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• The classical Schubert geometry of ordinary flag varieties is
well-understood and it is as simple as one can expect!

• The goal of this talk is to extend this theory to the orthogonal
setting.

Let G (k, n) denote the Grassmannian parameterizing
k-dimensional subspaces of an n-dimensional vector space V . Let
F (k1, . . . , kh; n) denote the partial flag variety parameterizing flags

W k1
1 ⊂W k2

2 ⊂ · · · ⊂W kh
h ⊂ V
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• The cohomology of flag varieties is generated by Schubert
classes.

Given two Schubert classes σλ, σµ, the product can be expressed as
a sum of Schubert classes

σλ · σµ =
∑

cν
λ,µσν

Problem: Give a geometric rule for computing the structure
constants so that the rule uses only effective cycles.
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The local Pieri rule explains the Schubert geometry of partial flag
varieties.

In order to obtain an inductive process, one should study a more
general problem. There are natural projections between flag
varieties

π : F (k1, . . . , kh; n)→ F (ki1 , . . . , kij ; n).

PROBLEM: Compute the class of the image under π of the
intersection of two Schubert varieties in F (k1, . . . , kh; n).
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The local Pieri rule explains the Schubert geometry of partial flag
varieties.

In order to obtain an inductive process, one should study a more
general problem. There are natural projections between flag
varieties

π : F (k1, . . . , kh; n)→ F (ki1 , . . . , kij ; n).

PROBLEM: Compute the class of the image under π of the
intersection of two Schubert varieties in F (k1, . . . , kh; n).
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Theorem

The flat limit of the degeneration is supported along the varieties
just described. Each one occurs with multiplicity one in the limit.

In order to obtain an inductive process, one should study a more
general problem. There are natural projections between flag
varieties

π : F (k1, . . . , kh; n)→ F (ki1 , . . . , kij ; n).

PROBLEM: Given two Schubert varieties Σλ and Σµ in
F (k1, . . . , kh; n), compute the class of π(Σλ ∩ Σµ) in
F (ki1 , . . . , kij ; n).

Theorem (Buch-Kresch-Tamvakis)

This rule also gives a positive rule for the quantum cohomology of
Grassmannians.
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Let Q be a non-degenerate, symmetric, bilinear form on V .

OG (k, n) parameterizes the k-dimensional isotropic subspaces of
V . More generally, OF (k1, . . . , kh; n) parameterizes flags of
isotropic subspaces

W k1
1 ⊂ · · · ⊂W kh

h ⊂ V .

If 2k = n, then the space of isotropic subspaces has two connected
components. OG (k, 2k) is usually taken to be one of the
connected components.

Q defines a smooth quadric hypersurface in PV . OG (k, n) is the
Fano variety of (k − 1)-dimensional projective linear spaces on Q.

It is useful to consider singular quadrics/degenerate forms. Let Qr
d

denote a corank r sub-quadric of Q whose span has (vector space)
dimension d .
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The 4 Golden rules:

1 The dimension of a linear space contained in Qr
d is bounded

by r + !d−r
2 ". An isotropic linear space of dimension j

intersects the singular locus of Qr
d in a subspace of dimension

greater than or equal to j − !d−r
2 ".

2 A quadric Qr
d with d = r + 2 is reducible.

3 Qr1
d1
⊂ Qr2

d2
, then r1 − r2 ≤ d2 − d1.

4 Suppose that an isotropic subspace L of dimension j intersects
the singular locus of Qr

d in a subspace of dimension m. Then
the dimension of the image of the Gauss map on L is
j −m − 1.
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Restriction Varieties:
A quadric sequence for OG (k, n) is a totally ordered sequence of
isotropic linear spaces and sub-quadrics of Q

Ll1 ⊂ Ll2 ⊂ · · · ⊂ Lls ⊂ Q
rk−s

dk−s
⊂ · · · ⊂ Qr1

d1

such that

The singular locus of Qri
di

is contained in the singular locus of

Qri+1
di+1

. Any linear space of dimension lj ≥ ri contains the

singular locus of Qri
di

and any linear space of dimension lj ≤ ri
is contained in the singular locus of Qri

di
.

dk−s ≥ rk−s + 3

xi ≥ k − i + 1− di−ri
2

lj %= ri + 1 for any lj , ri .

For flag varieties OF (k1, . . . , kh; n) enrich the data by a choice of
color
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The restriction variety V (L•,Q•) is the Zariski closure of the locus

V 0(L•,Q•) := {W ∈ OG (k, n) | dim(W ∩ Llj ) = j ,

dim(W ∩ Qri
di

) = k − i + 1,

dim(W ∩ Qri ,sing
di

) = xi}

Schubert varieties are restriction varieties with the property that
di + ri = n for all quadrics Qri

di
.

A generic intersection of a Schubert variety in G (k, n) with
OG (k, n) are restriction varieties with the property that s = 0 and
ri = 0 for all quadrics Qri

di
.

Notation:
11]22]00]000}00}00

L2 ⊂ L4 ⊂ L6 ⊂ Q4
9 ⊂ Q2

11
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To define restriction varieties in orthogonal flag varieties
OF (k1, . . . , kh; n) enrich the data by a choice of color:

Ll1 [c1] ⊂ Ll2 [c2] ⊂ · · · ⊂ Lls [cs ] ⊂ Q
rk−s

dk−s
[cs+1] ⊂ · · · ⊂ Qr1

d1
[ckh ]
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Restriction varieties are defined by imposing the corresponding
rank conditions.
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To define restriction varieties in orthogonal flag varieties
OF (k1, . . . , kh; n) enrich the data by a choice of color:
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rk−s

dk−s
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Restriction varieties are defined by imposing the corresponding
rank conditions.

Theorem

The rule just described gives a positive geometric rule for
computing the classes of restriction varieties in OF (k1, . . . , kh; n).
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Some consequences:

We obtain a positive, geometric rule for computing the map

H∗(F (k1, . . . , kh; n))→ H∗(OF (k1, . . . , kh; n))

induced by the natural inclusion.

One can reverse the process to obtain a presentation of the
cohomology ring of OF (k1, . . . , kh; n) when n is odd and a
presentation of the invariant part of the cohomology when n is
even.

Desale and Ramanan show that the moduli space of rank 2
vector bundles with fixed odd determinant on a hyperelliptic
curve of genus g is a subvariety of OG (g − 1, 2g). This
algorithm computes the class and gives a nice recursion for
the class in the genus.
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vector bundles with fixed odd determinant on a hyperelliptic
curve of genus g is a subvariety of OG (g − 1, 2g). This
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the class in the genus.
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d1
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Restriction varieties are defined by imposing the corresponding
rank conditions.
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