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Remark on references

References to authors given in these slides are not by any means
complete or exhaustive. That would go way beyond the possible
scope. Some attempt to do that was made in our survey paper
“Moduli of Sheaves”, but that was already some time ago and the
current state of research has moved forward a lot in the mean time.



Moduli spaces of sheaves—an overview of the
geography

In this first talk we will look more globally at the properties of
moduli spaces of vector bundles and sheaves on various kinds of
varieties, then specializing to the case of surfaces and in particular
the case of rank 2 bundles on quintic hypersurfaces in P3.



Consider a smooth projective surface X , with hyperplane class
denoted [H]. We recall that the degree and slope of a torsion-free
sheaf are

deg(E ) := c1(E ).[H], µ(E ) := deg(E )
rk(E ) .

We say that E is stable (resp. semistable) if, for any subsheaf of
smaller nonzero rank, µ(F ) < µ(E ) (resp. ≤).

These definitions of “slope (semi)stability” may be replaced by
Gieseker (semi)stability by using the Hilbert polynomial instead of
the degree.



Theorem (Mumford, Gieseker, Maruyama, Langer)
The set of semistable sheaves is bounded, and there exists a GIT
construction of the coarse moduli space Mtf

X (r , c1, c2) of Gieseker
semistable torsion-free sheaves on X with given Chern invariants.

This may be extended to a construction of moduli of pure sheaves
supported in any dimension. Mukai first introduced the moduli
space of simple sheaves in such a context.



Deformation and obstruction theory, coupled with Serre duality,
imply that if X is a K3 or abelian surface then the obstruction
space vanishes for stable sheaves; in that case, the moduli space is
smooth and the Serre duality pairing on the tangent space leads to
a natural symplectic form.

These cases have been studied carefully by Yoshioka following
upon the original studies by Mukai that had been continued by
Markman and others.

An important general theme has been Brill-Noether theory, on
which much is known for K3 surfaces, with recent work for many
other kinds of surfaces too.1

1cf today’s preprint of Battacharya and references therein.



The moduli spaces of sheaves on rational and ruled surfaces have
been studied from several viewpoints. In those situations, purely
algebraic methods such as “monads”, “helices” are available to
give descriptions of the moduli spaces (Drézet, Le Potier, . . . ).

In the research project that is the subject of our talk series, joint
with Nicole Mestrano, we wanted to look in the direction of
surfaces of general type. For this, we focus on a first case, that of
hypersurfaces of degree d = 5 in P3. We note that hypersurfaces
of degree 4 are K3 and in degree ≤ 3 they are rational. Degree 5 is
the first general-type case, with KX = OX (1).



Sheaves on curves

We go back and comment on a much more basic case, the moduli
spaces of vector bundles on curves. This started with the work of
Narasimhan and Seshadri, who showed the equivalence with
moduli spaces of unitary representations of the fundamental group,
and Tyurin, Narasimhan-Ramanan who gave explicit descriptions
for curves of genus 2, relating the theory to the famous “quadric
line complex”.

The space of sections H0(M,L⊗k) of the powers of the
determinant line bundle has dimension given by the Verlinde
formula and mathematical physics interprets these sections as
spaces of “conformal blocks”. WZW and Hitchin defined a
projectively flat connection on these spaces as the curve moves
over moduli.



These properties for curves could be relevant for suggesting
questions to look at in higher dimensions.

For example, the Verlinde formula exhibits an example of “strange
duality” or “rank-level duality” (between the rank of the bundle
and the level k) that was studied by Le Potier, Sorger and others
also in higher-dimensional cases.



Bogomolov-Gieseker inequality

The first main new feature when we pass from curves to higher
dimensions is the Bogomolov-Gieseker inequality. This is best
phrased in terms of the ∆-invariant designed to be stable under
tensoring with a line bundle:

∆(E ) := c2(E )− r − 1
2r c1(E )2.

∆(E ⊗ L) = ∆(E )



Bogomolov-Gieseker inequality

Theorem (Bogomolov-Gieseker, Donaldson,
Mehta-Ramanathan)
If E is a slope-semistable torsion-free sheaf then ∆(E ) ≥ 0, with
equality if and only if it is a bundle carrying a projectively flat
unitary connection.



Donaldson theory

Donaldson’s theory of special metrics was one of the major
developments. Given an hermitian metric on E , there is a unique
unitary connection compatible with the holomorphic structure. We
say that the metric is Hermitian-Einstein if ΛF = λ · 1 where Λ is
the adjoint of the Kähler operator (here X should be given a
Kähler metric in the class of [H]).



Donaldson theory

Theorem (Donaldson, Uhlenbeck-Yau)
If E is slope-stable then it admits a (unique up to scalar)
Hermitian-Einstein metric. An integration formula implies the
previous ∆(E ) ≥ 0 and if ∆(E ) = 0 then the curvature is a scalar
two-form.



One of Donaldson’s motivations was to use the complex vector
bundle moduli spaces in order to study his more general invariants
for differential-geometric manifolds. His invariants were defined
using a generic gauge equation analogous to the equations defining
the complex moduli spaces. One important question from the
beginning of this theory was whether the complex moduli spaces
would also yield calculations of the gauge-theoretic invariants.

This is, in general, a difficult question because the complex moduli
spaces always have some singular points, whereas the
gauge-theoretical spaces are assumed to be smooth. It continues
as a subject of study today.



We can nonetheless say that this motivation spurred a flurry of
work on the structure of the complex moduli spaces of vector
bundles. The basic idea was to say that for large values of c2,
these spaces should approach as much as possible their
gauge-theoretic cousins.

In particular, one main type of theorem was to show that the
moduli spaces of vector bundles would have the expected
dimension, be irreducible, and be generically smooth (with,
optimally, some kind of bound on the codimension of the singular
locus).



Nice properties for c2 � 0

This kind of result was indeed achieved in a series of works by
Donaldson, Friedman, Li, Zuo, O’Grady and others. The optimum
theoretical bound was obtained by O’Grady, in a series of papers
introducing various useful techniques that we’ll meet later.

Theorem ( Donaldson, Friedman, Gieseker, Li, Zuo, O’Grady)
There is a computable bound C depending on X ,H, r and c1 such
that for c2 ≥ C, the moduli space MX (r , c1, c2) is good
(generically smooth of the expected dimension) and irreducible.



Higher dimensional varieties

A significant direction of research has been the study of moduli of
sheaves on threefolds and in bigger dimensions. For example, the
topic of arithmetically Cohen-Macaulay sheaves, namely those for
which every twist has vanishing interior cohomology groups, has
generated numerous results for varieties of dimensions 3 and 4.



In turn, the study of bundles can lead to results on subvarieties of
codimension ≥ 2. In the Serre-type constructions in higher
dimensions, the role played here by a zero-dimensional subscheme
P will concern curves and other subvarieties.

This leads to one indication of the potential difficulty in higher
dimensions, namely the classification of bundles runs up against
problems such as Hartshorne’s conjecture.



Stability conditions

Bridgeland’s general notion of a stability condition on a derived
category leads to a range of generalized kinds of slope-stability. It
hasn’t been easy to construct examples of these stability conditions
over varieties of dimension ≥ 3.

The search for them has led to a new direction: exotic
Bogomolov-Gieseker inequalities. Bayer, Macri and Toda
conjectured a generalized Bogomolov-Gieseker inequality for
tilt-stable objects, involving c3. This has been proven by Macri for
projective space, by Schmidt for the quadric threefold, by
Bayer-Macri-Stellari for abelian and CY threefolds, by C. Li for the
quintic threefold, by Bayer-Lahoz-Macri-Stellari on some
Kuznetzov components in derived categories, and more.



We should also mention the phenomenon of wall-crossing: there
can be parameters determining a stability condition (such as the
Kähler class, but it could also be another parameter such as shows
up in the theory of coherent systems). Typically the space of
parameters is divided into chambers, and the moduli space
undergoes a transformation when the parameter crosses some wall.

The study of wall-crossing has led to many distinct directions that
we couldn’t describe in detail here.



Intermediate values of c2

Turn now to the motivation for our research project. We are
looking at bundles on surfaces. From the above discussion, we can
see that for surfaces with KX trivial, the structure is known for all
values of c2.

In the direction of rational surfaces, a lot is known but since there
are a wide range of possibilities, this leads to interesting questions.
Coskun-Huizenga have recently obtained the criterion for existence
of stable bundles on Hirzebruch surfaces, for example. Similarly for
del Pezzo surfaces by Levine.

The case of elliptic surfaces, subject of Friedman’s original papers,
undoubtedly remains a good source of questions on the fine
structure (Yamada, Yoshioka, . . . ).



In the case of surfaces of general type, the structure is well
understood for large values of c2, and of course the moduli spaces
are empty for small values. It is therefore natural to investigate
what happens for intermediate values of c2.

Vakil proposes a general “Murphy’s Law” principle saying that
various types of behaviors not ruled out by general theorems,
should eventually occur as the invariants of the underlying variety
get big enough.



Examples of this type of phenomena were known: one can get
generically non-reduced moduli spaces, there were examples of
reducible moduli spaces (Friedman, Mestrano, Coskun-Huizenga),
and more recently examples of disconnected moduli spaces (leading
up to Coskun-Huizenga-Kopper for example).

We were motivated to try to understand the full picture of the
moduli spaces for all values of c2, in a first case of surfaces of
general type, namely hypersurfaces of degree 5 in P3. For this
case, it turns out that the irreducibility results from the KX -trivial
case persist. As we’ll see at the end, for degree 6 already we get a
reducible moduli space.



Setup and notations

Let us now start with the general setup and notations that will be
in effect throughout most of the series. We consider a very general
hypersurface X ⊂ P3 of degree 5. The very general hypothesis
includes, at least, the condition that Pic(X ) ∼= Z with generator
OX (1). The canonical sheaf is the generator: KX = OX (1).

We recall that H1(OX (n)) = 0, and H0(OX (n)) = H0(OP3(n)) for
n < 5.



I Let M(c2) denote the moduli space of stable rank 2 bundles E
with c1(E ) = [H] =: c1(OX (1)), whose second Chern class is
c2.

I Let Mtf(c2) denote the moduli space of stable torsion-free
sheave of rank 2 with the same Chern invariants. It contains
M(c2) as an open subset.

I Denote by M(c2) the closure of M(c2) in Mtf(c2). This will
often be a proper closed subset.

I We note that stability and semistability coincide for bundles of
degree 1.



The Serre construction

Our main tool is the Serre construction,2 expressing a rank 2
bundle as an extension of an ideal sheaf by a line bundle. Suppose
for example that H0(E ) 6= 0, then we have an exact sequence

0→ OX → E → JP/X (1)→ 0.

Here JP/X is the ideal sheaf of a 0-dimensional subscheme P ⊂ X .
In this case c2(E ) = |P| (if the subbundle has a different degree
then that would be modified).

2The Serre construction was used notably by I. Reider in his thesis.



The condition for a subscheme P to occur in such an exact
sequence is that P should be locally a complete intersection, and it
should satisfy the Cayley-Bacharach condition CB(2) for quadrics.
We’ll discuss that more in the next talk.

One of our main techniques will be to use geometric arguments to
try to understand what positional properties P should have.



Main theorem

Theorem
The moduli space M(c2) is empty for c2 ≤ 3, and irreducible for
c2 ≥ 4. For c2 ≥ 10 it is good, i.e. generically smooth of the
expected dimension 4c2 − 20.
For c2 ≥ 10 the moduli space of torsion-free sheaves Mtf(c2) is
also good, and for c2 ≥ 11 it is irreducible. For c2 = 10 it has two
irreducible components.

For 4 ≤ c2 ≤ 9 we’ll give explicit descriptions of the
Cayley-Bacharach subschemes P that show up for general points of
M(c2).



Future directions

We could comment on some general indications about future study
suggested by these results. We notice that there is a very nice
explicit description of the moduli spaces for very low values of c2
(in our case, c2 = 4, 5). It would be interesting to see if that could
persist for hypersurfaces of higher degree and other surfaces.

This leads also to the question of characterizing Cayley-Bacharach
subschemes P ⊂ P3 in general, without supposing that P lies in a
particular surface. Along the way of our constructions, we meet a
lot of geometric constructions giving reasons why some P should
satisfy a CB(n) property. Could those be made more systematic?



There might also be a metric geometry counterpart to the previous
questions. We know that when the Bogomolov-Gieseker inequality
is attained, it comes from a flat connection. When the values of c2
are small but not equal to the Bogomolov-Gieseker bound, could
that mean there would exist a metric with small curvature?

That could go on to give a corresponding isoperimetric inequality
where the size of a region contracting a given curve would have to
be big compared to the length of the curve.



One might conjecture that a Higgs-bundle analogue of the previous
comments, applied to the Higgs bundle OX ⊕ Ω1

X , would tell us
that simply connected surfaces whose Chern invariants are close to,
but not on the line c2

1 = 3c2, could look “approximately non-simply
connected”.

This in the context of the recent result of Roulleau-Urzúa showing
that there are simply connected surfaces whose Chern slope is
arbitrarily close to 3.



Constructions and local properties: the
Cayley-Bacharach condition

In the second talk, we look at the Serre construction of rank 2
vector bundles using the Cayley-Bacharach condition on
zero-dimensional subschemes. Topics include the local deformation
theory, how it interacts with the Serre construction, and the
interpretation of co-obstructions as Higgs fields.



Kuranishi theory

Notations are conserved from above.

Let’s start with some general considerations. We are looking at
bundles of odd degree, so semistability and stability coincide; and
our stable bundles have no non-scalar automorphisms.

The tangent space to the moduli space at a point E is
H1(End0(E )) where End0(E ) is the rank 3 bundle of trace-free
endomorphisms.



The space of obstructions is H2(End0(E )). We recall that
Kuranishi theory says that locally in a formal or complex-analytic
sense, the moduli looks like the germ at 0 of the zero-set of the
“Kuranishi map”

Φ : H1(End0(E ))→ H2(End0(E )).

This is an analytic map with trivial linear term, and the Kuranishi
identification coincides to first order with the identification of
H1(End0(E )) as the Zariski tangent space of M at E .



The expected dimension of M at E is by definition

e.d.(M) := h1(End0(E ))− h2(End0(E )).

It only depends on the Chern invariants of E and for our case
(c1(E ) = [H] on X ⊂ P3 a hypersurface of degree 5) we have

e.d.(M(c2)) = 4c2 − 20.



From the above, we immediately deduce that if h2(End0(E )) = 0
then M is good at E , that is to say it is generically smooth of the
expected dimension. On the other hand, the dimension of any
irreducible component of M(c2) is ≥ e.d.(M(c2)). Therefore, if we
can bound the dimension of the locus of bundles E such that
h2(End0(E )) > 0, by a bound that is strictly smaller than the
expected dimension, this shows that M(c2) is good.



One good way of getting a hold of H2(End0(E )) is by Serre
duality: it is dual to the space of co-obstructions defined to be
H0(End0(E )⊗ KX ). One notices, then, that a co-obstruction for a
bundle E on a surface may be interpreted as being like a Higgs
field à la Hitchin, that is an endomorphism-valued section of the
canonical line bundle.
This is different from the Higgs fields that take part in “nonabelian
Hodge theory”, those having coefficients in the rank 2 bundle Ω1

X .
One can apply the classical theory of “spectral varieties” here to
say that a bundle E with a nontrivial co-obstruction φ is going to
have a spectral variety that is a subvariety of the total space of
KX , finite over X .



This type of reasoning allows us to obtain bounds for the number
of co-obstructions and the dimension of the locus of bundles E
having a co-obstruction. Here is the statement we can get,
although the bound here depends on many of the other arguments
going into the classification of components below.

Theorem
The moduli space M(c2) is good for c2 ≥ 10.



We would next like to view a bundle E ∈ M(c2) as coming from
the Serre construction. Before getting there, let’s consider a simple
argument with the Euler characteristic that helps in our situation.
We note that χ := h0 − h1 + h2 has formula

χ(E (n)) = 5n2 + 10− c2.



Furthermore, E ∗ ∼= E (−1) so E (n)∗ ⊗ KX ∼= E (−n) and Serre
duality gives

hi (E (n)) = h2−i (E (−n)).

For n = 0 we get 2h0(E ) = h1(E ) + χ(E ) so as soon as χ(E ) > 0
it implies h0(E ) > 0. From the above formula, this gives h0(E ) ≥ 1
whenever c2 ≤ 9, and similarly h0(E ) ≥ 2 whenever c2 ≤ 7.

In conclusion, for the cases c2 ≤ 9 we may assume that E has a
section, so it may be viewed as an extension given by the Serre
construction with sub-line bundle OX ↪→ E .



To discuss Cayley-Bacharach in general, suppose s ∈ H0(E (m)) is
a nonzero section. We get an exact sequence

0→ O(−m) s→ E → JP/X (m + 1)→ 0.

Let’s assume that s doesn’t come from a section of H0(E (m− 1)).
Under our assumption that Pic(X ) is generated by OX (1), this
implies that s doesn’t vanish along a divisor. Hence, the
subscheme P has dimension 0.



As a first approximation one may think of P as consisting of a
distinct set of points, beware however that this hides some of the
main subtleties in the proof where we need to rule out cases where
the generic P could be a non-reduced subscheme.

The first observation is that the ideal of P has locally 2 generators,
since E has rank 2. Therefore, each local piece of P is a local
complete intersection subscheme.



Once P has the lci property, the other constraint it has to satisfy
in order to come from an exact sequence such as the above is the
Cayley Bacharach condition with respect to the line bundle
KX (2m + 1).

Cayley Bacharach:
I Suppose P ′ ⊂ P is a subscheme defined by an ideal of length

1 (so, roughly, any collection of all points except one3);
I Suppose f ∈ H0(KX (2m + 1)) vanishes on P ′;
I Then f should vanish on P.

3More precisely, the local pieces of P are Gorenstein so they have a “socle”,
that is to say a unique ideal of length 1. This is the ideal that should be used,
at a single location, to define the test P ′ ⊂ P.



Recall that we are looking at a hypersurface X ⊂ P3 of degree 5, so

KX = OX (1), KX (2m + 1) = OX (2m + 2).

Furthermore for the treatment of the cases c2 ≤ 9 we are
interested in the Serre construction with m = 0. Hence, we’ll be
looking for subschemes P that satisfy CB(2).



We now proceed to illustrate the Cayley-Bacharach condition by
giving some examples. Since these will also be important elements
of the future arguments, we’ll give all the examples of CB(2)
subschemes that serve to define generic points of the irreducible
components of our moduli spaces M(c2) for c2 ≤ 9.



Start by noting that P cannot have length 3 (or less). A length 2
subscheme P ′ would be either two distinct points or a double
curvilinear point, and in any case this defines a line. If P is
contained in the line then we can find a degree 2 polynomial
vanishing on P ′ but not on P, whereas if P isn’t contained in the
line, a general plane through that line will not contain P. Either
way, such a P cannot satisfy CB(2).



Consider the case |P| = 4. Suppose P is contained in a line
` ⊂ P3, that is P ⊂ ` ∩ X . Now, a section of OX (2) (those are the
same as sections of OP3(2)) restricts to a degree 2 polynomial on
the line. For any subscheme P ′ ⊂ P of length 3, if the degree 2
polynomial vanishes on P ′ then it must vanish on the whole line,
so in particular it vanishes on P. This proves the CB(2) property
for subschemes of length 4 on a line.



Before getting to the next examples, let’s look at the proof that all
the CB(2) subschemes of length 4 arise in this way. This proof is
an easy representative for the proofs of similar statements that are
needed along the way.

So, suppose P ⊂ X is an lci subscheme of length 4 satisfying
CB(2). Any length 3 subscheme P ′ ⊂ P defines a plane, and that
plane would have to contain P (by CB(1) in fact).



Suppose we can choose a plane H meeting P in a subscheme of
length ≥ 2, but not containing it. Let h be the equation of the
plane in local coordinates. We may introduce the residual
subscheme of P with respect to the plane. This is the subscheme
R defined by the ideal of functions f such that f · OP ⊂ h · OP ,
and |R|+ |P ∩ H| = |P|.



If |P ∩H| = 3 then the CB(1) condition implies that P ⊂ H, so we
must have |P ∩ H| = 2. But then, there is another plane H ′ such
that |R ∩ H ′| = 1, and taking as quadric Q = H ∪ H ′ we get a
quadric such that |P ∩ Q| = 3, contradicting CB(2) for P. Thus,
we conclude that P has to be contained in any plane H meeting it
in a subscheme of length 2, which implies that P is contained in a
line.



Residual subscheme

The notion of residual subscheme is often useful.

Given a Cartier divisor D ⊂ X and a subscheme P ⊂ X , define

OR := im (OP → OP ⊗OX OX (D)) .

This is seen to be the structure sheaf of a subscheme whose ideal
is the kernel of the surjection OX → OR .

We also have JD∩P/P ∼= OR ⊗OX OX (−D), so

|P| = |D ∩ P|+ |R|.

The residual subscheme enjoys nice transitivity properties with
respect to the Cayley-Bacharach condition.



Getting back to our examples of Cayley-Bacharach subschemes,
consider the case of length 5.

Similarly to the previous case, we can have a subscheme of length
|P| = 5 contained in a line. In fact, this is uniquely determined by
the line with P = ` ∩ X since X ⊂ P3 has degree 5. As before, P
satisfies CB(2)—in fact it satisfies CB(3).

Furthermore, a proof similar to the one above serves to show that
all CB(2) subschemes of length 5 arise in this manner.



Turn next to the case |P| = 6. Here, P can no longer be contained
in a line. One can see that it must be contained in a plane, by the
previously mentionned symmetry consideration on the Euler
characteristic of the bundle E .

If h0(E) ≥ 2 it means h0(JP/X (1)) ≥ 1.

In other words, we have

P ⊂ C := H ∩ X

for some plane H.



A subscheme P ′ ⊂ P of length 5 will be contained in a plane conic
inside H. If P is going to satisfy CB(2) it therefore has to be
contained in that conic. In other words, we have a quadric Q
defining the plane conic as Q ∩ H such that P ⊂ Q ∩ H ∩ X .



If Q is chosen so that Q ∩ H is a smooth conic, then it is
isomorphic to P1 and a calculation similar to the one for the line
shows that any subscheme of length 6 satisfies CB(2). It amounts
to saying that a subscheme of P1 of length 6 satisfies Cayley
Bacharach for the line bundle OP1(4).

One shows that the case where P lies on a smooth plane conic is
general among the possibilities. This is somewhat similar to the
proof for 4 points above, but more involved. The use of dimension
counts, to rule out certain types of configurations as not being able
to correspond to irreducible components of the moduli space,
starts here.



Consider next the case |P| = 7. Here again, by the same argument
P is contained in a plane H. The general case is when the curve
C = H ∩ X is smooth, and P consists of 7 points in general
position on C . This satisfies CB(2).

Indeed suppose P ′ ⊂ P is a collection of 6 points; they are also in
general position on C . It follows that they aren’t all contained in a
plane conic, indeed 5 of them would define a unique plane conic
and then the 6th point is not contained in that conic intersected
with C . Thus, a plane conic containing P ′ must vanish as a
section of OH(2), so it must contain P.



The case |P| = 8 is somewhat different. The subscheme is no
longer contained in a plane. However, a subscheme P ′ ⊂ P of
length 7 is going to define a subspace of
H0(OX (2)) ∼= H0(OP3(2)) ∼= C10 of dimension at least 3.

The generic case is that this subspace does have dimension 3, and
is spanned 3 quadrics whose common intersection consists of 8
reduced points. As usual, the statement that such is indeed the
general case in any complete irreducible family, is something that
needs to be proven.



Suppose that we start with three quadrics Q1,Q2,Q3 in P3, such
that their intersection P = Q1 ∩ Q2 ∩ Q3 consists of 8 distinct
points. Then P satisfies CB(2). This example was called the
Cayley octad by Dolgachev.

The intersection of two Q1 ∩ Q2 is a smooth elliptic curve, and
consideration of linear systems there tells us that if a new quadric
vanishes on 7 of the points of P then its restriction to the elliptic
curve must be proportional to Q3, so vanishing on the 8th point.
This is how we prove the CB(2) condition for the generic case.



We do need to worry, however, about getting P ⊂ X . For a
general choice of Q1,Q2,Q3 the intersection will of course not
meet X . Thus, there is a subvariety of the parameter space
consisting of choices such that Q1 ∩ Q2 ∩ Q3 ⊂ X .

Using a monodromy argument suggested by A. Hirschowitz, for a
given general X , the space of choices of Q1,Q2,Q3 is irreducible.
We’ll do a version of this argument at another place later.

This then defines our irreducible family of CB(2) subschemes of X
of length 8.



The case |P| = 9 gets us back more closely to the type of
argument used for |P| = 7. Indeed, we expect to have a
2-dimensional space of quadrics passing through X (that is, those
passing through a length 8 subscheme P ′ ⊂ P). So, to get the
general point we choose quadrics Q1 and Q2 that meet in a
smooth elliptic curve C = Q1 ∩ Q2. Then let P be a choice of 9
out of the 20 points of C ∩ X . This is seen to be in sufficiently
general position so that any section of OC (2) that vanishes on P ′
of length 8, has to vanish on C and in particular on P.

This defines the family of CB(2) subschemes of length 9.



We have now seen several examples of subschemes satisfying
CB(2) for various reasons. A sort of “meta-conjecture” is that
subschemes satisfying the Cayley-Bacharach condition, at least
ones moving in sufficiently big families, should do so because of
some geometric reason.

In the above examples, that reason often involved the position of
P inside an auxiliary curve C ⊂ P3 not contained in X . Other
possible reasons, more in the direction of the Cayley octads for
example, should most certainly be expected.



Putting together the above constructions and counting dimensions,
we obtain irreducible components of the moduli spaces M(c2) with
the following dimensions. We record also the expected dimensions,
dimension of the generic obstruction space, and whether the
component is generically reduced or non-reduced.

Table: Components of M(c2) for 4 ≤ c2 ≤ 9

c2 4 5 6 7 8 9
dim 2 3 7 9 13 16
e.d. −4 0 4 8 12 16
obs 6 3 3 3 1 1
r/nr r r r nr r nr



The non-reduced cases are those where the obstruction dimension
plus the expected dimension is greater than the dimension. The
discrepancy is the number of extra tangent dimensions due to the
non-reduced directions.

We didn’t give the details of the computations for the dimensions
and obstruction dimensions of the families that we have
constructed above. This is fairly straightforward, noting however
that the same bundle might occur as an extension in several
different ways, that needs to be taken into account in counting the
dimension of moduli.



The main work that needs to be done for these cases c2 < 10 is to
show that the irreducible components constructed explicitly, are
the only ones. Namely, it needs to be shown that more special
cases for the position of P, and/or the positions of the planes,
quadrics and curves that occur in the above discussion, don’t add
distinct irreducible components.

That basically requires checking a lot of cases. Let’s look at a few
aspects in a specific example c2 = 9.



Recall that the subschemes in our family impose 8 conditions on
quadrics. Let us show that a general point of an irreducible
component doesn’t consist of subschemes P that impose ≤ 7
conditions on quadrics. If it did, we would have a subspace of
quadrics containing at least 3 linearly independent ones Q1,Q2,Q3.
However, P has to be contained in I := Q1 ∩ Q2 ∩ Q3 so this
intersection cannot be 0-dimensional (if it was it would have length
only 8).



Therefore, I has a component I+ of positive dimension. One rules
out the possibility that the Qi all contain a common plane, so we
may assume C := Q1 ∩Q2 is a degree 4 curve. It is reducible, since
it contains I+ as an irreducible component. By considering the
possible decompositions of C , we see that either C is contained in
a union of two planes, or it contains a rational normal cubic curve.



Suppose C = L ∪ T where L is a line and T a rational normal
cubic curve. if I+ = L then, either all the Qi are singular, in which
case we can reduce to one of the other cases considered below, or
say Q1 is smooth. If it is smooth, taking the residual of L ∩ P with
respect to L in Q1 we would get a subscheme of the intersection of
two (1, 2) divisors on Q1, having length at most 4. Thus
|L ∩ P| = 5, but then taking a plane through L and a plane
through three of the four remaining points by CB(2) we would get
P contained in two planes.



If I+ = T then L moves as we vary C among double intersections
of our quadrics, from which we get that P ⊂ T .
Finally, we are reduced to two cases: either P is contained in the
union of two planes, or it is contained in a rational normal curve.
Dimension counts show that the possible dimensions of the moduli
points of bundles E in these cases, are < 16 whereas the expected
dimension is 16, therefore these cases can’t contribute irreducible
components.



The proof continues using pretty much these same kinds of
arguments, to show that there are also no new irreducible
components consisting of subschemes P that impose 8 conditions
on quadrics, completing the case c2 = 9.

The proofs for the other cases c2 = 8, 7, . . . are similar.

In the next talk we’ll look at methods for the cases c2 ≥ 10.



Ascending induction and O’Grady’s method

In the third talk, we introduce O’Grady’s method of deforming to
the boundary by creating deformations from bundles to torsion-free
sheaves. Combining that with explicit constructions for low values
of c2, we look at the implications for the how the collection of
moduli spaces fits together as c2 increases.



Recall that the full moduli space of semistable torsion-free sheaves
with c1 = H and given c2 is denoted by Mtf(c2). This contains the
open subset of stable bundles M(c2), and we let M(c2) denote the
closure of M(c2). This will, in general, be a smaller closed subset
of Mtf(c2), as does happen in some cases.



The full boundary of the moduli space is defined to be the closed
subset Mtf(c2)−M(c2). The boundary divisor is defined to be
∂M(c2) := M(c2)−M(c2). While it would be interesting to
provide these closed subsets with a natural subscheme structure
measuring the extent to which the “non-locally-freeness” persists
in deformations, we don’t do that here. The boundary divisor is
instead just provided with its reduced structure.



The terminology “boundary divisor” is justified by the following
lemma of O’Grady.

Lemma (O’Grady)
Suppose Z ⊂ M(c2) is an irreducible component. Define
∂Z := Z − Z. Then the boundary ∂Z has codimension 1 in Z .



An important first question, for a given irreducible component Z ,
is whether ∂Z is nonempty.

Recall that if F is a semistable torsion-free sheaf then its
double-dual E := F ∗∗ is a semistable bundle fitting into an exact
sequence

0→ F → E → S → 0

where S is a sheaf of finite length. It follows that c1(E ) = c1(F )
and c2(E ) ≤ c2(F ) with the last inequality being strict unless F
was already a bundle.



In other words, the values of c2 of the double dual go down along
the boundary. It follows that the component(s) of smallest values
of c2 can’t have any boundary, that is to say they are compact. So
the equation ∂Z 6= ∅ can’t always be true.

O’Grady gives a very nice construction showing that ∂Z 6= ∅ under
some very general hypotheses.



O’Grady’s deformation to the boundary

Let us briefly recall O’Grady’s construction. It is based on the idea
of restriction to a curve. Suppose C ⊂ X is a curve. If we are
given an irreducible component of moduli of bundles Z such that
∂Z = ∅, then for every bundle E ∈ Z we obtain a bundle E |C on
C .

If we assume, furthermore, that these restricted bundles are all
semistable, it gives a morphism ρ : Z → MC from Z to the moduli
space of semistable bundles on C of the appropriate degree.
Let d(C) denote the dimension of MC . There is an ample
theta-divisor ΘC on MC , and from the dimension it follows that

Θd(C)+1
C = 0, therefore ρ∗(ΘC )d(C)+1 = 0.



On the other hand, one can calculate that the pullbacks of the
theta-divisor to Z depend only on the class of C . Taking it to be a
hyperplane section, the dependence on the degree is also controlled
so that the theta-divisors in the various cases are proportional. For
curves of very high degree, the map is an embedding so the
theta-divisor pulls back to an ample bundle on Z . It follows from
the proportionality that ρ∗(ΘC ) is ample on Z , and from the
vanishing above we get

dim(Z ) ≤ dim(MC ).



We conclude that if C ⊂ X is a curve such that
dim(MC ) < dim(Z ), then some bundle E in Z must have
restriction E |C that isn’t semistable.

The second part of O’Grady’s method is to take the destabilizing
subsheaf of E |C and use it to write down a deformation to a
non-locally free semistable torsion-free sheaf. We have an exact
sequence

0→ L→ E |C → Q → 0.



Let T be the elementary transform (kernel of E → Q). We have
the transformed exact sequence

0→ Q(−1)→ T |C → L→ 0.

The idea will be to try to write down a deformation of the quotient
map, in the Quot scheme of quotients of T |C , to a map T |C → L1
such that L1 has torsion.

O’Grady shows by an ingenious argument that this always happens
if the Quot scheme has dimension ≥ 2. Furthermore we can give a
specialized treatment in our case if the dimension is 1.



Let’s just calculate to see that the dimension of the Quot scheme
at our quotient T |C → L is positive. A deformation of the quotient
is a map from the subbundle to the quotient bundle, that is

T (Quot)T |C→L = Hom(Q(−1), L) = H0(Q−1 ⊗ L(1)).

The genus of C is 6 and the degree of OC (1) is 5, so the Euler
characteristic is

χ(Q−1 ⊗ L(1))) = deg(L)− deg(Q).

This is strictly positive exactly when L is a destabilizing subsheaf.



Recall that E (−1) is the kernel of T → L. Once the map T → L
has been deformed to T → L1, let E1(−1) be the kernel of the
new map. The torsion-free sheaf E1 is a deformation of E .

We get a deformation from E to a boundary point. The precise
discussion requires ruling out the case of bundles that deform into
a subset V that we’ll see next.



O’Grady introduces the subset V consisting of bundles with
h0(E ) 6= 0, hence fitting into an exact sequence of the form

0→ OX → E → JP(1)→ 0

with |P| = c2.

This V is the main and largest piece of the obstructed locus of the
moduli space. A bundle E ∈ V has a nilpotent co-obstruction
φ : E → E ⊗ KX = E (1) that factors

E → JP(1) ↪→ OX (1)→ E (1).



For c2 ≤ 9 the Euler characteristic argument says that V is the
whole moduli space.

For c2 ≥ 10, any general subscheme P ⊂ X satisfies the required
CB(2) condition. In this case, V is irreducible of dimension
3c2 − 11. Hence, it has dimension 19 when c2 = 10.
Proof. The space of extensions has dual fitting into an exact sequence

0→ H0(JP/X (2))→ H0(OX (2))→ C|P| → H1(JP/X (2))→ 0

so the dimension of Ext1 is |P|+ h0(JP/X (2))− 10. Adding 2c2 for the choice
of P ⊂ X and subtracting 1 for projectivization of the space of extensions gives
3c2− 11. One must analyze the possibly degenerate cases where P imposes less
conditions on quadrics to see that those only contribute in smaller dimension.



This leads up to Nijsse’s connectedness theorem:

Theorem (Nijsse)
For c2 ≥ 11, any irreducible component of M(c2) meets the
boundary. For c2 = 10, any irreducible component meets either the
boundary or the subset V . For c2 ≥ 10 the moduli spaces M(c2)
and Mtf(c2) are connected.



Corollary
For c2 = 10, the general point E in any irreducible component of
M(c2) has seminatural cohomology, which in this case is equivalent
to saying h1(E (n)) = 0 for any n.

Proof.
This is by observing that general points of V have seminatural
cohomology, and by the inductive argument on boundary
components that we’ll see below. One calculates that general
points of any possible boundary divisors have seminatural
cohomology.



Theorem
The space of bundles Msn(10) with c2 = 10 having seminatural
cohomology is irreducible.

Combining with the previous corollary, we conclude that M(10) is
irreducible and good of dimension 20.



We can look at some aspects of the proof here. The seminatural
cohomology condition says that for each n, at most one of the
H i (E (n)) is nonzero. In case c1 = 1 and c2 = 10, we have
χ(E (n)) = 5n2, so at n = 0 the condition says that all H i (E ) = 0.
As the Euler characteristic is positive, we have H1(E (n)) = 0 (this
is “arithmetically Cohen-Macaulay”), and at most one of H0,H2

are going to be nonzero in any case from duality.

To view E by the Serre construction we must look at an element of
H0(E (1)), a 5-dimensional space.



Each such element leads to an exact sequence

0→ OX (−1)→ E → JP/X (2)→ 0

with P an lci subscheme of length |P| = 20 satisfying CB(4).

As h0(OX (4)) = 35 and P imposes no more than 19 conditions,
the space of sections through P has dimension ≤ 16. One shows
that in fact h0(JP/X (4)) = 16.



The choice of P depends on the choice of section in H0(E (1)).
With this lattitude, we can insure that most pieces of P are
moveable and consist of disjoint reduced points. To see this, we
should investigate the base locus.

Let B2 be the subset of points where all sections of H0(E (1))
vanish. We’ll show that it has at most one point. This will imply
that there is at most one point of P that doesn’t move as we
change the section.

Consideration of B1, the subset where sections don’t generate E ,
allows us to conclude furthermore that at the base locus, a general
P has at worst multiplicity two.



Let’s look at the proof that B2 has at most a single point. The
proofs of what is needed about B1 are somewhat similar.

Suppose we had two points p, q ∈ B2. Take a general plane H
passing through them and set Y := H ∩ X , a smooth curve. Let `
be the line through p and q, so ` ∩ X = p + q + u + v + w .

Assume for here that at least two of the points u, v ,w are distinct.
The case where all three are at the same location requires a longer
proof.



Consider the evaluation map

C5 ∼= H0(E (1))
∼=→ H0(EY (1))→ H0(E (1)`∩X ) ∼= C10.

One shows that the image has dimension 5, however by hypothesis
everything in the image vanishes at p, q. We can impose four
conditions of vanishing at u, v , yielding a section s that doesn’t
vanish at w .

Let M ⊂ EY be the saturated sub-line bundle generated by our
section. Viewed as a section of M, s vanishes at p + q + u + v .



Viewed as an inclusion OX (−1)→ E , our section yields a new
CB(4) subscheme P ′ such that p + q + u + v ⊂ P ′. But then,
using that to calculate H0(E (1)) by H0(JP′/X (3)), we notice that
any cubic vanishing along P ′ has to also vanish at w , showing that
all sections of H0(E (1)) have to take values in Mw at the point w .
This shows w ∈ B1.

In our current hypotheses we obtain at least two new points in B1
along `, in addition to p and q, contradicting a dimension count
for the image of the restriction map above. This contradiction
shows (almost. . . the case u = v = w needing to be treated
separately with a more complicated argument) that we can’t have
two points p, q ∈ B2.



With some more work for the structure of B1, we obtain the
following conclusion: for a general section of H0(E (1)) the
resulting CB(4) subscheme decomposes P = P ′ ∪ P ′′ where the
“movable part” P ′′ consists of at least 18 distinct points that move
in a doubly transitive way as we change the section, whereas P ′ if
nonempty consists of a single point, of length 1 or 2, located at
the single point of B2.

The next step is to look at the cubic surfaces containing P. We
have h0(JP/P3(3)) = 4. Choosing two general elements defines a
curve Z of degree 9 that is a complete intersection of two cubics.



Using what we know about the structure of P, we are able to rule
out the possibility that a general Z would decompose as a union of
two irreducible components, one fixed and one varying. Doing that
requires a little classification of the possibilities for Z . The need
for such classifications seems to be rather general in this subject.

One concludes that the general Z is irreducible. Along the way, it
turns out that P ′ if nonempty has to also be just a single
nonreduced point.



Let Hsn
P3 denote the Hilbert scheme of subschemes P ⊂ P3

consisting of 20 distinct points that satisfy CB(4) with
h0(JP/P3(3)) = 4 and h0(JP/P3(2)) = 0 , and contained in at least
one smooth quintic hypersurface.

We would like to show that it is irreducible.

Up to now we can say that the general element lies on an
irreducible curve Z complete intersection of two cubics. Let Hsn

P3 [2]
denote the bundle over Hsn

P3 that includes the information of Z .

Some arguments are needed to deal with possible singularities of Z .



Let’s ignore that problem and suppose that Z is smooth. Then
P ⊂ Z is a divisor. Put L := OZ (4)(−P). Some calculations with
Serre duality tell us that4 h0(JP/P3(4)) = 16 if and only if
h0(KZ ⊗ L−1) = 1. The line bundle KZ ⊗ L−1 has degree 2.
Therefore, we look to parametrize effective line bundles of degree 2
on Z ; this is given by Z (2). We obtain an irreducible family of the
required dimension, altogether 48, in the Hilbert scheme.

Under our hypothesis that a general Z is smooth, this covers a
dense open set of Hsn

P3 [2] and we get the desired irreducibility.
More work is needed to deal with singularities of Z .

4Note that deformations preserving this condition will also preserve the
CB(4) condition.



Look now at how to go from an irreducible Hilbert scheme
parametrizing P ⊂ P3, to irreducibility for a given quintic
hypersurface. This is an argument of the style that A. Hirschowitz
explained to us, also used on several other occasions (such as for
the Cayley octads).

Denote by {P,Z} := Hsn
P3 [2], irreducible of dimension 48, fibering

over {P} := Hsn
P3 which is thus irreducible of dimension 44. Let

{(P,X )} denote the incidence variety of pairs (P,X ) where X is a
smooth quintic hypersurface containing P.



Each given P imposes 20 conditions on the 56 dimensional space
of quintic hypersurfaces (this doesn’t jump, due to our conditions
of seminatural cohomology). Thus, {(P,X )} → {P} is a bundle of
35-dimensional projective spaces.

In the other direction, the map {(P,X )} → {X} = P55 has fibers
of dimension 24. We would like to show that they are irreducible.
What we know is that the total space is irreducible, therefore the
action of the Galois group of the function field of the base, on the
set of generic irreducible components of the fibers, is transitive.



The idea to finish the proof is to observe that there is a naturally
defined choice of irreducible component of the fibers depending on
X . This gives a Galois-invariant choice of single irreducible
component in each fiber. Since the Galois action on the set of
irreducible components is transitive, this in turn implies that each
fiber has only one irreducible component, as desired.

The naturally defined component is the one that contains the
subset V of bundles with H0(E ) 6= 0. We can show using
deformation theory arguments that bundles in E generize to
bundles with seminatural cohomology, in a uniquely defined
irreducible component. This completes the proof.



Structure of the moduli spaces and their
boundaries

The fourth talk combines the previous strands to obtain the
picture of the moduli spaces of rank 2 bundles and sheaves of odd
degree on a quintic hypersurface. Further questions are explored.



In view of Nijsse’s theorem, it is important to look at the structure
of the boundary. Recall that if F is a torsion-free sheaf and we let
E := F ∗∗ be its double-dual, then E is a vector bundle. This is
because we are on a surface.
If F is semistable then so is E , with the same c1. The exact
sequence we saw before implies that c2(F ) ≥ c2(E ) with equality if
and only if E = F that is to say if F is a bundle.



The number c2(E ) depends on F in a constructible and
semi-continuous way. Therefore we get a stratification

Mtf(c2) = M(c2) t
∐

c′
2<c2

M(c2, c ′2)

where M(c2, c ′2) is the locally closed subset of the moduli space
consisting of points F such that c2(F ∗∗) = c ′2.

The results of Li and Ellingsrud-Lehn allow us to understand the
dimensions of the strata.



Theorem (Li, Ellingsrud-Lehn)
The map

F 7→ F ∗∗ : M(c2, c ′2)→ M(c ′2)

is an etale-locally trivial fibration with connected smooth projective
fibers, whose fibers have dimension 3(c2 − c ′2).

An open subset consists of F given by disjoint collections of
(c2 − c ′2) quotients of rank 1 of the base bundle E , the 3
parameters for such a quotient are 2 for the location in X and 1 for
the direction in the projectivized fiber of E .



Coupled with the previous specific results on M(c2) for c2 ≤ 9 we
can describe the stratification for c2 = 10.

Table: Dimensions of strata for M(10)

stratum dimension dimM(c ′2) 3(c2 − c ′2)
M(10, 4) 20 2 18
M(10, 5) 18 3 15
M(10, 6) 19 7 12
M(10, 7) 18 9 9
M(10, 8) 19 13 6
M(10, 9) 19 16 3
M(10) 20



Consideration of the previous table is one of the ingredients in the
proof of the corollary about seminatural cohomology: the possible
boundary divisors to an irreducible component of M(10) are
M(10, 9), M(10, 8), M(10, 6), and some divisor in M(10, 4).

The M(10, 4) case needs to be examined more carefully. We’ll be
able to identify the divisor there where it intersects M(10).



The above table also gives information about what M(10) looks
like, namely it has two irreducible components M(10) and
M(10, 4), both of dimension 20, meeting along a 19 dimensional
component that is a divisor in M(10, 4).

In turn, this yields the boundary for M(11): namely the
23-dimensional pieces of the boundary stratification for M(11) are
M(11, 10) and M(11, 4).



Since every component of M(11) meets the boundary, and the
boundary has pure codimension 1, it follows that no component of
M(11) can have dimension > 24, thus the dimension of M(11) is
the expected one.

Furthermore, the boundary pieces are already good in the sense
that their generic points have vanishing obstruction space, so it
shows that M(11) is good.



To finish the proof of irreducibility of M(11), we just have to look
at the torsion-free sheaves where M(11, 10) and M(11, 4) meet.
Indeed, it suffices to show by direct calculation that they do indeed
meet, equivalently that M(10) meets M(10, 4).



Since the dimension equals the expected dimension, Kuranishi
theory tells us that the moduli space is a local complete
intersection. (This works equally well for neighborhoods of
torsion-free sheaves.)

Now, if there were one component of M(11) whose boundary was
M(11, 10) and a different component whose boundary was
M(11, 4), those would form two 24 dimensional varieties meeting
in a subvariety of dimension ≤ 22. That isn’t possible in a local
complete intersection.



We have shown that whatever components of M(11) are adjacent
to M(11, 10), are also adjacent to M(11, 4). The proof finishes by
noting that the space of co-obstructions vanishes at a general
point of M(11, 10), using the same fact over M(10). Therefore,
the global moduli space M(11) is smooth along a general point of
the divisor M(11, 10). Thus, there can be only one component of
M(11).

In fact one can show that the two boundary components meet at
an unobstructed and hence smooth point, giving an alternative to
the argument on the previous slide.



The proof of irreducibility and goodness for M(c2) for c2 ≥ 12
proceeds along the same lines but more easily since there now can
be only one boundary divisor and we know inductively the
vanishing of co-obstructions at general points.



Turn next to a more explicit description of the boundary strata
such as M(10, 4). For this, let’s start by looking at M(4). Recall
that the bundles in M(4) were obtained via the Serre construction
with a subscheme P ⊂ ` ∩ X for a line ` ⊂ P3. However, the line
isn’t uniquely determined by E .

It turns out that the invariant quantity in this situation is the
location of the 5th point y ∈ ` ∩ X not in P. This may be seen by
noting that H0(E ) generates a subsheaf of E that is locally free
except at y . One gets

M(4) ∼= X .



Furthermore, the subsheaf considered above is a torsion-free sheaf
F whose double-dual is E , with c2(F ) = 5. Thus F is a point in
M(5, 4) ⊂ Mtf(5).

We can obtain the identification

M(5) ∼= P3

with X = M(4) corresponding to the set of torsion-free sheaves F
considered above, and M(5) = P3 − X .



To do this, we identify M(5) with the set of restrictions R(y)|X
where R(y) is the syzygy reflexive sheaf

0→ R(y)→ OP3(1)⊕3 → Jy/P3(2)→ 0.

If y 6∈ X then R(y)|X is a bundle and we obtain a point of M(5).
Whereas if y ∈ X then R(y) is torsion-free with a length 1
singularity at y , and (R(y)|X )∗∗ is a point of M(4).



Recall that all of M(5, 4) is a fiber bundle over M(4) whose fiber
over E is a 3-dimensional space consisting of pairs (z ,A) where
z ∈ X and A ⊂ Ez is a line. We have a section from M(4) = X
into here sending x ∈ X to the triple (E x , x ,Ax ) where E x is the
bundle corresponding to x , and Ax is the line in (E x )x generated by
H0(E x ). This copy of X is the intersection of the two irreducible
components M(5) and M(5, 4) of dimensions 3 and 5 respectively.



Let’s look more at the intersection of M(10, 4) with M(10). From
the dimensions, these are the two irreducible components of
M(10). The first observation is that the intersection is nonempty.

This may be seen by noting that the other strata in the boundary
stratification, such as M(10, 5), need to be in the closure M(10)
since M(10, 4) is the lowest stratum so it is closed. However,
M(10, 5) lying over M(5) contains degenerations over the
degeneration from M(5) into M(5, 4). Thus, the closure of
M(10, 5) meets M(10, 4).



We can then notice that the intersection M(10, 4) ∩M(10) has to
be contained in the singular locus of M(10). A calculation for
torsion-free sheaves in M(10, 4) shows that their spaces of
co-obstructions are nonzero, in codimension 1, along a specific
divisor.

This divisor parametrizes (E , s1, . . . , s6) where si are distinct length
1 quotients of E , such that they are compatible with the spectral
variety of a generic co-obstruction i.e. Higgs field φ : E → E ⊗KX .



For each E ∈ M(4), the space of such Higgs fields (up to scalar)
has dimension 5, and given (E , φ) the space of 6-tuples has
dimension 12. Putting these together gives dimension
2 + 5 + 12 = 19 and we get a divisor (noting that φ is uniquely
determined once s1, . . . , s6 are fixed).

Dimension counts for other possible configurations yielding
obstructed points show that this is the only divisor. Hence, it must
be the intersection M(10, 4) ∩M(10).



On a hypersurface of degree 6

Let’s move on to looking at a next case, where the irreducibility
property doesn’t hold.

Theorem
If X ⊂ P3 is a very general hypersurface of degree 6, then
MX (r = 2, c1 = 1, c2 = 11) has at least two irreducible
components.
From now on X ⊂ P3 will denote a hypersurface of degree 6.



We have KX = OX (2). A bundle E comes from the Serre
construction in an exact sequence

0→ OX → E → JP/X (1)→ 0

if and only if P satisfies the Cayley-Bacharach condition for the
line bundle KX ⊗OX (1) = OX (3).

In other words, we now look for subschemes P satisfying CB(3).
To get c2 = 11 we should choose a subscheme of length |P| = 11



First construction

The first construction is to suppose that P consists of 11 general
points on Y := X ∩ H where H ⊂ P3 is a hyperplane.

Lemma
Such P satisfy CB(3). The space of bundles coming from this
construction has dimension 13, hence it must be contained in an
irreducible component of the moduli space of dimension ≥ 13.



Proof.
Here Y is a plane curve of degree 6 so it has genus 10. The bundle
OP3(3)|Y has degree 18. Vanishing of a section on 10 general
points means that we get a section of a general line bundle of
degree 8 so the section vanishes on Y . (One can alternatively see
that it actually vanishes on the plane H.) This shows CB(3).



For the dimension estimate notice that h1(E ) = 1 for these
bundles so the choice of section is a space of dimension 1. The
choice of extension class is generically unique. The space of pairs
(E , section) is equal to the space of P’s that has dimension 3 for
the plane plus 11 for the points on Y giving 14. Subtracting 1 for
the choice of section, we get a 13 dimensional space.

The proof doesn’t tell, however, whether this family constitutes an
irreducible component itself.



Second construction

The second construction is to suppose that P consists of 11 of the
18 points of intersection of X with a rational normal cubic curve C .

Let us first note that such a subscheme P satisfies the CB(3)
condition.

Indeed, if we choose any 10 of the 11 points, then forms of degree
3 restrict to forms of degree 9 on C ∼= P1, so vanishing at 10
points implies vanishing along all of C .



Lemma
The space of bundles coming from P in a rational normal cubic,
has dimension 12. The tangent space of MX (11) at a general point
in the family has dimension 12 so these families lie in
12-dimensional irreducible components.

Proof.
Generally speaking the main calculation that enters into the
tangent space in the case of the Serre construction is the space of
sections of the square of the ideal. In this case, we claim that

H0(J2P/X (3)) = 0.

Various calculations then yield the answer of dimension 12.



The claim is shown by first considering a smooth quadric surface Q
containing C . Given a section of J2P/X (3) it vanishes on C , then
as a section of bidegree (2, 1) on Q it vanishes at 11 points on the
rational normal curve, making that one also vanish on C and hence
on Q. We are left with a section of OP3(1) vanishing again on the
11 points so it vanishes.

Here, the proof doesn’t tell whether the space of choices of 11 out
of the 18 points is itself irreducible or not.



These two constructions give irreducible components of the moduli
space MX (11) having different dimensions, so they must be
different. This proves the reducibility theorem in degree 6.

Conjecture
The above constructions for bundles with c2 = 11 on a
hypersurface X ⊂ P3 give exactly two components of MX (11) of
dimensions 12 and 13 respectively.



Further questions and directions

Several questions are naturally posed.
I What about bundles of degree 0? Strictly semistable points

can introduce other singularities and complicate the
argument. What can we say about the existence of universal
families in the even degree case?

I What about hypersurfaces which are not generic, for example
with Picard number > 1?

I Non-generic quintic hypersurfaces also have a new
deformation direction: Horikawa surfaces. What do the
moduli spaces of rank 2 bundles on general Horikawa surfaces
look like?

I For degrees d ≥ 6 can we say something general about the
moduli spaces, for certain ranges of values of c2?



We note that S. Pal and D. Battacharya are working on the case of
hypersurfaces of degree 6, trying to get a fuller picture of the
structure of irreducible components and when the moduli space is
good. They obtain a partial result towards the above conjecture
for components when c2 = 11.

We expect the moduli space to be reducible for very general
hypersurfaces of any degree d ≥ 6.

One can ask, what is the interval of values of c2 where the moduli
space is reducible, going to look like? Coskun and Huizenga show
that for high enough degrees the number of components can be
arbitrarily large.



Smoothing a torsion-free sheaf

We can give a preliminary discussion of the question of obstructions
for smoothing a torsion-free sheaf, at least to first order. Thanks
very much to Marcos Jardim for posing that question yesterday.

A reference is:
I.V. Artamkin. Deforming torsion-free sheaves on an algebraic
surface. Mathematics of the USSR-Izvestiya, 36(3), (1991), 449.



Suppose X is a smooth projective surface and we are looking at
rank 2 torsion-free sheaves. Suppose F is a torsion-free sheaf, and
E = F ∗∗ its double-dual fitting into the exact sequence

0→ F → E → S → 0.

We make the following hypothesis: that

S =
⊕

Si

with Si being skyscraper sheaves of length 1 supported at distinct
points xi .



Locally near xi we can write E ∼= L⊕M and F ∼= L⊕ G where

0→ G → M → S → 0

with S being a length 1 skyscraper sheaf at a point x ∈ X . We
have the Koszul resolutions (local)(

O → O⊕2 → O
)
∼ S and

(
O → O⊕2

)
∼ G .

In particular, G and F have resolutions of length 1. For S, we
define

S∗ := Ext2(S,O),

a direct sum of skyscraper sheaves whose values are (Sx )∗ ⊗ ω−1
x .



After some manipulations we get an exact sequence of sheaves:

Ext0(F ,F )→ Ext0(E ,E )→ (L∗ ⊗ S)⊕ Tx (X )

→ Ext1(F ,F )→ S∗ ⊗ L→ 0.

This yields a map of complexes of sheaves

Ext ·(F ,F )→ S∗ ⊗ L[−1]

that may be seen as the map governing local smoothing of the
non-locally free part of F .



Notice that the smoothing part only has a coefficient in morphisms
from Sx to Lx (the latter being the kernel of Ex → Sx ). This
amounts to saying that creating an instanton requires an extra
direction, for example we can never smooth a rank 1 torsion-free
sheaf.

Let A be the kernel of the above map of complexes. We have two
exact triangles

A→ Ext ·(F ,F )→ S∗ ⊗ L[−1].

and
A→ Hom(E ,E )→ (L∗ ⊗ S)⊕ Tx (X ).



Remark that H2(A) ∼= H2(End(E )). The first triangle gives a long
exact sequence

0→ H1(A)→ Ext1(F ,F )→ H0(S∗⊗L)→ H2(End(E ))→ Ext2(F ,F )→ 0.

Whereas the second triangle gives

(L∗ ⊗ S)⊕ Tx (X )→ H1(A)→ H1(End(E ))→ 0

with the map on the left being injective in case E is stable so its
only endomorphisms are scalars.



The term H1(A) is the term of deformations of the pair consisting
of the bundle E and the quotient S. The inclusion of
(L∗ ⊗ S)⊕ Tx (X ) represents, for the first part, modifying the
quotients at each point, and for the second part modifying the
locations of the points.

The map Ext1(F ,F )→ H0(S∗ ⊗ L) tells us when a deformation is
going to smooth each of the local quotients.

Artamkin points out that we can use trace-free endomorphisms
everywhere.



The obstruction to smoothing is therefore the following thing: we
notice that H0(S∗ ⊗ L) is a direct sum of pieces at each of the
points. There will be a smoothing to first order if there is a
collection (sum) in here, nonzero at each point, that maps to zero
in the obstruction space H2(End0(E )).

This can be measured using the dual

H0(End0(E )⊗ KX )→
⊕

L∗x ⊗ Sx ⊗ (KX )x

The new space of co-obstructions is going to be the kernel.
Heuristically, adding non-locally free points to go up in the
boundary stratification cancels out obstructions.



Brief explanation for Cayley-Bacharach

I’m putting here some slides giving an explanation of the
Cayley-Bacharach condition.

Suppose given two line bundles L,M and an ideal sheaf JP/X . We
look for extension classes

0→ L→ E → JP/X ⊗M → 0

such that E is locally free. The space of extensions is

Ext1(JP/X ⊗M, L) ∼= H0(JP/X ⊗ L∗ ⊗M ⊗ KX )∗.



Brief explanation for Cayley-Bacharach

We note that E is non-locally free if and only if there exists an
inclusion of torsion-free sheaves E ↪→ E ′ of co-length 1. Having
such an inclusion corresponds to having an exact sequence with a
map from the previous one:

0→ L→ E ′ → JP′/X ⊗M → 0

where P ′ ⊂ P is defined by an ideal JP′/P of length 1.



Brief explanation for Cayley-Bacharach

In turn, this means that there exists P ′ such that our extension
class is in the image of the map

Ext1(JP′/X ⊗M, L)→ Ext1(JP/X ⊗M, L).

Existence of a locally free extension is therefore equivalent to the
condition that for all possible P ′ (there are only finitely many), the
above map is not surjective.

Non-surjectivity is equivalent to saying that the maps on Serre
duals

H1(JP/X ⊗ L∗ ⊗M ⊗ KX )→ H1(JP′/X ⊗ L∗ ⊗M ⊗ KX )

are not injective.



Brief explanation for Cayley-Bacharach

We have

H1(JP/X ⊗ L∗ ⊗M ⊗ KX ) ∼=
H0(OP ⊗ L∗ ⊗M ⊗ KX )

H0(L∗ ⊗M ⊗ KX )

and same for P ′.
In our case line bundles themselves don’t have H1 but if they did, those terms
would be the same for P and P ′.

Thus, non-injectivity means that there should be an element of
H0(OP ⊗ L∗ ⊗M ⊗KX ) that restricts to 0 on P ′ but doesn’t come
from a global section.



Brief explanation for Cayley-Bacharach

In other words, the condition for having a locally free extension is
that at all subschemes P ′, the 1-dimensional space

H0(JP′/P ⊗ L∗ ⊗M ⊗ KX )

doesn’t come from H0(JP′/X ⊗ L∗ ⊗M ⊗ KX ). In other words,
sections of the line bundle that vanish over P ′ are not supposed to
be non-vanishing on P.

This is the Cayley-Bacharach condition: in order for there to exist
a locally free extension, for every P ′ ⊂ P defined by an ideal of
length 1, any section of L∗ ⊗M ⊗ KX that vanishes on P ′ should
also vanish on P.
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