
DISCONNECTED MODULI SPACES OF STABLE BUNDLES ON SURFACES
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Abstract. We use hypersurfaces containing unexpected linear spaces to construct interesting vector
bundles on complete intersection surfaces in projective space. We discover examples of moduli spaces
of rank 2 stable bundles on surfaces of Picard rank one with arbitrarily many connected components.
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1. Introduction

In this note we construct examples of moduli spaces of rank two bundles on surfaces of Picard
rank one with arbitrarily many connected components.

On a smooth projective curve, the moduli space of semistable bundles of rank r and degree d is
irreducible [HuL, Cor. 4.5.5]. In contrast, if dim(X) ≥ 3, then even the Hilbert scheme of points
on X is reducible with components of different dimensions [Ia72]. There are many constructions
of reducible and disconnected moduli spaces if dim(X) ≥ 3 (for example, see [Ei88]). Moduli
spaces of sheaves on surfaces exhibit the most interesting behavior. The Hilbert scheme of n points
on a smooth, irreducible projective surface is smooth and irreducible [Fo68]. In higher rank, the
philosophy of Donaldson [Do90] and Gieseker and Li [GL94] expects the moduli spaces MX(r, c1, c2)
to become better behaved as the second Chern class c2 tends to infinity. For example, they become
reduced and irreducible of the expected dimension if c2 is sufficiently large (see [O’G96] and [Ni95,
MS16] for sharper inequalities for surfaces in P3). On the other hand, if c2 is small, then MX(r, c1, c2)
may be reducible with components of different dimensions and may have nonreduced components
[Mes97, MS11]. For example, [CH18] and [Fr89] construct moduli spaces with arbitrarily many
irreducible components. It is reasonable to expect that for small c2, the moduli spaces of sheaves
on surfaces satisfy a version of Murphy’s Law [Va06].

One can construct disconnected moduli spaces of sheaves on threefolds by using the Serre cor-
respondence, which relates codimension 2 subschemes to rank 2 vector bundles (see §2 or [St19]).
Subschemes with a given Hilbert polynomial are parameterized by a Hilbert scheme. If this Hilbert
scheme is disconnected, the same can be true of the moduli space of sheaves associated through the
Serre correspondence. We use a variant of this argument by relating the moduli space MX(r, c1, c2)
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on the surface X to a disconnected Hilbert scheme of linear spaces on an ambient higher-dimensional
variety.

Okonek and Van de Ven [OV86] and Kotschick [Ko89] found examples of disconnected moduli
spaces on elliptic surfaces in their study of the topology of the underlying real fourfold (see also
[FM88]). These disconnected moduli spaces are on certain elliptic surfaces with large Picard rank.
In contrast, our construction uses general type surfaces with Picard rank one.

Let n ≥ 4 be an integer. Let 2 < d1 < d2 ≤ · · · ≤ dn−2 be integers. If n = 4, further assume that
d1 ≥ 4 and d2 ≥ 6. Set e =

∏n−2
i=2 di. Let D1 ⊂ Pn be a hypersurface of degree d1 that contains a

linear space Φ of dimension n − 3. Assume that the singular locus of D1 has codimension 5. For
2 ≤ i ≤ n − 2, let Di ⊂ Pn be very general hypersurfaces of degree di. Let X be the complete
intersection D1 ∩ · · · ∩Dn−2, which is a smooth, projective surface of degree d1e. Let H denote the
hyperplane class on X. Let Fn−3(D1) denote the Fano scheme parameterizing linear spaces on D1

of dimension n− 3.

Theorem (3.4). Every connected component of Fn−3(D1) corresponds to a distinct connected com-
ponent of MX(2, H, (d1 − 1)e) of the same dimension.

In §4, we give two families of examples of D1 ⊂ P4. In Example 4.2, F1(D1) has 3d2
1 zero-

dimensional connected components. In Example 4.5, F1(D1) has d1 one-dimensional connected
components. Example 4.4 gives examples of D1 ⊂ P5 where F2(D1) has 15d3

1 zero-dimensional
connected components. We conclude the following.

Corollary 1.1. For any integer k, there exists a smooth surface X and Chern character v on X
such that MX(v) has at least k connected components.

The original motivation for this note was a question about monotonicity of Betti numbers of
MX(r, c1, c2). Coskun and Woolf [CW20] conjecture that as c2 tends to infinity, the Betti numbers of

MX(r, c1, c2) stabilize. Göttsche proved that the Betti numbers of the Hilbert scheme of n pointsX [n]

stabilize as n tends to infinity [Go90]. In fact, the Betti numbers monotonically increase to the stable
value as n increases. The same monotonicity occurs for certain moduli spaces of higher rank sheaves
on K3 surfaces and rational surfaces. In talks given by the first author, several mathematicians
raised the question whether one should expect the Betti numbers to always monotonically increase
to the stable value. As examples of disconnected moduli spaces show, this is already false for b0.

Corollary 1.2. The Betti numbers of the moduli spaces of sheaves MX(r, c1, c2) do not monotoni-
cally increase as c2 increases.

One could refine the question and ask whether the Betti numbers monotonically increase once c2

reaches the O’Grady bound and the moduli spaces become reduced and irreducible of the expected
dimension.

Organization of the paper. In §2, we recall basic facts about moduli spaces and complete inter-
sections. In §3, we describe our main construction and prove Theorem 3.4. In §4, we give examples
that illustrate interesting phenomena.

Acknowledgments. We would like to thank Lawrence Ein, Joe Harris, Daniel Huybrechts, Nicole
Mestrano, Julius Ross, Carlos Simpson, Dennis Tseng, Matthew Woolf and Kota Yoshioka for
valuable conversations. We thank the organizers and participants of ZAG, Rahul Pandharipande,
and the participants of the Algebraic Geometry and Moduli seminar for stimulating discussions that
led to this note.

2. Preliminaries

In this section, we recall basic facts concerning moduli spaces of sheaves (see [HuL, MS16] for
further details) and complete intersections.
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Moduli spaces of sheaves. Let (X,H) be a smooth, polarized, complex projective variety of
dimension n. If F is a torsion-free coherent sheaf on X of rank rk(F), then the Hilbert polynomial
PF (m) and the reduced Hilbert polynomial pF (m) of F are defined by

PF (m) = χ(F(mH)) = rk(F)
mn

n!
+ l.o.t. and pF (m) =

PF (m)

rk(F)
.

The sheaf F is called (semi)stable if for every proper subsheaf F ′ ⊂ F , we have pF ′(m) <
(−)

pF (m)

for m � 0. Gieseker and Maruyama constructed projective moduli spaces MX(v) parameterizing
S-equivalence classes of semistable sheaves on X with Chern character v [Gi77, Ma78]. The H-slope
of F is defined to be the number

µH(F) =
c1(F) ·Hn−1

rk(F)Hn
.

If µH(F ′) < µH(F) for all proper subsheaves F ′ ⊂ F , then F is called µH-stable.

The Serre correspondence. Let X be a smooth projective surface. Let Z ⊂ X be a zero-
dimensional Gorenstein subscheme of length n. Then Z satisfies the Cayley-Bacharach property for
a line bundle L on X if for any subscheme W ⊂ Z of length n − 1, any section of L vanishing
on W vanishes on all of Z. Given a line bundle L and a zero-dimensional scheme Z satisfying the
Cayley-Bacharach property for ωX⊗L, the Serre correspondence constructs a vector bundle of rank
2 on X.

Theorem 2.1 (The Serre Correspondence [HuL, 5.1.1]). Let X be a smooth projective surface, and
Z ⊂ X be a local complete intersection subscheme of dimension 0 and length n. Let L be a line
bundle on X. Then there exists an extension

0→ OX → E → L⊗ IZ → 0

with E locally free if and only if Z satisfies the Cayley-Bacharach property for ωX ⊗ L.

The Cayley-Bacharach Theorem. For our construction, we will use the following Cayley-
Bacharach theorem for projective space (see [EGH, Theorem CB7])1.

Theorem 2.2 (Cayley-Bacharach). Let D1, D2, . . . , Dn ⊂ Pn be divisors of degrees d1, d2, . . . , dn
respectively, meeting in a zero-dimensional scheme Z = D1 ∩D2 ∩ · · · ∩Dn. Set d =

∑n
i=1 di.

(1) If D ⊂ Pn is any divisor of degree d − n − 1 containing a subscheme Z ′ of Z of length one
less than that of Z, then D contains all of Z.

(2) Suppose Z ′, Z ′′ are residual subschemes of Z. Then for any m ≤ d− n− 1, we have

h0(Pn, IZ′(m))− h0(Pn, IZ(m)) = h1 (Pn, IZ′′ (d− n− 1−m)) .

Complete intersections. Finally, we will use the following standard facts about complete inter-
sections and their Fano schemes of linear spaces. Given a variety X, let Fj(X) denote the Fano
scheme parameterizing j-dimensional linear spaces contained in X.

Proposition 2.3. (1) If D ⊂ P4 is a smooth hypersurface of degree d ≥ 4, then dim(F1(D)) ≤ 1.
If d ≥ 6 is and D is general, then F1(D) is empty.

(2) If D ⊂ P5 is a smooth hypersurface of degree d ≥ 3, then dim(F2(D)) ≤ 0. If D is general,
then F2(D) is empty.

(3) Let n ≥ 5. If D ⊂ Pn is a hypersurface of degree d ≥ 3 which is smooth in codimension 4,
then dim(Fn−3(D)) ≤ 0.

1The statement of Theorem CB7 in op. cit. should say divisors instead of curves.
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Proof. Let D ⊂ P4 be a smooth hypersurface of degree d. Let Y be a component of F1(D) containing
a line `. If d ≥ 4, then deg(N`/D) = 3 − d < 0. Hence, ` is not free and the lines parameterized
by Y can only sweep a surface. If dim(Y ) ≥ 2, this surface must be a plane. However, by the
Lefschetz hyperplane theorem, a smooth hypersurface of degree d > 1 cannot contain a plane. We
conclude that dim(F1(D)) ≤ 1. A dimension count shows that a general hypersurface in Pn of
degree d ≥ 2n− 2 does not contain lines. This proves (1).

Let D ⊂ P5 be a smooth hypersurface of degree d ≥ 3 that contains a plane Λ. Choosing
coordinates, we may assume that Λ is defined by z0 = z1 = z2 = 0 and that the equation of the
hypersurface is given by z0F0 + z1F1 + z2F2 = 0, where Fi are polynomials of degree d − 1. For
1 ≤ i ≤ 3, let F i denote the restriction of Fi to Λ. If the F i have a common zero on Λ, then D is
singular at that point. The standard normal bundle sequence for NΛ/D is given by

0→ NΛ/D → OΛ(1)3 (F0,F1,F2)−→ OΛ(d)→ 0.

If NΛ/D has a section, then the F i must satisfy a relation of the form
∑
LiFi = 0 for some linear

forms Li. Since the polynomials Fi have degree at least 2, they must have a common solution,
contradicting the smoothness of D. Therefore H0(Λ, NΛ/D) = 0 and dim(F2(D)) ≤ 0. Finally, a
dimension count shows that for general D, F2(D) is empty. This proves (2), and (3) is an immediate
consequence of (2) by intersecting with a general P5. �

Proposition 2.4. Let 4 ≤ d1 ≤ · · · ≤ dn−3 be a sequence of integers such that
∑n−3

i=1 di > n + 1.
Let X ⊂ Pn be a very general complete intersection of type d1, . . . , dn−3. Then any codimension 3
linear space intersects X in dimension 0.

Proof. When n = 4 or 5, the proposition asserts that X does not contain a line or a plane curve,
respectively. A simple dimension count shows that this is the case as soon as

∑n−3
i=1 di > n + 1.

When n > 5, it suffices to show that the codimension of the locus of forms (D1, . . . , Dn−3) that
contain a curve in Pn−3 is greater than the dimension of the Grassmannian G(n−3, n). This follows
from the dimension counts in [Ts20, Lemmas 4.2 and 4.3]. �

3. The construction

In this section, we will describe our construction and prove its main properties. We first establish
some notation.

The surfaces. Let n ≥ 4 be an integer. Let 2 < d1 < d2 ≤ · · · ≤ dn−2 be integers such that
d =

∑n−2
i=1 di ≥ n + 1. Set e =

∏n−2
i=2 di. Let D1 ⊂ Pn be a hypersurface of degree d1 that contains

a linear space Φ of dimension n − 3. When 4 ≤ n ≤ 5, we will assume that D1 is smooth. If
n > 5, then D1 cannot be smooth, but we will assume that its singular locus has codimension 5.
For 2 ≤ i ≤ n − 2, let Di ⊂ Pn be very general hypersurfaces of degree di. Let X be the complete
intersection D1 ∩ · · · ∩Dn−2, which is a smooth, projective surface of degree d1e. Let H denote the
hyperplane class on X. The following proposition summarizes the basic properties of X.

Proposition 3.1. The surface X satisfies the following properties.

(1) The canonical class of X is KX = (d− n− 1)H.
(2) We have PicX = ZH.
(3) For any integer m and i = 1, 2, hi(Pn, IX(m)) = 0.
(4) For any integer m, h1(X,OX(m)) = 0 and the map H0(Pn,OPn(m)) → H0(X,OX(m)) is

surjective.

Proof. The canonical class of X is computed by adjunction. The intersection Y = ∩n−3
i=1 Di is a

smooth, complete intersection threefold. By the Lefschetz hyperplane theorem, Pic(Y ) is cyclic
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generated by the restriction of the hyperplane class. By assumption Dn−2 is very general and KX

has a section, so Moishezon’s Noether-Lefschetz theorem [Mo67] implies that Pic(X) ∼= ZH.

Set W = ⊕n−2
i=1 OPn(−di). Since X is a complete intersection, the Koszul complex

0→
n−2∧

W →
n−3∧

W → · · · →
2∧
W →W → IX → 0

gives a resolution of IX . Since H i(Pn, (∧jW )(m)) = 0 for 0 < i < n and all m, we conclude that
hi(Pn, IX(m)) = 0 if i = 1 or 2 by an easy diagram chase. Finally, the long exact sequence associated
to the standard sequence

0→ IX(m)→ OPn(m)→ OX(m)→ 0

shows that h1(X,OX(m)) = 0 and the map H0(Pn,OPn(m))→ H0(X,OX(m)) is surjective. �

The bundles. By assumption, D1 contains a linear space Φ ∼= Pn−3. Let Λ ∼= Pn−2 ⊂ Pn be a linear
subspace of codimension 2 containing Φ. Since the singularities of D1 occur in codimension 5, we
must have Λ 6⊂ D1 and Λ∩D1 = Φ∪Y , where Y is a degree d1−1 hypersurface in Λ. Furthermore,
since D2, . . . , Dn−2 are very general hypersurfaces, Z = Y ∩D2 ∩ · · · ∩Dn−2 is a zero-dimensional
complete intersection scheme of length (d1 − 1)e. Moreover, if Λ is general, then Z is reduced.

Proposition 3.2. The scheme Z ⊂ X satisfies the Cayley-Bacharach property for the line bundle
OX(d− n) ∼= ωX(1).

Proof. Observe that the scheme Z is a complete intersection of degrees d1 − 1, d2, . . . , dn−2, 1, 1 in
Pn. Hence, by Theorem 2.2, the scheme Z satisfies the Cayley-Bacharach property for OPn(d− n).
By Proposition 3.1, every section of OX(d− n) is a restriction of a section of OPn(d− n). Hence, Z
satisfies the Cayley-Bacharach property for OX(d− n). �

By the Serre correspondence, there is a locally free sheaf E on X defined by a sequence

(∗) 0→ OX → E → IZ(1)→ 0.

The following proposition summarizes the basic properties of E .

Proposition 3.3. Let E be the locally free sheaf defined by (∗). Then:

(1) We have ext1(IZ(1),OX) = 1, so up to scalars there is a unique non-split extension E.
(2) The bundle E is µH-stable and E ∈MX(2, H, (d1 − 1)e).
(3) Let δi,j denote the Kronecker delta function. Then h0(X, E) = 3 + δ2,d1 and h1(X, E) = 0.

Proof. Throughout the proof, let IZ denote the ideal sheaf of Z in X. We will write IZ/Y , such as
IZ/Pn , when referring to the ideal sheaf of Z in an ambient space Y .

By Serre duality, we have

ext1(IZ(1),OX) = ext1(OX , IZ(KX +H)) = h1(X, IZ(d− n)).

By the Cayley-Bacharach theorem, h1(Pn, IZ/Pn(d− n)) = 1. By Proposition 3.1,

H1(Pn, IX(d− n)) = H2(Pn, IX(d− n)) = 0.

The long exact sequence of cohomology associated to

0→ IX(d− n)→ IZ/Pn(d− n)→ IZ(d− n)→ 0.

now implies that h1(X, IZ(d− n)) = ext1(IZ(1),OX) = 1, proving (1).

Since Pic(X) ∼= ZH, if E is not µH -stable, then there exists a subbundle OX(m) ⊂ E with m ≥ 1.
The composition OX(m) → E → IX(1) must be the zero map, so OX(m) must factor through the
map OX → E in the sequence (∗). This is impossible if m ≥ 1, so E must be µH -stable. A simple
Chern class computation shows that E ∈MX(2, H, (d1 − 1)e). This proves (2).
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If d1 > 2, then Z spans Λ. Hence, the hyperplanes containing Z are the hyperplanes containing
Λ and h0(X, IZ(1)) = 2. Since h1(X,OX) = 0, the long exact sequence associated to (∗) shows that
h0(X, E) = 1 + h0(X, IZ(1)) = 3. If d1 = 2, then Z spans a linear space of dimension n − 3 and
h0(X, IZ(1)) = 3. In this case, we get h0(X, E) = 1 + h0(X, IZ(1)) = 4.

In order to calculate h1(X, E), we first calculate h2(X, E) = h0(X, E∗(d − n − 1)). Since E has
rank 2, we have the isomorphism

E∗ ∼= E ⊗ (det E)∗ = E(−1).

Thus

h2(X, E) = h0(X, E(d− n− 2)).

We twist the sequence (∗) by OX(d− n− 2) to get

0→ OX(d− n− 2)→ E(d− n− 2)→ IZ(d− n− 1)→ 0.

Since h1(X,OX(d− n− 2)) = 0, we obtain

(1) h0(X, E(d− n− 2)) = h0(X,OX(d− n− 2)) + h0(X, IZ(d− n− 1)).

By Serre duality and the fact that the equations defining X have degree at least 2, we have

h2(X,OX(d− n− 2)) = h0(X,OX(1)) = n+ 1.

Hence,

(2) h0(X,OX(d− n− 2)) = χ(OX(d− n− 2))− (n+ 1).

Consider the ideal sheaf exact sequence

0→ IX(d− n− 1)→ IZ/Pn(d− n− 1)→ IZ(d− n− 1)→ 0.

By Proposition 3.1, h1(Pn, IX(d− n− 1)) = 0 and

(3) h0(X, IZ(d− n− 1)) = h0(Pn, IZ/Pn(d− n− 1))− h0(Pn, IX(d− n− 1)).

The value of h0(Pn, IX(d− n− 1)) is easily determined from the exact sequence

0→ IX(d− n− 1)→ OPn(d− n− 1)→ OX(d− n− 1)→ 0.

Since OX(d−n− 1) = ωX , we have h1(X,ωX) = 0 and h2(X,ωX) = 1. Furthermore, h3(Pn, IX(d−
n− 1)) = 1 and hi(Pn, IX(d− n− 1)) = 0 for i 6= 0, 3. Hence,

(4) h0(Pn, IX(d− n− 1)) = χ(IX(d− n− 1)) + 1.

The scheme Z is a complete intersection of type 1, 1, (d1− 1), d2, . . . , dn−2. The Koszul complex for
IZ/Pn(d− n− 1) implies that h1(Pn, IZ/Pn(d− n− 1)) = n− 1− δ2,d1 . We conclude that

h0(Pn, IZ/Pn(d− n− 1)) = χ(IZ/Pn(d− n− 1)) + n− 1− δ2,d1 .

Combining this with Equations (1), (2), (3), and (4), we obtain

h2(E) = h0(X, E(d− n− 2)) = χ(OX(d− n− 2)) + χ(IX(d− n− 1))− 3− δ2,d1 .

Since χ(E(d−n−2)) = χ(OX(d−n−2))+χ(IX(d−n−1)) and h2(E(d−n−2)) = h0(E) = 3+δ2,d1 ,
we conclude that h1(X, E) = h1(E(n− d− 2)) = 0. This concludes the proof of the proposition. �

We are now ready to state and prove our main theorem.

Theorem 3.4. Let n ≥ 4 and d1 > 2. If n = 4, assume that d1 ≥ 4 and d2 ≥ 6. Then for every
connected (respectively, irreducible) component of the Fano scheme Fn−3(D1), the moduli space
MX(2, H, (d1 − 1)e) has a connected (respectively, irreducible) component of the same dimension.
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Proof. Let N ⊂ MX(2, H, (d1 − 1)e) be an irreducible component containing the bundle E defined
by (∗). Endow N with its reduced induced structure. By Proposition 3.3, h1(X, E) = 0. Hence, by
the upper semicontinuity of cohomology, h0(X, E ′) ≥ 3 for every sheaf E ′ ∈ N and there is an exact
sequence

0→ OX → E ′ → Q→ 0.

Computing Chern classes, we must have rk(Q) = 1, c1(Q) = H, and c2(Q) = (1 − d1)e. We show
that Q is torsion-free. Every element E ′ ∈MX(2, H, (d1−1)e) is µH -stable with c1(E ′) = H. Hence,
for any integer m > 0, we must have h0(X, E ′(−m)) = 0. Since h1(X,OX(−m)) = 0 by Proposition
3.1, we conclude that h0(X,Q(−m)) = 0, so Q cannot have torsion in dimension zero.

If Q has torsion along a curve in X, let T ⊂ Q be the torsion subsheaf and Q′ be the quotient
Q/T . Then Q′ is a quotient of E ′, but c1(Q′) = aH for some a ≤ 0, which contradicts the stability
of E ′. Thus Q is torsion-free, and consequently, Q = IZ′(1) for some scheme Z ′ of length (d1 − 1)e.

The sequence

0→ OX → E ′ → IZ′(1)→ 0

shows that h0(X, IZ′(1)) ≥ 2. We next show that equality must hold. If

h0(X, IZ′(1)) > 2,

then Z ′ is contained in a linear space Γ of dimension at most n− 3. The length of Z ′ is (d1 − 1)e,
which is greater than the degree of W = ∩n−2

i=2 Di. By Bézout’s theorem, W ∩ Γ must contain a

curve. Since Di are very general , di ≥ 4 and
∑n−2

i=2 di > n + 1, this is not possible by Proposition
2.4. We conclude that h0(X, IZ′(1)) = 2, h0(X, E ′) = 3 and the scheme Z ′ spans a linear space Λ′

of dimension n− 2.

Since Pic(X) ∼= ZH, Λ′ ∩X must be a zero-dimensional complete intersection scheme of degree
d1e and cannot contain a curve. Since E ′ is a nontrivial extension of IZ′(1) by OX , we have
h1(X, IZ′(d − n)) ≥ 1. The Cayley-Bacharach theorem implies that there exists a linear space
Φ′ ⊂ Λ′ of dimension at most n − 3 containing the subscheme Z ′′ ⊂ X ∩ Λ′ of length e residual to
Z ′. The dimension of Φ′ must be n − 3. Otherwise, we could take the span of Φ′ with additional
points of W = ∩n−2

i=2 Di to obtain a linear space ∆ of dimension n − 3 which would intersect W
in more points than e = deg(W ). Hence by Bezout’s theorem, ∆ would intersect W in a curve,
contradicting Proposition 2.4. We conclude that h1(X, IZ′(d− n)) = 1 and dim(Φ′) = n− 3.

The scheme Z ′′ of length e is contained in the intersection Φ′ ∩W . Since the two schemes have
the same length, we conclude that Z ′′ = Φ′ ∩W . Since Z ′′ is a complete intersection scheme in Φ′

of hypersurfaces of degree greater than d1, Z ′′ can only be contained in D1 if Φ′ ⊂ D1. Reversing
the construction, we conclude that E ′ is obtained by the same Serre construction as E starting with
Φ′ ∈ Fn−3(D1) instead of Φ. In particular, H1(X, E ′) = 0 and E ′ is locally free.

Let E be the pushforward of the universal sheaf over X × N to N . By the universal property
of the Fano scheme, we get a morphism PE → Fn−3(D1). In concrete terms, let (E ′, s′) be a sheaf
together with a section up to scaling. Let Z ′ be the zero locus of s′ and Λ′ its span. The morphism
sends (E ′, s′) to the span of the points residual to Z ′ in Λ′ ∩ X. Since E ′ and E are in the same
irreducible component N , the (n − 3)-plane Φ′ must lie in the same irreducible component K of
Fn−3(D1) as Φ. In particular, if n ≥ 5, then Proposition 2.3 gives Φ = Φ′ and E = E ′, and we
conclude that N consists of a unique point. The same argument applies if n = 4 and dim(K) = 0.
If n = 4 and dim(K) = 1, since there cannot be any nonconstant morphisms from P2 to a curve, we
conclude that the linear space Φ′ is canonically associated to E ′. Any irreducible component N ′ that
intersects N must contain a bundle that arises via the Serre correspondence, hence must correspond
to an irreducible component K ′ of Fn−3(D1) that intersects K. We thus conclude that the connected
component containing E corresponds to the connected component of Fn−3(D1) containing Φ and
they have the same dimension. �
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Remark 3.5. If n = 4 or 5 and d1 = 2, then h0(X, E) = 4 and h1(X, E) = 0. If E ′ is in the same
irreducible component N as E , then h0(X, E ′) ≥ 4. In this case, Z ′ spans at most a Pn−3. If n = 4,
since Z ′ has e > 3 points, it must span a line. If n = 5 and Z ′ was contained in a line, then the line
would have to be contained in all the hypersurfaces defining X by Bézout’s theorem. This would
contradict the fact that Pic(X) ∼= ZH. We conclude that h0(X, E ′) = 4 for every bundle in N .
The same argument shows that there is a connected component of MX(2, H, e) for every connected
component of Fn−3(D1). In this case, the dimension count in the proof of Theorem 3.4 shows that
the bundle corresponding to each connected component of Fn−3(D1) is unique.

Remark 3.6. Assume that d1 ≥ 3 when n ≥ 5 and assume that d1 ≥ 6 when n = 4. Since the
general D1 does not contain a linear space of dimension n− 3, the proof of Theorem 3.4 shows that
the bundles constructed on the special surfaces X do not deform to nearby surfaces.

4. Examples of moduli spaces

In this section we give explicit examples of moduli spaces that exhibit interesting behaviors. We
preserve the notation of Section 3.

Example 4.1 (Quintic threefold). Let D1 be a general quintic threefold in P4. Then D1 contains
2875 lines. Let D2 be a very general hypersurface of degree d2 ≥ 6. Let X = D1 ∩D2. By Theorem
3.4, MX(2, H, 4d2) contains 2875 zero-dimensional connected components.

Example 4.2 (Moduli spaces with arbitrarily many isolated points I). Let d1 ≥ 6 and let D1 be
the hypersurface of degree d1 defined by

f(z0, . . . , z4) = zd10 − z
d1
1 + zd12 − z

d1
3 + z4g(z0, . . . , z4) = 0

where g is a general homogeneous polynomial of degree d1−1. Then D1 is smooth and contains 3d2
1

lines contained in the Fermat surface f = z4 = 0. Let ` be one of these lines. Up to permutations
and roots of unity, we may assume that ` is defined by z0 − z1 = z2 − z3 = z4 = 0. In the normal
bundle exact sequence

0→ N`/D1
→ N`/P4

∼= O`(1)⊕3 M−→ O`(d1)→ 0,

the map M is given by [(d1 − 1)sd1−1, (d1 − 1)td1−1, g(s, s, t, t, 0)] in local coordinates s, t on P1

[CR19, §3]. Hence, for a general choice g,

N`/D1
∼= O`

(⌊
3− d1

2

⌋)
⊕O`

(⌈
3− d1

2

⌉)
.

This implies h0(`,N`/D1
) = 0. We conclude that these 3d2

1 lines are isolated points of F1(D1). Let

d2 > d1 and let D2 be a very general hypersurface in P4 of degree d2. Let X = D1∩D2. By Theorem
3.4, MX(2, H, (d1 − 1)d2) has at least 3d2

1 connected components of dimension 0.

Example 4.3 (Spinor bundles). Let D1 be a smooth quadric fourfold in P5. Let D2 and D3 be
very general hypersurfaces of degrees d2, d3 ≥ 3, respectively. Let X = D1 ∩D2 ∩D3. Since F2(D1)
has two connected components, by Remark 3.5, MX(2, H, d2d3) has 2 connected components of
dimension 0. One can be explicit about these two bundles: they are the restrictions of the two
spinor bundles on the quadric D1. Identifying D1 with the Grassmannian G(2, 4) under the Plücker
embedding, the spinor bundles are the universal quotient bundle Q and the dual S∗ of the universal
subbundle. These two bundles restrict to two bundles in MX(2, H, d2d3), which form two connected
components. Since h0(G(2, 4), S∗) = h0(G(2, 4), Q) = 4 and the zero loci of the sections are planes,
it is easy to see that the construction in §3 produces these two bundles.

Example 4.4 (Moduli spaces with arbitrarily many isolated points II). Let d1 ≥ 3 and let D1 be the

Fermat hypersurface in P5 defined by
∑5

i=0 x
d1
i = 0. Then D1 contains 15d3

1 planes. Letting D2, D3
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be very general hypersurfaces of degrees d2, d3 > d1, Theorem 3.4 shows that MX(2, H, (d1−1)d2d3)
has at least 15d3

1 connected components.

Example 4.5 (Moduli spaces with arbitrarily many positive dimensional connected compo-
nents). This example shows that there can be many positive dimensional connected components
of MX(2, H, (d1 − 1)e). Let g(z0, z1) and h(z2, z3, z4) be general forms of degree d1 > 5. Let
D1 ⊂ P4 be defined by the equation

f(z0, . . . , z4) = g(z0, z1) + h(z2, z3, z4) = 0.

Let ` be the line defined by z2 = z3 = z4 = 0 and let Λ be the plane defined by z0 = z1 = 0. Then `
intersects D1 at the d1 roots of g(z0, z1). The tangent hyperplane at one of these points pi intersects
D1 in the cone over the plane curve z0 = z1 = h(z2, z3, z4) = 0 with vertex at pi. Hence, D1 contains
d1 disjoint one-parameter families of lines.

We claim that D1 contains no other lines. Let U ⊂ G(1, 4) denote the open subset of lines not
meeting `. Consider the incidence correspondence

I = {(g, h,m) ∈ H0(P1,OP1(d1))×H0(P2,OP2(d1))× U : (g(z0, z1) + h(z2, z3, z4))|m ≡ 0}.
The PGL5 action on U has two orbits: the lines that intersect Λ and the lines that do not. We can
compute the fiber dimension of I over U by choosing the following representatives of the two orbits

m1 : z0 − z1 = z0 − z3 = z4 = 0 and m2 : z0 − z2 = z1 − z3 = z4 = 0.

Let g =
∑d1

i=0 aiz
i
0z

d1−i
1 and let h =

∑
i,j bi,jz

i
2z

j
3z

d1−i−j
4 . If g+h vanishes on m1, then the coefficients

of g and h must satisfy the d1 +1 linear conditions bi,d1−i = 0 for 1 ≤ i ≤ d1 and b0,d1 +
∑d1

i=0 ai = 0.
If g + h vanishes on m2, then the coefficients of g and h must satisfy the d1 + 1 linear conditions
ai + bi,d1−i = 0 for 0 ≤ i ≤ d1. Since d1 + 1 > 6 = dimU , we conclude that

dim I < dimH0(P1,OP1(d1))×H0(P2,OP2(d1)).

Hence, for a general choice of g and h, D1 does not contain a line of U . Hence, any line in
D1 intersects ` and must pass through one of the points pi. Since the tangent hyperplane at pi
intersects D1 in a cone with vertex at pi, the line must be one of the rulings of the cone.

Let D2 ⊂ P4 be a very general hypersurface of degree d2 > d1 and let X = D1∩D2. By Theorem
3.4, MX(2, H, (d1 − 1)d2) has at least d1 one-dimensional connected components.
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