MATH 553: MIDTERM PROBLEM SET

This problem set is due Friday February 28, 2020. You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding.

Problem 1. Let $X \subset \mathbb{P}_{k}^{n}$ be a nonsingular hypersurface of degree d, where k is a field. Let $\mathcal{O}_{X}(e)$ denote the pullback of $\mathcal{O}_{\mathbb{P}^{n}}(e)$ under the inclusion i of X in \mathbb{P}_{k}^{n}.
(1) For all $e \in \mathbb{Z}$ and all $i \geq 0$ compute $H^{i}\left(X, \mathcal{O}_{X}(e)\right)$.
(2) Show that $\omega_{X} \cong \mathcal{O}_{X}(d-n-1)$ and compute $H^{i}\left(X, \omega_{X}\right)$.

Problem 2. Do Exercises III.5.1 and III.5.2 in Hartshorne. Compute the Hilbert polynomials of the following projective varieties using the definition in III.5.2:
(1) A rational normal curve of degree d.
(2) The Veronese image of \mathbb{P}^{n} under the d-upple Veronese embedding.
(3) A hypersurface of degree d in \mathbb{P}^{n}.

Problem 3. Let k be a field. Prove the following theorem by following the given steps.
Theorem Any vector bundle V of rank r on \mathbb{P}_{k}^{1} is isomorphic to a direct sum of line bundles $\oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$ for a uniquely determined sequence of integers $a_{1} \leq a_{2} \leq \cdots \leq a_{r}$.
(1) Show the uniqueness.
(2) Show that there exists a nonzero homomorphism $\mathcal{O}_{\mathbb{P}^{1}}(a) \rightarrow V$ for some $a \in \mathbb{Z}$.
(3) Let

$$
a_{r}:=\max \left\{a \mid \operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{1}}(a), V\right) \neq 0\right\} .
$$

Show that in the exact sequence induced by a nonzero homomorphism

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{1}}\left(a_{r}\right) \rightarrow V \rightarrow W \rightarrow 0,
$$

W is locally free. Hence, by induction on the rank we may assume that the theorem holds for W and $W=\oplus_{i=1}^{r-1} \mathcal{O}_{\mathbb{P}^{1}}\left(b_{i}\right)$.
(4) Do exercise III.6.1 in Hartshorne.
(5) Prove that $\operatorname{Ext}^{1}\left(W, \mathcal{O}_{\mathbb{P}^{1}}\left(a_{r}\right)\right)=0$ and conclude the theorem by induction. (Hint: Tensor the sequence defining W by $\mathcal{O}_{\mathbb{P}^{1}}\left(-a_{r}-1\right)$ and compute cohomology.)
Problem 4. Let $n \geq 2$ and let $T \mathbb{P}^{n}$ denote the tangent bundle of \mathbb{P}_{k}^{n}.
(1) Prove that if $\operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{n}}(a), T \mathbb{P}^{n}\right) \neq 0$, then $a \leq 1$.
(2) Show that $T \mathbb{P}^{n}$ for $n \geq 2$ is not a direct sum of line bundles. Hence, the theorem in the previous problem does not generalize to \mathbb{P}^{n} for $n>1$.
(3) Show that $T \mathbb{P}^{n}(-i)$ is acyclic (has no cohomology) for $i=2,3, \ldots, n$ and $i=n+2$.

Problem 5. Let k be an algebraically closed field.
(1) Let I_{Z} be the ideal sheaf of 4 points on \mathbb{P}_{k}^{2}. Show that $H^{1}\left(\mathbb{P}^{2}, I_{Z}(2)\right)=0$ if and only if the 4 points are not collinear.
(2) Let I_{Z} be the ideal sheaf of 9 points which are the complete intersection of 2 cubic curves. Let W be any 8 of the points in Z. Show that $H^{1}\left(\mathbb{P}^{2}, I_{W}(3)\right)=0$ and $H^{1}\left(\mathbb{P}^{2}, I_{Z}(3)\right)=k$.
Problem 6. Let X be a smooth, integral, projective surface over an algebraically closed field k. Let Z be a zero-dimensional scheme of length n on X and let I_{Z} denote its ideal sheaf. Show that $\operatorname{dim}_{k}\left(\operatorname{Hom}_{\mathcal{O}_{X}}\left(I_{Z}, \mathcal{O}_{Z}\right)\right)=2 n$ by following the given steps:
(1) Observe that $\operatorname{Ext}^{i}\left(\mathcal{O}_{X}, \mathcal{O}_{Z}\right)=0$ for $i>0$.
(2) Compute $\operatorname{Hom}\left(\mathcal{O}_{Z}, \mathcal{O}_{Z}\right)$ and $\operatorname{Ext}^{2}\left(\mathcal{O}_{Z}, \mathcal{O}_{Z}\right)$. Then use a locally free resolution of \mathcal{O}_{Z} to compute

$$
\chi\left(\mathcal{O}_{Z}, \mathcal{O}_{Z}\right)=\sum_{i=0}^{2}(-1)^{i} \operatorname{dim}\left(\operatorname{Ext}^{i}\left(\mathcal{O}_{Z}, \mathcal{O}_{Z}\right)\right)
$$

directly and conclude that $\operatorname{dim}_{k}\left(\operatorname{Ext}^{1}\left(\mathcal{O}_{Z}, \mathcal{O}_{Z}\right)\right)=2 n$.
(3) Apply $\operatorname{Hom}\left(-, \mathcal{O}_{Z}\right)$ to the standard exact sequence

$$
0 \rightarrow I_{Z} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{Z} \rightarrow 0
$$

to finish the computation.
Remark: Combined with the connectedness of the Hilbert scheme of points on a smooth, projective, integral surface X, this exercise shows that the Hilbert scheme of points on X is smooth.

Problem 7. A sheaf \mathcal{F} on a projective scheme X over an algebraically closed field k is called exceptional if $\operatorname{Hom}(\mathcal{F}, \mathcal{F})=k$ and $\operatorname{Ext}^{i}(\mathcal{F}, \mathcal{F})=0$ for $i>0$. A strong exceptional collection of sheaves is an ordered set of exceptional sheaves $\mathcal{F}_{1}, \ldots, \mathcal{F}_{r}$ such that $\operatorname{Ext}^{i}\left(\mathcal{F}_{k}, \mathcal{F}_{l}\right)=0$ unless $k \leq l$ and $i=0$.
(1) Show that $\mathcal{O}_{\mathbb{P}^{n}}, \mathcal{O}_{\mathbb{P}^{n}}(1), \mathcal{O}_{\mathbb{P}^{n}}(2), \ldots, \mathcal{O}_{\mathbb{P}^{n}}(n)$ is a strong exceptional collection on \mathbb{P}^{n}.
(2) Show that $\mathcal{O}_{\mathbb{P}^{2}}, T \mathbb{P}^{2}(-1), \mathcal{O}_{\mathbb{P}^{2}}(1)$ is a strong exceptional collection on \mathbb{P}^{2}.
(3) Let X be the blowup of \mathbb{P}^{2} at r distinct points p_{1}, \ldots, p_{r} and let E_{i} denote the exceptional divisor over p_{i}. Let $\mathcal{O}_{X}(H)$ denote the pullback of $\mathcal{O}_{\mathbb{P}^{2}}(1)$ to X. Show that

$$
\mathcal{O}_{X}(-2 H), \mathcal{O}_{X}(-H), \mathcal{O}_{X}\left(-E_{1}\right), \mathcal{O}_{X}\left(-E_{2}\right), \ldots, \mathcal{O}_{X}\left(-E_{r}\right), \mathcal{O}_{X}
$$

is a strong exceptional collection on X. (Hint: Recall that $\mathcal{O}_{E_{i}}\left(E_{i}\right) \cong \mathcal{O}_{\mathbb{P}^{1}}(-1)$.)

