MATH 553: FINAL PROBLEM SET

This problem set is due May 3, 2019. You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. Throughout assume that all the curves and surfaces are defined over an algebraically closed field of characteristic 0 or sufficiently large characteristic.
Problem 1. Compute the genus of the unique nonsingular projective model of the following curves:
(1) $y^{2}=x^{7}-1$
(2) $y^{3}=x^{5}-1$

Problem 2. Compute the genus of a smooth, complete intersection curve of degrees d_{1}, \ldots, d_{n-1} in \mathbb{P}^{n}. Deduce that a smooth curve of genus 8 cannot be realized as a complete intersection in projective space.
Problem 3. Prove that there does not exist a nonsingular curve of degree 9 and genus 11 in \mathbb{P}^{3}.
Problem 4. (1) The bounded negativity conjecture asserts that the self-intersection of reduced, irreducible curves on a nonsingular, complex, projective surface is bounded below. Prove that if $-K_{X}$ is ample, then the self-intersection of any reduced, irreducible curve C satisfies $C^{2} \geq-1$. Furthermore, $C^{2}=-1$ if and only if C is an exceptional curve.
(2) Classify all the exceptional curves on the blowup of \mathbb{P}^{2} at $r \leq 6$ general points. If you are feeling energetic, do also the cases $r=7$ and 8 .
(3) Let C be a nonsingular curve over an algebraically closed field k of characteristic p. Let F_{r} denote the r-th power of the Frobenius morphism. Compute the self-intersection of the graph of F_{r} in $C \times C$. What can you conclude about the bounded negativity conjecture in positive characteristic?

Problem 5. Compute the zeta function of the Grassmannian $G(2,4)$ and verify the Weil conjectures directly. Generalize to arbitrary Grassmannians $G(k, n)$.
Problem 6. Let a, b be integers. Compute the cohomology of $\mathcal{O}_{\mathbb{F}_{e}}(a E+b F)$. Show that $\mathcal{O}_{\mathbb{F}_{e}}(a E+b F)$ is ample if and only if $b>a e, a, b>0$.

Problem 7. Compute the genus of a smooth curve in the class $a E+b F, b \geq a e$, on \mathbb{F}_{e}. Deduce the possible genera of smooth curves on a quadric cone in \mathbb{P}^{3}.
Problem 8. (1) Show that the anticanonical image of the blowup of \mathbb{P}^{2} at 6 points, three of which are collinear, has a singular point. How many lines does this surface contain?
(2) Show that a cubic surface in \mathbb{P}^{3} with isolated singularities can have at most 4 singular points. (Hint: Show that the points have to be in linearly general position. If there are 5 singular points, consider the twisted cubic curves passing through them.) Find a configuration of 6 points on \mathbb{P}^{2} such that the anticanonical image of the blowup of \mathbb{P}^{2} at these 6 points has 4 singular points. How many lines does your surface have?

