
LECTURE 2

1. Pieri and Giambelli Rules

We now give two presentations for the cohomology ring of the Grassmannian.
These presentations are useful for theoretical computations. However, we will soon
develop Littlewood-Richardson rules, positive combinatorial rules for computing
Littlewood-Richardson coefficients, that are much more effective in computing and
understanding the structure of the cohomology ring of G(k, n).

A partition λ with λ2 = · · · = λk = 0 is called a special partition. A Schubert
cycle defined with respect to a special partition is called a Pieri cycle. Pieri’s rule
is a formula for multiplying an arbitrary Schubert cycle with a Pieri cycle.

Theorem 1.1 (Pieri’s formula). Let σλ be a Pieri cycle. Suppose σµ is any Schubert
cycle with parts µ1, . . . , µk. Then

σλ · σµ =
∑

µi≤νi≤µi−1

|ν|=|λ|+|µ|

σν (1)

Proof. By codimension considerations, we must have |ν| = |λ| + |µ|. We need to
compute the coefficient of each of the cycles σν satisfying the codimension condition.
By the orthogonality relations, to compute the coefficient, we need to calculate
σλ · σµ · σν∗ . First, let’s calculate σµ · σν∗ . We already know that if ν∗ 6⊂ µ∗, this
product vanishes. Hence, we need µ ⊂ ν, which gives us the conditions µi ≤ νi for
every 1 ≤ i ≤ k. From now on we can suppose that µi ≤ νi. Set ai = n− k+ i−µi
and bk−i+1 = n − k + k − i + 1 − ν∗k−i+1 = k − i + 1 + νi. We conclude that
Ai = Fai ∩Gbk−i+1

is a vector space of dimension νi − λi + 1 spanned by the basis
vectors en−bk−i+1+1, . . . , eai . If νi ≤ µi−1 notice that Fai−1

∩ Gbk−i+1
= 0 since

this dimension is max(0, νi − µi−1). In that case, we learn that any linear space
in the intersection of Σµ(F•) ∩ Σν∗(G•) must be spanned by one vector from each
vector space Ai. Furthermore, the vector spaces Ai are independent and span a
linear space of dimension |λ| + k. On the other hand, the linear spaces are also
required to intersect a general linear space Hn−k+1−λ of dimension n − k + 1 −
λ. This linear space intersects the span of the Ai in precisely a one dimensional
space, say spanned by a vector v. Let Bi = Spanj 6=iAj Then the k-plane in
the triple intersection is uniquely determined by the k-one dimensional subspaces
Ai ∩ Span(Bi, v). Conversely, suppose that νi > µi−1. Then Ai and Ai−1 have at
least a one-dimensional intersection. Hence, the span of all the subspaces Ai is at
most of dimension |λ|+ k− 1. However, this subspace needs to still contain all the
linear spaces in the intersection of Σµ(F•) ∩ Σν∗(G•). Since this subspace is now
disjoint from Hn−k+1−λ, there cannot be any linear spaces in the triple intersection.
Hence, there is one subspace in the intersection precisely when µi ≤ νi ≤ µi−1 and
otherwise the triple intersection is empty. This proves Pieri’s formula. �

Exercise 1.2. Show that the locus where a Plücker coordinate vanishes corre-
sponds to a Schubert variety Σ1. Observe that the class of Σ1 generates the second
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homology of the Grassmannian. In particular, the Picard group is isomorphic to
Z. Conclude that OG(k,n)(Σ1) is the very ample generator of the Picard group and
it gives rise to the Plücker embedding.

Exercise 1.3. Compute the degree of the Grassmannian G(k, n) under the Plücker

embedding. The answer is provided by σ
k(n−k)
1 . When k = 2, this computation is

relatively easy to carry out. By Pieri’s formula σ1 times any cycle in G(2, n) either
increases the first index of the cycle or it increases the second index provided that
it is less than the first index. This means that the degree of the Grassmannian
G(2, n) is the number of ways of walking from one corner of an (n − 2) × (n − 2)
to the opposite corner without crossing the diagonal. This is well-known to be the
Catalan number

(2(n− 2))!

(n− 2)!(n− 1)!
.

The general formula is more involved. The degree of G(k, n) is given by

(k(n− k))!

k∏
i=1

(i− 1)!

(n− k + i− 1)!
.

The special Schubert cycles generate the cohomology ring of the Grassmannian.
In order to prove this we have to express every Schubert cycle σλ1,...,λk

as a linear
combination of products of special Schubert cycles. Consider the following example

σ4,3,2 = σ2 · σ4,3 − σ4 · σ4,1 + σ6 · σ2,1.
To check this equality, using Pieri’s rule expand the products.

σ2 · σ4,3 = σ4,3,2 + σ4,4,1 + σ5,3,1 + σ5,4 + σ6,3

σ4 · σ4,1 = σ4,4,1 + σ5,3,1 + σ6,2,1 + σ7,1,1 + σ5,4 + σ6,3 + σ7,2 + σ8,1

σ6 · σ2,1 = σ7,1,1 + σ6,2,1 + σ7,2 + σ8,1

Note the following features of this calculation. The class σ4,3,2 only occurs in the
first product. All other products occur twice with different signs.

Exercise 1.4. Using Pieri’s formula generalize the preceding example to prove the
following identity

(−1)kσλ1,...,λk
=

k∑
j=1

(−1)jσλ1,...,λj−1,λj+1−1,...,λk−1 · σλj+k−j

Theorem 1.5 (Giambelli’s formula). Any Schubert cycle may be expressed as a
linear combination of products of special Schubert cycles as follows

σλ1,...,λk
=

∣∣∣∣∣∣∣∣
σλ1 σλ1+1 σλ1+2 . . . σλ1+k−1
σλ2−1 σλ2 σλ2+1 . . . σλ2+k−2

. . . . . . . . .
σλk−k+1 σλk−k+2 σλk−k+3 . . . σλk

∣∣∣∣∣∣∣∣
Exercise 1.6. Expand the determinant by the last column and use the previous
exercise to prove Giambelli’s formula by induction.

Exercise 1.7. Use Giambelli’s formula to express σ3,2,1 in G(4, 8) in terms of
special Schubert cycles. Using Pieri’s rule find the class of its square.
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2. universal bundles on the Grassmannian

Pieri’s formula and Giambelli’s formula together give an algorithm for comput-
ing the cup product of any two Schubert cycles. Unfortunately, in practice this
algorithm is tedious to use. We will rectify this problem shortly.

One extremely useful way comes from considering the universal exact sequence
of bundles on G(k, n). Let T denote the tautological bundle over G(k, n). Recall
that the fiber of T over a point [Ω] is the vector subspace Ω of V . There is a natural
inclusion

0→ T → V → Q→ 0

with quotient bundle Q.

Theorem 2.1. As a ring the cohomology ring of G(k, n) is isomorphic to

R[c1(T ), . . . , ck(T ), c1(Q), . . . , cn−k(Q)]/(c(T )c(Q) = 1).

Moreover, the chern classes of the Quotient bundle generate the cohomology ring.

The Chern classes of the tautological bundle and the quotient bundle are easy
to see in terms of Schubert cycles. As an exercise prove the following proposition:

Proposition 2.2. The chern classes of the tautological bundle are given as follows:

ci(T ) = (−1)iσ1,...,1

where there are i ones. The chern classes of the quotient bundle are given by

ci(Q) = σi.

Exercise 2.3. Calculate the number of lines on a general cubic hypersurface in
P3. More generally, calculate the class of the variety of lines contained in a general
cubic hypersurface in Pn.

Exercise 2.4. Calculate the number of lines on a general quintic threefold.

Exercise 2.5. Calculate the number of lines contained in a general pencil of quar-
tic surfaces in P3. Carry out the same calculation for a general pencil of sextic
hypersurfaces in P4.

3. The local structure of the Grassmannian

The tangent bundle of the Grassmannian has a simple intrinsic description in
terms of the tautological bundle T and the quotient bundle Q. There is a natural
identification of the tangent bundle of the Grassmannian with homomorphisms
from T to Q, in other words

TG(k, n) = Hom(T,Q).

In particular, the tangent space to the Grassmannian at a point [Ω] is given by
Hom(Ω, V/Ω). One way to realize this identification is to note that the Grassman-
nian is a homogeneous space for GL(n). The tangent space at a point may be
naturally identified with quotient of the Lie algebra of GL(n) by the Lie algebra
of the stabilizer. The Lie algebra of GL(n) is the endomorphisms of V . Those
that stabilize Ω are those homomorphisms φ : V → V such that φ(Ω) ⊂ Ω. These
homomorphisms are precisely homomorphisms Hom(Ω, V/Ω).
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Exercise 3.1. Use the above description to obtain a description of the tangent
space to the Schubert variety Σλ1,...,λk

at a smooth point [Ω] of the variety.

We can use the description of the tangent space to check that the intersection
of Schubert cycles in previous calculations were indeed transverse. For example,
suppose we take the intersection of two Schubert varieties Σ1 in G(1, 3) defined with
respect to two skew-lines. Then the intersection is a smooth variety. In vector space
notation, we can assume that the conditions are imposed by two non-intersecting
two-dimensional vector spaces V1 and V2. Suppose a 2-dimensional vector space Ω
meets each in dimension 1. The tangent space to Ω at the intersection is given by

φ ∈ Hom(Ω, V/Ω) such that φ(Ω ∩ Vi) ⊂ [Vi] ∈ V/Ω.

As long as V1 and V2 do not intersect, Ω has exactly a one-dimensional intersection
with each of Vi and these span Ω. On the other hand, the quotient of Vi in V/Ω
is one-dimensional. We conclude that the dimension of such homomorphisms is 2.
Since this is equal to the dimension of the variety, we deduce that the variety is
smooth.

Exercise 3.2. Carry out a similar analysis for the other examples we did above.

Using the description of the tangent bundle, we can calculate the canonical class
of G(k, n). We use the splitting principle for Chern classes. Let α1, . . . , αk be the
Chern roots of S∗. We then have the equation

c(S∗) =

k∏
i=1

(1 + αi) = 1 + σ1 + σ1,1 + · · ·+ σ1,1,...,1.

Similarly, let β1, . . . , βn−k be the Chern roots of Q. We then have the equation

c(Q) =

n−k∏
j=1

(1 + βj) = 1 + σ1 + σ2 + · · ·+ σn−k.

The Chern classes of the tangent bundle can be expressed as

c(TG(k, n)) = c(S∗ ⊗Q) =

k∏
i=1

n−k∏
j=1

(1 + αi + βj).

In particular, the first Chern class is equal to nσ1. Since this class is n times the
ample generator of the Picard group, we conclude the following theorem.

Theorem 3.3. The canonical class of G(k, n) is equal to −nσ1. G(k, n) is a Fano
variety of Picard number one and index n.

4. The Grassmannian as a functor

Definition 4.1. Let S be a scheme, E a vector bundle on S and k a natural number
less than or equal to the rank of E. The functor

Gr(k,E) : {schemes overS} → {sets}

associates to every S scheme X the set of rank k subvector bundles of E ×S X.

Theorem 4.2. The functor Gr(k,E) is represented by a scheme GS(k,E) and a
subvector bundle U ⊂ E ×S GS(k,E) of rank k.
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