
LECTURE 1

The purpose of these lectures is to discuss some aspects of the geometry of homo-
geneous varieties. Let G be a complex, simple Lie group. For our purposes, G will
usually be GL(n) and occasionally be SO(n) or SP (n). If time permits, we might
briefly discuss some homogeneous varieties for E6 or E7. A rational homogeneous
variety is a projective variety which is a quotient of G by a parabolic subgroup.
The most important examples include Grassmannians G(k, n) and partial flag va-
rieties F (k1, . . . , kr;n) parameterizing partial flags (V1 ⊂ · · · ⊂ Vr), where Vi is a
ki-dimensional subspace of a fixed n-dimensional vector space. These varieties are
quotients of GL(n) by the parabolic subgroup that stabilizes a fixed partial flag
Fk1 ⊂ Fk2 ⊂ · · · ⊂ Fkr . We will spend the first week discussing various aspects of
the geometry of Grassmannians. In the second week, we will discuss Grassmannians
for other groups and partial flag varieties.

1. The Grassmannian

Grassmannians are the prototypical examples of homogeneous varieties and pa-
rameter spaces. Many of the constructions in the theory are motivated by analogous
constructions for Grassmannians, hence we will develop the theory for the Grass-
mannian in detail. In this section, we begin by reviewing the basic facts about
Grassmannians. The reader may refer to the books [H, Lectures 6 and 16], [GH,
Chapter I.5] Chapter I.5, and the papers [Kl2] and [KL] for additional information.
Although much of the theory works over arbitrary algebraically closed fields, for
simplicity, we will always work over the complex numbers.

Let V be an n-dimensional vector space. The Grassmannian G(k, n) param-
eterizes k-dimensional linear subspaces of V . We will shortly prove that it is a
smooth, projective variety of dimension k(n − k). It is often convenient to think
of G(k, n) as the parameter space of (k− 1)-dimensional projective linear spaces in
Pn−1. When using this point of view, it is customary to denote the Grassmannian
by G(k − 1, n− 1).

1.1. The Grassmannian as a complex manifold. We will now give G(k, n) the
structure of an abstract variety. Given a k-dimensional subspace Ω of V , we can
represent it by a k × n matrix. Choose a basis v1, . . . , vk for Ω and form a matrix
with v1, . . . vk as the row vectors

M =

 →
v1
. . .
→
vk

 .

The general linear group GL(k) acts on the set of k × n matrices by left multipli-
cation. This action corresponds to changing the basis of Ω. Two k × n matrices
represent the same linear space if and only if they are in the same orbit of the action
of GL(k). Since the k vectors span Ω, the matrix M has rank k. Hence, M has a
non-vanishing k × k minor. Consider the Zariski open set of matrices that have a
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fixed non-vanishing k × k minor. By multiplying on the left by the inverse of this
k×k submatrix, we can normalize M so that this submatrix is the identity matrix.
For example, if the k × k minor consists of the first k columns, the normalized
matrix has the form 

1 0 · · · 0 ∗ · · · ∗
0 1 · · · 0 ∗ · · · ∗

· · ·
0 0 · · · 1 ∗ · · · ∗

 .

A normalized matrix gives a unique representation for the vector space Ω. The
space of normalized matrices such that a fixed k × k minor is the identity is affine
space Ak(n−k). When a matrix has two non-zero k × k minors corresponding to
submatrices M1 and M2, the transition from one representation to another is given
by left multiplication by M−12 M1. By Cramer’s rule, the inverse of a matrix is
given by rational functions in the entries of a matrix. Consequently, the transition
functions are algebraic functions. We thus endow G(k, n) with the structure of a
k(n− k) dimensional abstract variety. Moreover, this construction endows G(k, n)
with the structure of a complex manifold of dimension k(n− k).

1.2. G(k, n) is a compact homogeneous space. Given a k-dimensional vector
space Ω and an element A of GL(n), AΩ is another k-dimensional vector space.
Furthermore, given two k-dimensional vector spaces Ω and Ω′, there exists an ele-
ment of GL(n) that maps one to the other. Consequently, the group GL(n) acts
on G(k, n) transitively. In fact, we can fix a Hermitian inner product on V and, by
the Gram-Schmidt orthogonalization process, choose orthonormal bases for Ω and
Ω′. We can then require the matrix transforming Ω to Ω′ to be unitary. Hence, the
unitary group U(n), which is compact, maps continuously onto G(k, n). We con-
clude that G(k, n) is a connected, compact complex manifold homogeneous under
the action of GL(n).

1.3. G(k, n) is a projective variety. So far we have treated the Grassmannian
simply as an abstract variety. However, we can endow it with the structure of

a smooth, projective variety via the Plücker embedding of G(k, n) into P(
∧k

V ).
Given a k-plane Ω, choose a basis for it v1, . . . , vk. The Plücker map Pl : G(k, n)→
P(
∧k

V ) is defined by sending the k-plane Ω to v1 ∧ · · · ∧ vk. If we pick a different
basis w1, . . . , wk for Ω, then

w1 ∧ · · · ∧ wk = det(M)v1 ∧ · · · ∧ vk,

where M is the matrix giving the change of basis of Ω from v1, . . . , vk to w1, . . . , wk.
Hence, the map Pl is a well-defined map independent of the chosen basis for Ω.

The map Pl is injective since we can recover Ω from its image p = [v1∧· · ·∧vk] ∈
P(
∧k

V ) as the set of all vectors v ∈ V such that v∧v1∧· · ·∧vk = 0. We say that a

vector in
∧k

V is completely decomposable if it can be expressed as v1∧ v2∧ · · ·∧ vk
for k vectors v1, . . . , vk ∈ V .

Exercise 1.1. When 1 < k < dimV , most vectors in
∧k

V are not completely

decomposable. Show, for example, that e1 ∧ e2 + e3 ∧ e4 ∈
∧2

V is not completely
decomposable if e1, e2, e3, e4 is a basis for V .
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A point of P(
∧k

V ) is in the image of the map Pl if and only if the representative∑
pi1,...,ike1∧· · ·∧eik is completely decomposable. It is not hard to characterize the

subvariety of P(
∧k

V ) corresponding to completely decomposable elements. Given
a vector u ∈ V ∗, we can define a contraction

uy :

k∧
V →

k−1∧
V

by setting

uy(v1 ∧ v2 ∧ · · · ∧ vk) =

k∑
i=1

(−1)i−1u(vi) v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

and extending linearly. The contraction map extends naturally to u ∈
∧j

V ∗. An

element x ∈
∧k

V is completely decomposable if and only if (uyx) ∧ x = 0 for

every u ∈
∧k−1

V ∗. We can express these conditions in coordinates. Choose a
basis e1, . . . , en for V and let u1, . . . , un be the dual basis for V ∗. Expressing the
condition (uyx) ∧ x = 0 in these coordinates, for every distinct set of k − 1 indices
i1, . . . , ik−1 and a disjoint set of k + 1 distinct indices j1, . . . , jk+1, we obtain the
Plücker relation

k+1∑
t=1

(−1)spi1,...,ik−1,jtpj1,...,ĵt,...jk+1
= 0.

Example 1.2. The simplest and everyone’s favorite example is G(2, 4). In this
case, there is a unique Plücker relation

p12p34 − p13p24 + p14p23 = 0.

The Plücker map embeds G(2, 4) in P5 as a smooth quadric hypersurface.

Exercise 1.3. Write down all the Plücker relations for G(2, 5) and G(3, 6).

In fact, the Plücker relations generate the ideal of the Grassmannian.

Exercise 1.4. (1) Show that GL(n) acts transitively on the zero locus of the
Plücker relations.

(2) Calculate the Jacobian matrix at (1, 0, . . . , 0) to show that the scheme cut
out by the Plücker relations is smooth of dimension k(n − k). Conclude
that the Plücker relations cut out the Grassmannian scheme theoretically.

(3) Show that the set of Plücker relations generates the ideal of the Grassman-
nian. The easiest way of doing this requires some representation theory.

We can summarize our discussion in the following theorem.

Theorem 1.5. The Grassmannian G(k, n) is a smooth, irreducible, rational, pro-
jective variety of dimension k(n− k).

1.4. The Grassmannian is projectively normal. A smooth, projective variety
X ⊂ Pn is projectively normal if the restriction map H0(OPn(k))→ H0(OX(k)) is
surjective for every k ≥ 0. The Borel-Bott-Weil Theorem implies that given a nef
line bundle L on a homogeneous varietyX = G/P , the action ofG onH0(X,L) is an
irreducible representation. Consequently, the restriction map H0(PN ,OPN (k)) →
H0(X,OX(k)) is surjective for all k ≥ 1 when X is embedded in PN by a com-
plete linear system. In particular, Grassmannians in their Plücker embedding are
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projectively normal. It would be very interesting to understand the syzygies of ho-
mogeneous varieties under embeddings by complete linear systems. Unfortunately,
even the case of projective space is currently open.

1.5. The cohomology ring of G(k, n). The cohomology ring of the complex
Grassmannian (and more generally, the Chow ring of the Grassmannian) can be
very explicitly described. Fix a flag

F• : 0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V,

where Fi is an i-dimensional subspace of V . Let λ be a partition with k parts
satisfying the conditions

n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

We will call partitions satisfying these properties admissible partitions. Given a flag
F• and an admissible partition λ, we can define a subvariety of the Grassmannian
called the Schubert variety Σλ1,...,λk

(F•) of type λ with respect to the flag F• to be

Σλ1,...,λk
(F•) := { [Ω] ∈ G(k, n) : dim(Ω ∩ Fn−k+i−λi) ≥ i }.

The homology and cohomology classes of a Schubert variety depend only on the
partition λ and do not depend on the choice of flag. For each partition λ, we get
a homology class and a cohomology class (Poincaré dual to the homology class).
When writing partitions, it is customary to omit the parts that are equal to zero.
We will follow this custom and write, for example, Σ1 instead of Σ1,0.

The Schubert classes give an additive basis for the cohomology ring of the Grass-
mannian. In order to prove this, it is useful to introduce a stratification of G(k, n).
Pick an ordered basis e1, e2, . . . , en of V and let F• be the standard flag for V de-
fined by setting Fi =< e1, . . . , ei >. The Schubert cell Σcλ1,...,λk

(F•) is defined as

{[Ω] ∈ G(k, n) |

dim(Ω ∩ Fj) =

 0 for j < n− k + 1− λ1
i for n− k + i− λi ≤ j < n− k + i+ 1− λi+1

k for n− λk ≤ j

 .

Given a partition λ, define the weight of the partition to be

|λ| =
k∑
i=1

λi.

The Schubert cell Σcλ1,...,λk
(F•) is isomorphic to Ak(n−k)−|λ|. For Ω ∈ Σcλ1,...,λk

(F•)
we can uniquely choose a distinguished basis so that the matrix having as rows this
basis has the form

∗ · · · ∗ 1 0 · · · 0 0 · · · 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 · · · 0 · · · 0

· · ·
∗ · · · ∗ 0 ∗ · · · ∗ 0 · · · 1 · · · 0

 ,

where the only non-zero entry in the (n− k+ i− λi)-th column is a 1 in row i and
all the (i, j) entries are 0 if j > n− k + i− λi. Thus, we see that the Schubert cell
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is isomorphic to Ak(n−k)−|λ|. We can express the Grassmannian as a disjoint union
of these Schubert cells

G(k, n) =
⊔

λ admissible

Σcλ(F•).

Let σλ1,...,λk
denote the cohomology class Poincaré dual to the fundamental class of

the Schubert variety Σλ1,...,λk
. Since the Grassmannian has a cellular decomposition

where all the cells have even real dimension, we conclude the following theorem.

Theorem 1.6. The integral cohomology ring H∗(G(k, n),Z) is torsion free. The
classes of Schubert varieties σλ as λ varies over admissible partitions give an addi-
tive basis of H∗(G(k, n),Z).

Exercise 1.7. Deduce as a corollary of Theorem 1.6 that the Euler characteristic
of G(k, n) is

(
n
k

)
. Compute the Betti numbers of G(k, n).

Exercise 1.8. Using the fact that G(k, n) has a stratification by affine spaces,
prove that the Schubert cycles give an additive basis of the Chow ring of G(k, n).
Show that the cycle map from the Chow ring of G(k, n) to the cohomology ring is
an isomorphism.

Example 1.9. To make the previous discussion more concrete, let us describe the
Schubert varieties in G(2, 4) = G(1, 3). For drawing pictures, it is more convenient
to use the projective viewpoint of lines in P3. The possible admissible partitions
are (1), (1, 1), (2), (2, 1), (2, 2) and the empty partition. A flag in P3 corresponds to
a choice of point q contained in a line l contained in a plane P contained in P3.

(1) The codimension 1 Schubert variety Σ1 parameterizes lines that intersect
the line l.

(2) The codimension 2 Schubert variety Σ1,1 parameterizes lines that are con-
tained in the plane P .

(3) The codimension 2 Schubert variety Σ2 parameterizes lines that pass through
the point p.

(4) The codimension 3 Schubert variety Σ2,1 parameterizes lines in the plane
P and that pass through the point p.

(5) The codimension 4 Schubert variety Σ2,2 is a point corresponding to the
line l.

A pictorial representation of these Schubert varieties is given in the next figure.

Figure 1. Pictorial representations of Σ1,Σ1,1,Σ2 and Σ2,1, respectively.

Exercise 1.10. Following the previous example, work out the explicit geometric
description of all the Schubert varieties in G(2, 5) and G(3, 6).
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Since the cohomology of Grassmannians is generated by Schubert cycles, given
two Schubert cycles σλ and σµ, their product in the cohomology ring can be ex-
pressed as a linear combination of Schubert cycles.

σλ · σµ =
∑
ν

cνλ,µ σν

The structure constants cνλ,µ of the cohomology ring with respect to the Schubert
basis are known as Littlewood - Richardson coefficients.

We will describe several methods for computing the Littlewood-Richardson co-
efficients. It is crucial to know when two varieties intersect transversely. Kleiman’s
Transversality Theorem provides a very useful criterion for ascertaining that the
intersection of two varieties in a homogeneous space is transverse. Here we will
recall the statement and sketch a proof. For a more detailed treatment see [Kl1] or
[Ha] Theorem III.10.8.

Theorem 1.11. (Kleiman) Let k be an algebraically closed field. Let G be an
integral algebraic group scheme over k and let X be an integral algebraic scheme
with a transitive G action. Let f : Y → X and f ′ : Z → X be two maps of integral
algebraic schemes. For each rational element of g ∈ G, denote by gY the X-scheme
given by y 7→ gf(y).

(1) Then there exists a dense open subset U of G such that for every rational
element g ∈ U , the fiber product (gY )×X Z is either empty or equidimen-
sional of the expected dimension

dim(Y ) + dim(Z)− dim(X).

(2) If the characteristic of k is zero and Y and Z are regular, then there exists
an open, dense subset U ′ of G such that for g ∈ U ′, the fiber product
(gY )×X Z is regular.

Proof. The theorem follows from the following lemma.

Lemma 1.12. Suppose all the schemes in the following diagram are integral over
an algebraically closed field k.

W Z

p↙ q ↘ r ↙
S X

If q is flat, then there exists a dense open subset of S such that p−1(s) ×X Z is
empty or equidimensional of dimension

dim(p−1(s)) + dim(Z)− dim(X).

If in addition, the characteristic of k is zero, Z is regular and q has regular fibers,
then p−1(s)×X Z is regular for a dense open subset of S.

The theorem follows by taking S = G, W = G × Y and q : G × Y → X
given by q(g, y) = gf(y). The lemma follows by flatness and generic smoothness.
More precisely, since q is flat, the fibers of q are equidimensional of dimension
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dim(W ) − dim(X). By base change the induced map W ×X Z → Z is also flat,
hence the fibers have dimension dim(W ×X Z)− dim(Z). Consequently,

dim(W ×X Z) = dim(W ) + dim(Z)− dim(X).

There is an open subset U1 ⊂ S over which p is flat, so the fibers are either
empty or equidimensional with dimension dim(W )− dim(S). Similarly there is an
open subset U2 ⊂ S, where the fibers of p ◦ prW : X ×X Z → S is either empty
or equidimensional of dimension dim(X ×X Z) − dim(S). The first part of the
lemma follows by taking U = U1 ∩ U2 and combining these dimension statements.
The second statement follows by generic smoothness. This is where we use the
assumption that the characteristic is zero. �

The Grassmannians G(k, n) are homogeneous under the action of GL(n). Tak-
ing f : Y → G(k, n) and f ′ : Z → G(k, n) to be the inclusion of two subvarieties
in Kleiman’s transversality theorem, we conclude that gY ∩ Z is either empty or
a proper intersection for a general g ∈ GL(n). Furthermore, if the characteristic
is zero and Y and Z are smooth, then gY ∩ Z is smooth. In particular, the inter-
section is transverse. Hence, Kleiman’s Theorem is an extremely powerful tool for
computing products in the cohomology.

Example 1.9 continued. Let us work out the Littlewood - Richardson coefficients
of G(2, 4) = G(1, 3). It is simplest to work dually with the intersection of Schubert
varieties. Suppose we wanted to calculate Σ2∩Σ2. Σ2 is the class of lines that pass
through a point. If we take two distinct points, there will be a unique line containing
them both. We conclude that Σ2∩Σ2 = Σ2,2. By Kleiman’s transversality theorem,
we know that the intersection is transverse. Therefore, this equality is a scheme
theoretic equality. Similarly, Σ1,1 ∩ Σ1,1 = Σ2,2, because there is a unique line
contained in two distinct planes in P3. On the other hand Σ1,1∩Σ2 = 0 since there
will not be a line contained in a plane and passing through a point not contained
in the plane.

The hardest class to compute is Σ1∩Σ1. Since Schubert classes give an additive
basis of the cohomology, we know that Σ1∩Σ1 is expressible as a linear combination
of Σ1,1 and Σ2. Suppose

Σ1 ∩ Σ1 = aΣ1,1 + bΣ2

We just computed that both Σ1,1 and Σ2 are self-dual cycles. In order to compute
the coefficient we can calculate the triple intersection. Σ1∩Σ1∩Σ2 is the set of lines
that meet two lines l1, l2 and contain a point q. There is a unique such line given
by ql1 ∩ ql2. The other coefficient can be similarly computed to see σ2

1 = σ1,1 + σ2.

Exercise 1.13. Work out the multiplicative structure of the cohomology ring of
G(2, 4) = G(1, 3), G(2, 5) = G(1, 4) and G(3, 6) = G(2, 5).

In the calculations for G(2, 4), it was important to find a dual basis to the
Schubert cycles in H4(G(2, 4),Z). Given an admissible partition λ, we define a
dual partition λ∗ by setting λ∗i = n − k − λk−i+1. Pictorially, if the partition λ is
represented by a Young diagram inside a k × (n− k) box, the dual partition λ∗ is
the partition complementary to λ in the k × (n− k) box.

Exercise 1.14. Show that the dual of the Schubert cycle σλ1,...,λk
is the Schubert

cycle σn−k−λk,...,n−k−λ1 . Conclude that the Littlewood - Richardson coefficient cνλ,µ
may be computed as the triple product σλ · σµ · σν∗ .
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The method of undetermined coefficients we just employed is a powerful tech-
nique for calculating the classes of subvarieties of the Grassmannian. Let us do an
example to show another use of the technique.

Example 1.15. How many lines are contained in the intersection of two general
quadric hypersurfaces in P4? In order to work out this problem we can calculate
the class of lines contained in a quadric hypersurface in P4 and square the class.
The dimension of the space of lines on a quadric hypersurface is 3. The classes of
dimension 3 in G(1, 4) are given by σ3 and σ2,1. We can, therefore, write this class
as aσ3 + bσ2,1. The coefficient of σ3 is zero because σ3 is self-dual and corresponds
to lines that pass through a point. As long as the quadric hypersurface does not
contain the point, the intersection will be zero. On the other hand, b = 4. Σ2,1

parameterizes lines in P4 that intersect a P1 and are contained in a P3 containing the
P1. The intersection of the quadric hypersurface with the P3 is a quadric surface.
The lines have to be contained in this surface and must pass through the two points
of intersection of the P1 with the quadric surface. There are four such lines. We
conclude that there are 16 lines that are contained in the intersection of two general
quadric hypersurfaces in P4.

Exercise 1.16. Another way to verify that there are 16 lines in the intersection
of two general quadric hypersurfaces in P4 is to observe that such an intersection
is a quartic Del Pezzo surface D4. Such a surface is the blow-up of P2 at 5 general
points embedded by its anti-canonical linear system. Check that the lines in this
embedding correspond to the (−1)-curves on the surface and show that the number
of (−1)-curves on this surface is 16 (see for example [Ha] Chapter 5).

Exercise 1.17. Let C be a smooth, complex, irreducible, non-degenerate curve of
degree d and genus g in P3. Compute the class of the variety of lines that are secant
to C.
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