
1. Lecture 1

In this course, we will work over an algebraically closed field k. Unless explicitly specified, we will
always assume that the ground field is algebraically closed. We will assume that our rings are commutative
with unit.

Definition 1.1. Affine n-space over k, denoted by Ank , is the space of n-tuples in k. A closed algebraic
set is the zero locus of a set of polynomials in k[x1, . . . , xn]. Given a set of polynomials {fα}α∈A, we will
denote the algebraic set they define by V ({fα}α∈A). When the ground field is clear from the context we
will omit it from the notation.

When n = 2, it is customary to set x1 = x, x2 = y. Similarly when n = 3, it is common to use x, y, z
as the variables.

Example 1.2. (1) Let f ∈ k[x1, . . . , xn] be a non-constant polynomial. Then V (f) ⊂ An is called the
hypersurface defined by f . If the degree of f is one, then the corresponding hypersurface is called
a hyperplane. If the degree of f is two, then the corresponding hypersurface is called a quadric
hypersurface. You should be familiar with linear and quadric hypersurfaces from past courses.
For example, describe the following quadric hypersurfaces

V (x2 + y2 − 1), V (xy − 1), V (x2 + y2 + z2 − 1)

(2) A point (α1, . . . , αn) in An is an algebraic set. It can be defined as the simultaneous zero locus
of the polynomials xi − αi for i = 1, . . . , n. The set consisting of the pair of points {(0, 0), (1, 1)}
in A2 is an algebraic set. It is the zero locus of the set of polynomials x − y and x(x − 1). The
set of three points Γ1 = {(0, 0), (1, 1), (2, 2)} is an algebraic set defined by the polynomials x− y
and x(x− 1)(x− 2). The set of three points Γ2 = {(0, 0), (0, 1), (1, 0)} is also an algebraic set. It
can be defined by the polynomials x(x− 1), y(y − 1) and xy.

These simple examples already raise many questions. For instance, take the two sets Γ1,Γ2. Although
they are both sets of three points in A2, their equations look very different. Try to answer the questions:
Can Γ1 be defined by equations of degree at most two? Did we need three equations to define Γ2? Could
we have done it with two? What is special about the three equations given in the example? We will
return to these questions in the future.

There is a dictionary between algebra (sets of polynomials in k[x1, . . . , xn]) and geometry (sets of
points in An). Next we would like to make this correspondence more precise.

Let X be an algebraic set. The set of polynomials vanishing on X

I(X) = {f ∈ k[x1, . . . , kn] | f(x) = 0 for all x ∈ X}
forms an ideal.

Our definition of algebraic set, a priori, does not preclude the possibility that it might require infin-
itely many polynomials to define it. In fact, the Hilbert basis theorem guarantees that every ideal in
k[x1, . . . , xn], in particular I(X), is finitely generated. Hence, any algebraic set can be defined as the zero
locus of finitely many polynomials.

We will briefly sketch the proof of the Hilbert basis theorem. We begin with the definition of a
Noetherian ring.

Definition 1.3. A ring R is called Noetherian if it satisfies any of the following equivalent definitions:

(1) Every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
in R stabilizes (i.e., there exists N such that for all n ≥ N , In = IN ).

(2) Every ideal in R is finitely generated.
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(3) Every non-empty set S of ideals has a maximal element (i.e., an ideal I ∈ S with the property
that if I ⊆ J and J ∈ S, then I = J).

Example 1.4. A field k is a Noetherian ring since it has only two ideals (0) and k.

Theorem 1.5 (Hilbert basis theorem). If R is a noetherian ring, then R[x], the polynomial ring over
R, is also Noetherian.

By induction, we conclude that k[x1, . . . , xn] is Noetherian. Hence, every ideal in k[x1, . . . , xn] is
finitely generated.

Proof. Let I be an ideal in R[x]. We show that I is finitely generated. The main trick is the following.
Let Ii be the ideal consisting of 0 and the leading coefficients of the polynomials of degree i in I (Exercise:
check that Ii is an ideal). By multiplying a polynomial of degree i with x we obtain a polynomial of
degree i+ 1 with the same leading coefficient. Consequently, we have an ascending chain of ideals

I1 ⊂ I2 ⊂ · · ·
in R. Since R is Noetherian, this chain stabilizes at some N . Choose generators ai,j for the ideal Ii for
i ≤ N . Since R is Noetherian, these ideals are all finitely generated. Hence, we have a finite number of
generators in total. For each ai,j pick a polynomial fi,j of degree i in I with leading coefficient ai,j . We
claim that these polynomials generate I. Let f ∈ I have degree d, then we can construct an element g
in the ideal generated by fi,j such that f − g has degree at most d− 1. By induction on the degree of f ,
we conclude that f is in the ideal generated by fi,j . �

More generally, we can define a Noetherian module as a module that satisfies any of the following
equivalent properties:

(1) Every ascending chain of submodules

M1 ⊆M2 ⊆M3 ⊆ · · ·
of M stabilizes.

(2) Every submodule of M is finitely generated.
(3) Every non-empty set S of submodules of M has a maximal element.

The following properties are frequently used in algebraic geometry. You should verify them for yourself.

Proposition 1.6. (1) Let M be a Noetherian module. Then every submodule and every factor mod-
ule of M is also Noetherian.

(2) Let M be a module and let N be a submodule of M . If both N and M/N are Noetherian, then
M is Noetherian.

(3) Let R be a Noetherian ring, then a finitely generated R module is Noetherian.

Note that if Xα are closed algebraic sets indexed by a set A, then their intersection ∩α∈AXα is also
a closed algebraic set. It can be defined by the union of the sets of polynomials defining each Xα. The
union of two closed algebraic sets X1 ∪X2 is also algebraic. If f1, . . . , fn define X1 and g1, . . . , gm define
X2, then the set of polynomials figj , as i varies between 1 and n and j varies between 1 and m, define
the union. By induction, any finite union of closed algebraic sets is also algebraic. Finally, note that
∅ = V (1) and An = V (0) are also algebraic. We conclude that if we define closed subsets of An as
the closed algebraic sets, then we obtain a topology on An called the Zariski topology. Unless explicitly
explicitly stated, we will always assume that An is endowed with the Zariski topology.

A word of caution is in order. The Zariski topology is drastically different than most topologies you
have encountered thus far. For example, it is almost never Hausdorff. Consider A1

k. Since k[x] is a
principal ideal domain, if I is a proper, non-zero ideal in k[x], then in is generated by a single polynomial
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f . Since k is algebraically closed, f is a product of linear terms Πi(x−αi). Hence any non-empy, proper
closed set of A1

k is a finite set of points. In particular, note that any two non-empty open sets intersect
non-trivailly. Hence, the topology is not Hausdorff. To note another unusual feature, note that the
product topology on A1 × A1 differs from the Zariski topology on A2.

Next we would like to better understand the dictionary between geometry and algebra.

Proposition 1.7. We have the following inclusions.

(1) If X1 ⊂ X2, then I(X2) ⊂ I(X1).
(2) If I1 ⊂ I2, then V (I2) ⊂ V (I1).
(3) V (I(X)) = X.
(4) I0 ⊂ I(V (I0))

Example 1.8. Different ideals may define the same zero set. For instance, consider the ideals (xn, ym) for
positive n,m. The ideals generated by these polynomials are different for different pairs (n,m). However,
they all vanish at the origin. This example raises the question of characterizing ideals that arise as I(X).
Hilbert’s nullstellensatz provides the answer.

Definition 1.9. The radical
√
I of an ideal I ⊂ R is defined as the set of f ∈ R such that fm ∈ I for

some positive m. An ideal I is called radical if I =
√
I.

Check that the radical of an ideal is also an ideal. Show that prime ideals are radical.

Theorem 1.10 (Hilbert’s Nullstellensatz: weak form). Let k be an algebraically closed field. Then the
maximal ideals in k[x1, . . . , xn] have the form

(x1 − a1, . . . , xn − an) for n elements a1, . . . , an ∈ k.

Note that this theorem gives a one-to-one correspondence between maximal ideals in k[x1, . . . , xn]
and points in Ank provided that the field k is algebraically closed. The assumption that the field k is
algebraically closed is necessary. For instance, that the ideal generated by x2 + 1 in R[x] is maximal, but
does not correspond to any points in A1

R.

Using Rabinowitsch’s trick one can deduce the following stronger statement.

Theorem 1.11 (Hilbert’s Nullstellensatz: strong form). Let k be an algebraically closed field. For any
ideal I ⊂ k[x1, . . . , xn], the ideal of functions vanishing on the common zero locus of I is the radical of I:

I(V (I)) =
√
I.

There is a bijection between affine subvarieties of An and radical ideals in k[x1, . . . , xn].

Proof of the strong form of the Nullstellensatz using the weak form. The inclusion
√
I ⊂ I(V (I)) is clear.

We have to show the reverse inclusion. If I is an ideal in k[x1, . . . , xn] such that V (I) = ∅, then I must
be the unit ideal. Otherwise, I would be contained in a maximal ideal. By the weak form of the
Nullstellensatz, every maximal ideal vanishes at a point. We conclude that the common zeros of I cannot
be empty unless I is the unit ideal.

Suppose f ∈ I(V (I)), we would like to show that fm ∈ I for some m > 0.
Rabinowitsch’s trick: In k[x1, . . . , xn, t] (notice we added an extra variable!) consider the ideal J

generated by I and tf − 1. Note that the zero locus of J is empty since f vanishes on the zero locus of
I, so tf − 1 does not. Hence, J must be the unit ideal. We can express 1 as

1 =
∑

ai(x1, . . . , xn, t)gi(x1, . . . , xn) + b(x1, . . . , xn, t)(tf − 1),

where gi are the generators of I. Now set t = 1/f and clear the denominators. The last term drops out
and we express a power of f in terms of elements in the ideal I. We conclude that

I(V (I)) =
√
I.
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Proof of the weak form of the Nullstellensatz. The proof requires some commutative algebra. Let m be
a maximal ideal in k[x1, . . . , xn]. Then L = k[x1, . . . , xn]/m is a field and it contains k. If we knew
that L is an algebraic extension of k, we would be done. We are assuming that k is algebraically closed.
Hence, the only algebraic extension of k is itself. We conclude that L = k, which is equivalent to the
Nullstellensatz. Showing that L is algebraic over k requires some commutative algebra. The key fact is
the following lemma.

Lemma 1.12. Let R be a Noetherian ring. Let S be a subring of R[x1, . . . , xn] containing R. If
R[x1, . . . , xn] is finitely generated as an S-module, then S is finitely generated as an R algebra.

Proof. Let y1, . . . , ym be the generators of R[x1, . . . , xn] as an S-module. Hence, we can write

xi =
∑

ai,jyj .

Similarly,

yi · yj =
∑
k

bi,j,kyk.

Let T be the subring of S generated over R by the coefficients ai,j and bi,j,k. Since R is Noetherian, T
is also Noetherian. The elements yi generate R[x1, . . . , xn] as a T module. A submodule of a finitely
generated module over a Noetherian ring is finitely generated. Thus S is a finitely generated T module,
hence a finitely generated R-algebra.

�

To conclude the proof, suppose x1, . . . , xr ∈ L are algebraically independent over k and xr+1, . . . , xn
are algebraic over k(x1, . . . , xr). We would like to show that r = 0. By the lemma, k(x1, . . . , xr) is a
finitely generated k-algebra. This is a contradiction unless r = 0. Suppose k(x1, . . . , xr) is generated by
z1, . . . , zm as a K algebra, where

zi =
Pi(x1, . . . , xr)
Qi(x1, . . . , xr)

for some polynomials Pi, Qi. If f is any irreducible polynomial in k[x1, . . . , kr], then we can express 1/f
as a polynomial in zi. Clearing the denominators we deduce that f must divide one of the Qi. But then
there would be only finitely many irreducible polynomials in k[x1, . . . , xr] which is clearly false. This
concludes the proof. �

Next we would like to understand some basic properties of the Zariski topology. Given an algebraic
set X, the Zariski topology on X is the subspace topology induced from An. Let f ∈ k[x1, . . . , xn] be a
polynomial. Then the distinguished open set Uf associated to f is the complement of the zero locus of
f in X. Note that the distinguished open sets give a basis of the topology.

A distinguished open set Uf can itself be realized as a closed algebraic set. If X ⊂ An is the zero locus
of polynomials fα, then Uf is naturally a closed algebraic set in An+1 defined by the polynomials fα and
1− zn+1f . (What is the relation with Rabinowitsch’s trick?)

The Zariski topology is a Noetherian topology. This property becomes important in proofs because it
allows one to use Noetherian induction. We recall the definition.

Definition 1.13. A topological space is called Noetherian if every descending chain of closed sets

X1 ⊃ X2 ⊃ X3 ⊃ · · ·

stabilizes.
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Show that the Zariski topology is Noetherian. It follows that the Zariski topology is quasi-compact,
i.e., every covering has a finite subcover. Note that because the Zariski topology is not Hausdorff, quasi-
compactness does not have the full impact of compactness for spaces like metric spaces. Suppose ∪Ui is
an open cover of X. Then consider Xi = X − (U1 ∪ · · · ∪ Ui). Xi is closed and

X1 ⊃ X2 ⊃ X3 ⊃ · · ·
Hence by the Noetherian property, this sequence of closed sets must stabilize. We conclude that at that
point the Ui’s must cover X.

Definition 1.14. A topological space X is called reducible if X can be written as the union X = X1∪X2

of two proper closed sets. A topological space is called irreducible if it is not reducible. An irreducible
algebraic subset of An is called an affine variety.

Example 1.15. The algebraic set V (x1x2) in A2 is reducible. It can be expressed as the union of V (x1)
and V (x2). On the other hand, V (x1) is irreducible (why?).

Proposition 1.16. An algebraic set X ⊂ An is an affine variety if and only if its ideal I(X) ⊂
k[x1, . . . , xn] is prime.

Proof. Suppose fg ∈ I(X). Then we can write X = (X ∩ V (f)) ∪ (X ∩ V (g)). If X is irreducible, then
either X ∩V (f) = X or X ∩V (g) = X. We conclude that either f or g is in I(X). Hence, I(X) is prime.
Conversely, suppose that I(X) is prime. Then if X = X1 ∪X2, we have I(X) = I(X1) ∩ I(X2). Since
I(X) is prime, we must have (possibly after renumbering) I(X) = I(X1). Then X = X1. �

Note that An is an affine variety. Similarly, a hypersurface defined by an irreducible polynomial is an
affine variety.

Proposition 1.17. Any closed algebraic set X is a finite union of irreducible closed sets. Moreover, the
decomposition of X into irreducible closed sets X = ∪iXi is unique provided that the decomposition is
not redundant (i.e., there does not exist two indices i, j such that Xi ⊂ Xj).

Proof. Suppose a closed algebraic set X cannot be written as a finite union of irreducible closed sets.
Then X is reducible, so X = X1∪Y1 and either X1 or Y1 cannot be written as a finite union of irreducible
closed sets. Up to relabeling assume X1 cannot be written this way. Then X1 = X2 ⊂ Y2 and we can
repeat the argument. We obtain a sequence of strictly decreasing closed sets.

X ⊃ X1 ⊃ X2 ⊃ · · ·
By taking the ideals of functions vanishing on these closed algebraic sets, we obtain an infinite sequence
of ideals

I(X) ⊂ I(X1) ⊂ I(X2) ⊂ · · ·
Since k[x1, . . . , xn] is Noetherian, we obtain a contradiction. We conclude that X can be written as a
union of finitely many closed irreducible sets.

Suppose X = ∪Xi and X = ∪Yj are two non-redundant expressions for X as a union of finitely many
irreducible closed algebraic sets. Then consider

Xi = Xi ∩X = ∪(Xi ∩ Yj).
Since Xi is irreducible, we conclude that Xi = Yj for some j. By symmetry, we see that the non-redundant
decomposition is unique. �

Definition 1.18. The coordinate ring A(X) of a closed algebraic set is the ring k[x1, . . . , kn]/I(X).

Note that X is an affine variety if and only if its coordinate ring A(X) is a domain.
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Definition 1.19. Let U ⊂ X be an open set. Let p ∈ U be a point. A function f on U is regular at p
if there exists an open neighborhood V of p such that f is expressible as a quotient g/h of polynomials
g, h ∈ k[x1, . . . , xn] such that h(p) 6= 0. The function f is called regular on U if it is regular at every
point of U .

Proposition 1.20. Let X be a closed algebraic set. A function φ is regular on X if and only if φ ∈ A(X).
More generally, the regular functions on a distinguished open set Uf is the localization A(X)[1/f ].

Proof. Because the Zariski topology is quasi-compact, we can find finitely many distinguished open sets
Ufα

such that on each open set Ufα
, we can express the regular function φ = gα/hα such that hα does

not vanish on Uα. The common zero loci of hα must be contained in the zero locus of f . By Hilbert’s
nullstellensatz, we conclude that

fm =
∑

pαhα.

But then
fmφ =

∑
pαhα

gα
hα

=
∑

pαgα,

concluding the proof.
�

Definition 1.21. Let X ⊂ An and let Y ⊂ Am be two affine varieties. A map f : X → Y between two
affine varieties is regular if f is given as f(x) = (f1(x), . . . , fm(x), where fi are regular functions on X.

Example 1.22. A regular function is a regular map to A1.

Example 1.23. The map t 7→ (t, t2, t3) gives a regular map from A1 to A3.

Example 1.24. The projection An+1 → An given by (x1, . . . , xn+1) 7→ (x1, . . . , xn) is a regular map.

Example 1.25. Assume that the characteristic of k is p > 0. Let X be an affine variety. Then the
Frobenius morphism F : X → X given by (a1, . . . , an) 7→ (ap1, . . . , a

p
n) is a regular map.

A regular function f : X → Y defines a pull-back map between the coordinate rings of these varieties.
Conversely, every algebra homomorphism between φ : A(Y ) → A(X) is induced by a regular map.
(Why?)

Definition 1.26. A regular map is an isomorphism if it has a regular inverse. Two affine varieties
admitting an isomorphism are called isomorphic.

In particular, note that two affine varieties are isomorphic if and only if their coordinate rings are
isomorphic.

Example 1.27. The regular map t 7→ (t2, t3) gives a one-to-one correspondence between the points of A1

and the plane curve y2 = x3. Note; however, this map is not an isomorphism. The inverse map y/x is
not regular at the origin.

Example 1.28. The hyperbola xy − 1 is isomorphic to A1 − {0} under the projection morphism.

Definition 1.29. Let X be an affine variety. Since the coordinate ring A(X) is a domain, we can form
its function field. The fraction field k(X) of (A(X) is called the rational function field of X. The elements
of k(X) are called rational functions on X.
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