has ample cotangent bundle if c ≥ 2n−2 and the di’s are all greater than a bound
that is O(1) in N and quadratic in n. This degree bound substantially improves the currently
best-known super-exponential bound in N by Deng, although our result does not address the case
n ≤ c < 2n− 2.

1. Introduction

Let X be a general complete intersection in PN of dimension n > 1 and type d1, . . . , dc. In this
note, we prove that if c ≥ 2n− 2 and

di ≥
(2n− 2)(24n− 28)

N − 3n+ 3
+ 2,

then the cotangent bundle ΩX is ample.

Debarre conjectured that a general complete intersection X ⊂ PN with c ≥ n has ample
cotangent bundle provided that the degrees di defining X are sufficiently large [Deb05]. Debarre’s
Conjecture has been proven by both Brotbek and Darondeau [BD18] and Xie [Xie18]. Brotbek

and Darondeau do not provide effective bounds, while Xie showed that one can take di ≥ NN2

to guarantee that ΩX is ample [Xie18]. Deng in [Den16, Den17] improved the bounds to di ≥
16c2(2N)2N+2c.

When c ≥ 2n − 2, our bounds are vast improvements on these exponential bounds. In fact,
our bound is 3 as soon as N ≥ 48n2 − 101n + 53. In earlier work, Brotbek [Bro16] proved that
if c ≥ 3n − 2 and all the degrees are equal di = d, then ΩX is ample provided that d ≥ 2N + 3.
While our bound is less restrictive on c and is better for N large with respect to n, in the case
c ≥ 3n − 2, di = d for all i, and N small relative to n, Brotbek’s bound of 2N + 3 is better.
Finally, Brotbek in [Bro14] showed that a general complete intersection surface has ample ΩX if
di ≥ 8N+2

N−3
.

The first step is to clarify and improve Brotbek’s [Bro14] estimates that guarantee that ΩX

is ample outside a codimension 2 subvariety. We use a more careful combinatorial analysis and
a theorem of Darondeau. This sets up a new application of a technique of Riedl and Yang
[RY16, RY18], which allows us to remove the non-ample locus. This process loses a little on the
codimension bound relative to [BD18], but gives much better bounds on the degrees.
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Organization of the paper. In §2, following Brotbek [Bro14], we obtain degree bounds that
guarantee that ΩX is ample outside a variety of codimension 2. In §3, using the technique of Riedl
and Yang [RY16, RY18], we show how to remove the non-ample locus.

Acknowledgments. We thank Damian Brotbek, Lionel Darondeau, Lawrence Ein, Mihai Păun
and David Yang for enlightening discussions.

2. Ampleness outside a codimension 2 set

Let X ⊂ PN be a general complete intersection of dimension n and type d1, . . . , dc. We always
assume that the codimension c = N − n ≥ n. Let ΩX denote the cotangent bundle of X and let

π : PΩX → X

be the natural projection. In this section, we give bounds on the degrees di that guarantee that ΩX

is ample outside of a codimension 2 set. We follow the basic strategy from Brotbek [Bro14] closely.
However, using a more careful analysis of the combinatorics and a new theorem of Darondeau, we
improve his bounds, which are exponential in n, significantly.

Definition 2.1. Let E be a vector bundle on a projective variety Y and let H be an ample line
bundle on Y . Let π : P(E) → Y denote the projection. If for some ε with 0 < ε � 1, any
irreducible curve C ⊂ P(E) with C · OP(E)(1) < ε C · π∗H satisfies π(C) ⊂ T , then E is said to be
ample outside T ⊂ Y .

It follows from the definition that if Symk E is globally generated outside of a subvariety T of
Y for some k > 0, then E ⊗ H is ample outside of T . In [Bro14] Brotbek proves the following
theorem.

Theorem 2.2. [Bro14, Theorem 4.5, Corollary 4.7] Let X ⊂ PN be a general complete intersection
of dimension n and type d1, . . . , dc. If OPΩX

(1)⊗π∗OX(−a−N) on PΩX is big, then the projection
of the stable base locus of OPΩX

(1) ⊗ O(−a) under π has codimension at least 2 in X. Thus, if
OPΩX

(1)⊗ π∗OX(−N − 1) is big, then ΩX is ample outside an algebraic set Y of codimension at
least 2 in X, where Y is the image under π of the stable base locus of OPΩX

(1)⊗ π∗OX(−1).

We now explain how a theorem of Darondeau allows us to remove the dependence on N in
Theorem 2.2. Let PN1 × · · · × PNc be the moduli space of all tuples of homogeneous polynomi-
als (f1, . . . , fc) of degrees d1, . . . , dc, respectively. Let B ⊂ PN1 × · · · × PNc be the Zariski open
subset parameterizing tuples that intersect transversely and thus define smooth complete inter-
sections of type d1, . . . , dc. Let U be the universal family over B, whose points parametrize tuples
(p, f1, . . . , fc) where p ∈ V (f1, . . . , fc).

Theorem 2.3 (Main Theorem, compact case from [Dar14]). The vector bundle TP(ΩU/B)⊗OPN (3)⊗
OB(1, . . . , 1) is globally generated.

By replacing Merker’s bound (Theorem 4.9 in [Bro14]) with Darondeau’s improved bound from
[Dar14] in the proof of Theorem 4.5 in [Bro14], one obtains the following.

Theorem 2.4. Let X ⊂ PN be a general complete intersection of dimension n and type d1, . . . , dc.
If OPΩX

(1)⊗π∗OX(−a−3) on PΩX is big, then the projection of the stable base locus of OPΩX
(1)⊗

OX(−a) under π has codimension at least 2 in X. Thus, if OPΩX
(1)⊗ π∗OX(−4) is big, then ΩX

is ample outside an algebraic set Y of codimension at least 2 in X, where Y is the image under π
of the stable base locus of OPΩX

(1)⊗ π∗OX(−1).
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In view of Theorem 2.4, we desire effective bounds on the degrees di that guarantee that the line
bundles OPΩX

(1) ⊗ π∗OX(−3) and OPΩX
(1) ⊗ π∗OX(−4) are big. Recall the following criterion

for bigness of a line bundle.

Theorem 2.5. [Laz14, Theorem 2.2.15] If F and G are nef line bundles on an r-dimensional
variety and F r > rF r−1 ·G, then F −G is big.

We will use the following proposition from Brotbek.

Proposition 2.6. [Bro14, Proposition 4.2] Let Y ⊂ PN be a smooth projective variety. The bundle
ΩY (2) is ample if and only if Y does not contain lines.

Theorem 2.7. Let X ⊂ PN be a smooth complete intersection of dimension n and type d1, . . . , dc
with c ≥ n. Let a ≥ −1 be an integer. If

di ≥
n((2n− 1)(a+ 2) + 2)

N − 2n+ 1
+ 2

for all i, then OPΩX
(1)⊗ π∗OX(−a) is big.

Proof. Under our assumptions on di, the general complete intersection X does not contain any
lines. Consequently, by Brotbek’s Proposition 2.6, ΩX(2) is ample. Equivalently, the line bundle
F = OPΩX

(1)⊗π∗OX(2) is ample on PΩX . The line bundle G = π∗OX(a+2) is nef on PΩX being
the pullback of a nef line bundle on X. By Theorem 2.5, OPΩX

(1)⊗ π∗OX(−a) is big if

F 2n−1 > (2n− 1)F 2n−2 ·G.

Recall that the Segre classes of a rank r vector bundle E are defined by

si(E) = π∗((c1(OPE(1))r−1+i).

Thus, F 2n−1 = sn(ΩX(2)) and by push-pull, F 2n−2 ·G = sn−1(ΩX(2)) · (a+ 2)H. Let s(E) denote
the total Segre class of E.

The Euler sequence on PN twisted by OPN (2)

0→ ΩPN (2)→ O(1)N+1 → O(2)→ 0

implies that

s(ΩPN (2)) =
1− 2H

(1−H)N+1
.

The conormal sequence for X

0→
c⊕
i=1

O(−di + 2)→ ΩPN (2)|X → ΩX(2)→ 0

yields

s(ΩX(2)) =
(1− 2H)

∏c
i=1(1 + (di − 2)H)

(1−H)N+1
.

Let εk(x1, . . . , xc) =
∑

i1<···<ik xi1 · · ·xik denote the kth elementary symmetric function in
x1, . . . , xc. For an r-tuple d = (d1, . . . , dc), let

φk,d = εk(d1 − 2, . . . , dc − 2).
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Since

1

(1− x)N+1
=

dN

dxN

(
1

N !

1

1− x

)
=

dN

dxN

(
1

N !

∑
i≥0

xi

)
=
∑
i≥0

(
i+N

N

)
xi,

we obtain the relation

s(ΩX(2)) = (1− 2H)

(∑
i≥0

φi,dH
i

)(∑
i≥0

(
i+N

N

)
H i

)
.

For our purposes, we only need sn(ΩX(2)) and sn−1(ΩX(2)). Then

s(ΩX(2)) = (1− 2H)(· · ·+ bn−2H
n−2 + bn−1H

n−1 + bnH
n),

where

bn =
n∑
k=0

φk,d

(
N + n− k

N

)

bn−1 =
n−1∑
k=0

φk,d

(
N + n− k − 1

N

)

bn−2 =
n−2∑
k=0

φk,d

(
N + n− k − 2

N

)
.

Then we have

sn = (bn − 2bn−1)Hn and sn−1 = (bn−1 − 2bn−2)Hn−1.

We would like to determine when sn − (2n− 1)(a+ 2)sn−1 is positive. This quantity equals

bn − ((2n− 1)(a+ 2) + 2)bn−1 + 2(2n− 1)(a+ 2)bn−2.

Expanding out this expression using the convention that φk,d = 0 for k < 0, we obtain

(1)
n∑
k=0

(
N + n− k

N

)
(φk,d − ((2n− 1)(a+ 2) + 2)φk−1,d + 2(2n− 1)(a+ 2)φk−2,d)

This quantity is positive if
φk,d
φk−1,d

≥ ((2n− 1)(a+ 2) + 2)

for all 1 ≤ k ≤ n. Lemma 2.8 shows that

φk,d
φk−1,d

≥ c− k + 1

k
min
i
{di − 2}.

Hence, the quantity (1) is positive if

c− k + 1

k
min
i
{di − 2} ≥ ((2n− 1)(a+ 2) + 2)

for all 1 ≤ k ≤ n. Recalling that c = N − n, this inequality is satisfied for 1 ≤ k ≤ n when

di ≥
n

N − 2n+ 1
((2n− 1)(a+ 2) + 2) + 2.

This concludes the proof of the theorem modulo the proof of Lemma 2.8. �
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Lemma 2.8. Let k < r and let xi be positive real numbers. Then the following inequality holds

εk(x1, . . . , xr)

εk−1(x1, . . . , xr)
≥ r − k + 1

k
min
i
{xi}.

Proof. First, we show that the quotient εk/εk−1 is an increasing function in xi. This allows us to
replace all of the xi with min{xi}. Recall that

∂

∂xi
εk(x1, . . . , xr) = εk−1(x1, . . . , x̂i, . . . , xr).

For simplicity, denote εk(x1, . . . , xr) by εk and εk(x1, . . . , x̂i, . . . , xr) by ε̂k,i. Hence,

∂

∂xi

εk(x1, . . . , xr)

εk−1(x1, . . . , xr)
=
εk−1ε̂k−1,i − εk ε̂k−2,i

ε2k−1

.

We would like to show this quantity is positive. It suffices to show the numerator is positive. We
compute the coefficient of

∏r
j=1 x

aj
j in εk−1ε̂k−1,i and εk ε̂k−2,i.

First, both coefficients are zero unless

0 ≤ aj ≤ 2 for all j 6= i, 0 ≤ ai ≤ 1, and
r∑
j=1

aj = 2k − 2.

Let S be the set of j such that aj = 2 and let |S| = m. Let I ⊂ {1, . . . , r} be the set of j such
that aj = 1.

If i ∈ I, then the coefficient of
∏r

j=1 x
aj
j in εk−1ε̂k−1,i is given by

(
2k−3−2m
k−2−m

)
. This is the number

of ways of writing
∏r

j=1 x
aj
j as a product of two monomials m1m2 of length k1 such that the terms

in m1 and m2 are all distinct and xi | m1. Since the terms in m1 and m2 are distinct, xj|m1 and
xj|m2 for j ∈ S. Hence, the coefficient is given by the number of ways of choosing k − 2 − m
elements in I\{i}.

Similarly, if i ∈ I, the coefficient of
∏r

j=1 x
aj
j in εk ε̂k−2,i is given by

(
2k−3−2m
k−1−m

)
. This corresponds

to choosing k − 1 − m elements out of I\{i}. Hence, when i ∈ I, the coefficients
∏r

j=1 x
aj
j in

εk−1ε̂k−1,i and εk ε̂k−2,i are equal.

By similar reasoning, if i 6∈ I, then the coefficient of
∏r

j=1 x
aj
j in εk−1ε̂k−1,i is given by

(
2k−2−2m
k−1−m

)
,

with the convention that
(

0
0

)
= 1. The coefficient of

∏r
j=1 x

aj
j in εk ε̂k−2,i is given by

(
2k−2−2m
k−m

)
.

Since
(

2k−2−2m
k−1−m

)
>
(

2k−2−2m
k−m

)
, we conclude that the numerator is positive.

Hence, the quotient εk(x1,...,xr)
εk−1(x1,...,xr)

increases as xi increases. Let x = min{xi}. Hence, we get a

lower bound for the quotient by setting each of the xi = x. We obtain εk(x, . . . , x) =
(
r
k

)
xk. This

gives
εk(x1, . . . , xr)

εk−1(x1, . . . , xr)
≥

(
r
k

)
xk(

r
k−1

)
xk−1

=
r − k + 1

k
x

This concludes the proof of the lemma. �

Combining Theorem 2.4 and Theorem 2.7, we obtain the following corollary.

Corollary 2.9. Let X ⊂ PN be a general complete intersection of dimension n and type d1, . . . , dc
with c ≥ n. If

di ≥
(2n2 − n)(a+ 5) + 2n

N − 2n+ 1
+ 2
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for all i, then the projection of the stable base locus of OPΩX
(1)⊗O(−a) has codimension at least

2 in X. In particular, if

di ≥
12n2 − 4n

N − 2n+ 1
+ 2

for all i, then the projection of the stable base locus of OPΩX
(1) ⊗ π∗OX(−1) has codimension at

least 2 in X, which implies ΩX is ample outside a variety of codimension at least 2 in X.

3. Ampleness everywhere

In this section, using a technique of Riedl and Yang introduced in [RY16] and further developed
in [RY18], we remove the base locus at the expense of slightly worse bounds.

For simplicity, let d = (d1, . . . , dc). Let UN,d denote an open subvariety of the universal complete
intersection parameterizing pairs (p,X), where X is a complete intersection in PN of dimension
n and type d1, . . . , dc and p is a point of X. The main tool is the following theorem of Riedl and
Yang.

Theorem 3.1. [RY18, Theorem 2.3] Let M and t be positive integers. Suppose that for every N ,
we have a countable union of locally closed subvarieties ZN,d ⊂ UN,d satisfying the following two
conditions:

(1) The codimension of ZM,d in UM,d is at least t.
(2) If (p,X0) ∈ ZN−1,d is a linear section of (p,X) ∈ UN,d, then (p,X) ∈ ZN,d.

Then for any u ≥ 0, ZM−u,d ⊂ UM−u,d has codimension at least u+ t.

Applying Theorem 3.1 to Corollary 2.9, we can obtain the main result of this note.

Theorem 3.2. Let X ⊂ PN be a general complete intersection of dimension n and type d1, . . . , dc,
and suppose n > 1.

(1) If c ≥ 2n− 1, a ≥ −1 and

di ≥
(8n2 − 10n+ 3)a+ 40n2 − 46n+ 13

N − 3n+ 2
+ 2

for all i, then the stable base locus of OPΩX
(1)⊗ π∗OX(−a) is empty and some multiple is

globally generated.
(2) If c ≥ 2n− 2 and

di ≥
(2n− 2)(24n− 28)

N − 3n+ 3
+ 2

for all i, then ΩX is ample.

If X is a curve, ΩX is a line bundle of degree −N − 1 +
∑

i di, which is globally generated if∑
i di ≥ N + 1 and ample if

∑
i di > N + 1.

Proof. By Corollary 2.9, if M ≥ 2m and

di ≥
(2m2 −m)(a+ 5) + 2m

M − 2m+ 1
+ 2

then for some k � 0 we have Symk(ΩX)(−ka) is globally generated outside a subvariety of
codimension at least 2 for a general complete intersection X ⊂ PM of dimensinon m. Let UN,d be
the subvariety of the universal complete intersection of type d1, . . . , dc in PN consisting of pairs
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(p,X) such that all sections of Symk(ΩX)(−ka) extend to the general complete intersection. Let
ZN,d be the locus of points (p,X) where Symk(ΩX)(−ka) is not globally generated. When N = M ,
ZM,d has codimension at least 2 in UM,d, so satisfies (1) in Theorem 3.1 with t = 2. Combining
the restriction sequence

0→ ΩX(−1)→ ΩX → ΩX |X∩H → 0

and the conormal sequence

0→ OX∩H(−1)→ ΩX |X∩H → ΩX∩H → 0,

we see that there is a surjective map ΩX → ΩX∩H → 0. Consequently, we obtain a surjective
map Symk(ΩX)(−ka) → Symk(ΩX∩H)(−ka). Hence, if the latter is not globally generated at p,
the former is certainly not globally generated at p either. Hence, ZN,d satisfies (2) in Theorem
3.1. We conclude that ZM−u,d has codimension at least u + 2 in UM−u,d. If u + 2 > m − u,
then the projection of ZM−u,d to the space of complete intersections cannot be dominant. Letting
N = M − u, n = m− u, u = n− 1 and substituting into the degree bounds for di, we obtain the
first statement.

Similarly, by Corollary 2.9, if

di ≥
12m2 − 4m

M − 2m+ 1
+ 2,

then ΩX is ample outside a subvariety of codimension at least 2. Let ZN,d be the locus of points
(p,X) where ΩX fails to be ample. Then for N = M this locus has codimension at least 2,
so satisfies (1) in Theorem 3.1 with t = 2. The surjection ΩX → ΩX∩H → 0 induces a map
PΩX∩H → PΩX such that the restriction of OPΩX

(1) to the image coincides with OPΩX∩H (1).
Consequently, given a curve C ∈ X ∩H passing through p satisfying OPΩX∩H (1) · C < ε π∗H · C,
the same curve satisfies OPΩX

(1) · C < ε π∗H · C. Hence, ZN,d satisfies (2) in Theorem 3.1.
We conclude that ZM−u,d has codimension at least u + 2 in UM−u,d. If u + 2 ≥ m − u, then
the projection of ZM−u,d to the space of complete intersections cannot be dominant. If it were
dominant, then the fibers would be finite. However, if the fibers are nonempty, then they have to
be at least 1 dimensional since they contain curves. Letting N = M −u, n = m−u and u = n−2
and substituting into the degree bounds for di, we obtain the second statement. Note that taking
u = n− 2 in this last step requires n > 1. �

Corollary 3.3. Assume that N ≥ 48n2 − 101n + 53. Then the general complete intersection of
dimension n in PN of type d1, . . . , dN−n has ample cotangent bundle if di ≥ 3.

Remark 3.4. Inspired by the case of curves, one could speculate that a complete intersection of
dimension n and type d1, . . . , dc in PN will have ample cotangent bundle if di ≥ 2 provided that
c� n.
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