
LECTURE 4

1. Introduction to rigidity

A Schubert variety in the Grassmannian G(k, n) is smooth if and only if it
is a linearly embedded sub-Grassmannian ([LS]). Even when a Schubert variety
is singular, there may be smooth subvarieties of G(k, n) representing the same
cohomology class. For example, the Schubert variety representing σ1 in G(2, 5) is a
singular hyperplane section of G(2, 5) in the Plücker embedding. However, Bertini’s
Theorem ([Ha], II.8.18) guarantees that a general hyperplane section of G(2, 5) is a
smooth variety representing σ1. In contrast, σ2 cannot be represented by a smooth
subvariety of G(2, 5). In fact, any proper subvariety of G(2, 5) with cohomology
class σ2 is a Schubert variety. Nevertheless, there are many Schubert classes, such
as σ3,2,0 in G(3, 7), that admit non-trivial deformations but cannot be represented
by a smooth, proper subvariety of G(k, n).

Definition 1.1. A Schubert class σλ is called rigid if the only proper subvarieties
of G(k, n) representing σλ are Schubert varieties.

Definition 1.2 (Rigid partition). We will call a partition λ = (µi11 , . . . , µ
ij
j ) a rigid

partition for G(k, n) if there does not exist an index 1 ≤ s < j with is = 1 and
n− k > µs = µs+1 + 1.

For example, (4, 4, 2, 0), (3, 3, 2, 2), (4, 3, 1, 1) and (2, 2, 2, 0) are rigid partitions for
G(4, 8), whereas (3, 2, 0, 0), (4, 4, 1, 0) are not rigid partitions for G(4, 8).

In recent years, the Schur rigidity of Schubert varieties have been extensively
studied by differential geometers (see [Br], [Ho1], [Ho2] and [W]). Recall that
a Schubert class is Schur rigid if the only integral varieties of the corresponding
Schur differential system (see Definition 40 of [W] or 2.8.1 of [Br]) are Schubert
varieties. In [Ho2], Hong proves that a large class of Schubert varieties are Schur
rigid. In this lecture, we will discuss the algebro-geometric theory of rigidity instead
and prove the following theorem.

Theorem 1.3. A Schubert class σλ in G(k, n) is rigid if and only if λ is a rigid
partition for G(k, n).

Example 1.4. Theorem 1.3 implies that the Schubert class σ3,2,0 in G(3, 7) can
be represented by proper subvarieties of G(3, 7) that are not Schubert varieties.
A deformation of the Schubert variety Σ3,2,0 can be obtained as follows. Fix a
four dimensional subspace V ′ of V . Let Y be a general hyperplane section of
the Grassmannian G(2, V ′) in its Plücker embedding. Let X be the subvariety
of G(3, V ) parameterizing three-dimensional linear subspaces of V that contain a
two-dimensional subspace parameterized by Y . Then X represents the class σ3,2,0

in G(3, 7), but is not isomorphic to a Schubert variety (for instance, the singular
locus of X is irreducible, where as the singular locus of Σ3,2,0 has two irreducible
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components). Nevertheless, the class σ3,2,0 cannot be represented by a smooth
subvariety of G(3, 7). This example raises the problem of characterizing Schubert
classes that can be represented by smooth subvarieties of G(k, n).

Definition 1.5 (Non-smoothable partition). We will call a partition λ = (µi11 , . . . , µ
ij
j )

a non-smoothable partition for G(k, n) if either there exists an index 1 ≤ s < j
such that is 6= 1 and n − k > µs; or there exists an index 1 ≤ s < j such that
n− k > µs 6= µs+1 + 1.

For example, (3, 3, 1, 0), (3, 2, 2, 1), (4, 2, 0, 0) are non-smoothable partitions for
G(4, 8), whereas (3, 2, 1, 0), (2, 1, 0, 0), (4, 4, 2, 1) are not non-smoothable partitions
for G(4, 8).

Theorem 1.6. Let λ be a non-smoothable partition for G(k, n). Then σλ cannot
be represented by a smooth subvariety of G(k, n).

Theorem 1.6 is nearly sharp in a sense that we now make precise. Suppose V ′ ⊂
V is a subspace of dimension m. If s ≥ max(0, k+m− n), then the Grassmannian
G(s,m) can be embedded into G(k, n) as follows. Let U be a subspace of V of
dimension k − s such that U ∩ V ′ = 0. Given [W ′] ∈ G(s,m), the span of W ′ and
U is a k-dimensional subspace of V . This induces an embedding of G(s,m) into
G(k, n) compatible with the Plücker embedding. We will call a sub-Grassmannian
of G(k, n) obtained as the image of such a morphism a linearly embedded sub-
Grassmannian. The Gysin image of the fundamental class of G(s,m) is σλ, where

λ = ((n− k)k−s, (n−m+ s− k)s),

and the Gysin image of the fundamental class of a hyperplane section in G(s,m) is
σλ′ , where

λ′ = ((n− k)k−s, n−m+ s− k + 1, (n−m+ s− k)s−1)

in the cohomology of G(k, n). In particular, note that the Schubert classes σλ with

λ = ((n− k)k−s, ps) or ((n− k)k−s−1, p+ 1, ps),

can be represented by smooth subvarieties of the Grassmannian G(k, n) for any
0 ≤ s ≤ k and 0 ≤ p ≤ n− k − 1.

More generally, the space of Schubert varieties of class σn−r,n−r contained in
G(2, n) is parameterized by the Grassmannian G(r, n). Consider the subvariety of
G(r, n) parameterizing the locus of subvarieties of G(2, n) with class σn−r,n−r that
are contained in a general hyperplane section of G(2, n) in the Plücker embedding.
Consider the incidence correspondence

I := {(X,H) | X ⊂ G(2, n) ∩H with [X] = σn−r,n−r} ⊂ G(r, n)× (P(n2)−1)∗

parameterizing pairs of a Schubert subvariety of G(2, n) with class σn−r,n−r and
a hyperplane section of G(2, n) in the Plücker embedding containing it. The first
projection exhibits I as a projective space bundle overG(r, n) with fibers isomorphic
to projective spaces of dimension

(
n
2

)
−
(
r
2

)
− 1. Consequently, I is smooth. By

generic smoothness ([Ha], III.10.7), a general fiber of the second projection is a
smooth subvariety of G(r, n). This variety is the zero locus of a section of the vector

bundle
∧2

S∗ over G(r, n), where S denotes the tautological bundle of G(r, n), hence
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has cohomology class σr−1,r−2,r−3,...,3,2,1,0. Using the construction in the previous
paragraph, it follows that the Schubert classes σλ in G(k, n) with

λ = ((n− k)s, p, p− 1, p− 2, . . . , p− k − s+ 2, p− k + s+ 1)

with k ≥ s ≥ 0 and p − k + s + 1 ≥ 0 can be represented by smooth subvarieties
of G(k, n). Consequently, Theorem 1.6 is sharp in the following sense. Let λ be a
partition with it = 1 and µt = µt+1 +1 for all 1 ≤ t < j, then σλ can be represented
by a smooth subvariety of G(k, k + 3 + µj). However, this still leaves the following
problem open.

Problem 1.7. Let λ = (µi11 , . . . , µ
ij
j ) be a partition with it = 1 and µt = µt+1 + 1

for every 1 ≤ t < j and
∑j
t=1 it = k. For which n does there exist a smooth variety

in G(k, n) representing the class σλ?

Let us explain the strategy of the proof of Theorem 1.6 in the case of G(2, n).
Theorem 1.6 asserts that the only classes σa,b that can be represented by smooth
subvarieties of G(2, n) have either a = n − 2 or a − b ≤ 1. Let σa,b be a Schubert
class in G(2, n) such that a < n−2 and a−b > 1. We need to show that σa,b cannot
be represented by a smooth subvariety of G(2, n). Suppose to the contrary that X
is a smooth, proper subvariety of G(2, n) representing σa,b. Then by intersecting
X with a general Schubert variety Σn−3−a,n−3−a (which is smooth), we obtain a
smooth, proper variety that represents the class σn−3,n−3+b−a. Hence, to prove
Theorem 1.6 for G(2, n), it suffices to show that a variety Y representing the class
σn−3,n−3−c for c > 1 cannot be smooth.

The dimension of Y is c+ 2. By Pieri’s formula, the degree of Y in the Plücker
embedding of G(2, n) is c + 1. Any subvariety of G(2, n) representing a Schubert
class σλ can be specialized to a scheme whose support is a Schubert variety Σλ. In
particular, the dimension of the linear span of Y in the Plücker embedding has to
be greater than or equal to 2c + 2, the dimension of the linear span of a Schubert
variety Σn−3,n−3−c. We conclude that the Plücker embedding of Y has to be a
minimal variety in projective space of dimension c+ 2 and degree c+ 1.

Recall that the degree d of an n-dimensional, non-degenerate, irreducible variety
in Pr is bounded by d ≥ r+ 1−n. The varieties for which equality holds are called
minimal varieties and have been classified by Del Pezzo [D] and Bertini [Be]. A
modern proof can be found in [EH].

Classification of varieties of minimal degree. [EH, Theorem 1] If X is an
irreducible, non-degenerate variety of dimension r and degree n+ 1− r in Pn, then
X is either a quadric hypersurface, a rational normal scroll, the Veronese surface
in P5 or a cone over any of these varieties.

Since c > 1, the degree of Y is at least three. The dimension of a smooth rational
scroll or a Veronese surface is less than or equal to its degree. Since the degree of
Y is less than its dimension, by the classification of the varieties of minimal degree,
Y is a cone. Therefore, Y is singular. In fact, it is easy to see that Y is a cone over
a rational normal scroll. This suffices to prove Theorem 1.6 for G(2, n). The proof
in the general case follows the same strategy, however, the base cases that need
to be treated are not necessarily minimal varieties. Fortunately, the base cases
are all cones over Segre varieties and do not admit any non-trivial infinitesimal
deformations.
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Theorem 1.3 is then proved by analyzing the singular locus of a variety repre-
senting a Schubert class σλ. For example, any proper variety X representing the
class σn−3,0 in G(2, n) has to be a cone over a rational normal scroll. The cone point
p of X determines a two-dimensional subspace L of V . Since the Zariski tangent
space to X at p has dimension 2n−4, we conclude that the span of X has to be the
projectivized tangent space to G(2, n) at p. Hence, X is contained in the Schubert
variety of two-dimensional subspaces of V that intersect L. Since both varieties
are irreducible and of the same dimension, X is equal to the Schubert variety. The
proof in the general case proceeds by showing that the singular locus determines
the partial flag defining the Schubert variety of the same class.

There are many variants and generalizations of these problems.

Problem 1.8. Which non-negative linear combinations of Schubert classes in
G(k, n) can be represented by irreducible/smooth proper subvarieties?

Hong’s results in [Ho2] imply that positive, integral multiples of many Schubert
classes cannot be represented by smooth, proper subvarieties of the Grassmannian.
On the other hand, it is possible to find many linear combinations that can be
represented by smooth subvarieties by simply exhibiting smooth subvarieties of
the Grassmannian. The following proposition gives some simple constructions of
smooth subvarieties of Grassmannians. We thus obtain a large collection of coho-
mology classes that can be represented by smooth subvarieties.

Proposition 1.9. The following are examples of classes that can be represented by
smooth subvarieties of the Grassmannian.

(1) (Bertini) The cohomology class rσm1 can be represented by a smooth subva-
riety of G(k, n) for every r > 0 and 0 < m < k(n− k).

(2) The cohomology class
∑
ν α

ν
λ,µσν , where ανλ,µ is the Littlewood-Richardson

coefficient, can be represented by a smooth subvariety of G(k, n) provided

that λ and µ have the form (bi11 , . . . , b
ij
j ) and (c

ij
1 , . . . , c

i1
j ), respectively, with

the property that bi + cj−i ≥ n− k.
(3) The cohomology classes rσ((n−k)k−1,a), with r > 0 and a < n − k, and

rσ((n−k)s,(n−k−1)k−s), with r > 0 and k > s > 0, can be represented by
smooth subvarieties of G(k, n).

(4) The space of projective linear spaces of dimension k contained in a general
complete intersection in Pn is either empty or a smooth subvariety in G(k+
1, n+ 1). Irreducible components of the spaces of linear spaces contained in
Grassmannians are smooth.

(5) Let Yi ∈ G(ki, ni), 1 ≤ i ≤ j, be smooth subvarieties with classes ci =∑
ciλσλ. Let c̃i =

∑
ciλσλ̃, where λ̃ is the partition obtained by adding

n − ni − k + ki to each of the parts of λ and a tail of k − ki zeros.
Then, the product Y1 × · · · × Yj can be embedded as a smooth subvariety

of G(
∑j
i=1 ki,

∑j
i=1 ni) representing the class

∏
c̃i.

The following problem is a closely related variant of Problem 1.8:

Problem 1.10. Which cohomology classes in the Grassmannian can be expressed
as a linear combination (allowing negative signs!) of the classes of smooth proper
subvarieties?
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Example 1.11. While σ2 in G(2, 5) cannot be represented by a smooth, proper
subvariety, it can be expressed as the difference of the classes of two smooth sub-
varieties:

σ2 = (σ1)2 − σ1,1.

The Schubert variety Σ1,1 is smooth and by Bertini’s Theorem a general codimen-
sion two linear section of the Plücker embedding of G(2, 5) is a smooth represen-
tative of (σ1)2. In [K1], Kleiman proves that if c is the cohomology class of a

variety of dimension d ≤ k(n−k)
2 in G(k, n), then q! c, where q = k(n− k)− d− 1,

can be written as a linear combination of classes of smooth subvarieties. In [KL],
Kleiman and Landolfi conjectured that in G(3, 6) the codimension two Schubert
cycles cannot be deformed into smooth cycles by rational equivalence. In [HRT],
R. Hartshorne, E. Rees and E. Thomas have shown the stronger fact that σ2 in
G(3, 6) cannot even be written as a linear combination of the classes of smooth
closed submanifolds of G(3, 6). The complete characterization of classes that can
be expressed as a linear combination of smooth subvarieties currently seems out of
reach.

2. Singularities of Schubert varieties

There is a wealth of information about the singularities of Schubert varieties:
Schubert varieties are normal, Cohen-Macaulay with rational singularities and ad-
mit natural resolutions such as the Bott-Samelson resolution. The singular loci of
Schubert varieties and the multiplicity along each singular locus can be explicitly
described. We refer the reader to the excellent book by Billey and Lakshmibai for
further information, detailed history and extensive references [BL].

Schubert varieties in the Grassmannian admit a natural resolution f : Σ̃ →
Σ such that the exceptional locus of f has codimension at least two. Let λ =

(µi11 , µ
i2
2 , . . . , µ

ij
j ) be a partition for G(k, n) and let as =

∑s
l=1 il. Let Σ̃λ be the

Schubert variety in the flag variety F (a1, a2, . . . , aj ;n) defined by

Σ̃λ := {(V1, . . . , Vj) ∈ F (a1, a2, . . . , aj ;n) | Vs ⊂ Fn−k+as−λas , 1 ≤ s ≤ j}.

Since Σ̃λ is an iterated tower of Grassmannian bundles, it is smooth. Furthermore,
Σ̃λ maps onto Σλ by the natural projection

π : F (a1, a2, . . . , aj ;n)→ G(k, n).

By Zariski’s Main Theorem, the map is an isomorphism over the locus of k-planes
W parameterized by Σλ with the property that dim(W ∩ Fn−k+as−λas ) = as for
1 ≤ s ≤ j. The map π|Σ̃λ has positive dimensional fibers over the locus of k-planes

W with the property that dim(W ∩ Fn−k+as−λas ) > as for some 1 ≤ s ≤ j.

Definition 2.1. Given a partition λ = (µi11 , . . . , µ
ij
j ) for G(k, n), a singular par-

tition λs associated to λ is λs = (µi11 , . . . , (µs + 1)is+1, µ
is+1−1
s+1 , . . . , µ

ij
j ) for some

1 ≤ s < j provided that the resulting partition is admissible for G(k, n).

Remark 2.2. In terms of Young diagrams, the singular partitions are obtain from
λ by adding a hook to λ so that the resulting partition is still admissible for G(k, n).
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The exceptional locus of the map π|Σ̃λ consists of the union of the inverse images

of Σλs(F•) for every singular partition associated to λ. The locus π−1(Σλs(F•)) is
irreducible and has codimension greater than one. (Σλs has codimension µs−µs+1+
is + 1 in Σλ(F•) and the general fiber dimension of π restricted to π−1(Σλs(F•)) is
is.) Furthermore, the exceptional locus of π is empty if and only if j = 1 or j = 2
and µ1 = n− k. The following lemma allows us to determine the singular locus of
a Schubert variety.

Lemma 2.3. Let f : X → Y be a birational morphism from a smooth, projective
variety X onto a normal projective variety Y . Assume that f is an isomorphism in
codimension one. Then p ∈ Y is a singular point if and only if f−1(p) is positive
dimensional.

Proof. By Zariski’s Connectedness Theorem ([Ha], III.11.4), if f−1(p) is not positive
dimensional, then it is a point. Consider the open set U in Y consisting of the
locus where f−1(p) is a single point. Then, by Zariski’s Main Theorem, f |f−1(U) :

f−1(U)→ U is an isomorphism. Since f−1(U) is a Zariski open subset of a smooth
variety, f−1(U) and consequently U is smooth. Conversely, suppose p is a point
such that f−1(p) is positive dimensional. If p is smooth, then to check that the
map f is a local isomorphism, it suffices to check that the Jacobian does not vanish.
Since the map f is an isomorphism in codimension one and the vanishing locus of
the Jacobian of f is a divisor, we conclude that the Jacobian does not vanish. On
the other hand, since f is not a local isomorphism around f−1(p), we conclude that
p has to be a singular point. �

We obtain the following two corollaries due to Lakshmibai and Seshadri ([LS]).

Corollary 2.4 ([LS]). A Schubert variety Σλ in G(k, n) is smooth if and only if it
is a linearly embedded sub-Grassmannian, or equivalently, λ = ((n− k)s, pk−s).

Corollary 2.5 ([LS]). The singular locus of a Schubert variety Σλ(F•) in G(k, n)
is the union of all the Schubert varieties Σλs(F•), where λs is a singular partition
associated to λ.

Observation 2.6. In particular, by Kleiman’s Transversality Theorem ([Kl1]), the
intersection of a collection of general Schubert varieties Σλ1 , . . . ,Σλj is smooth and
non-empty provided that σλ1 · · ·σλj 6= 0 and σλis ·

∏
l 6=i σλl = 0 for every 1 ≤ i ≤ j

and every singular partition λis associated to λi.

Using this Observation 2.6, we can prove Proposition 1.9.

Proof of Proposition 1.9. The class rσ1, with r > 0, is represented by the intersec-
tion of G(k, n) in its Plücker embedding with a hypersurface of degree r. Hence,
rσm1 is represented by the intersection of G(k, n) with a general hypersurface of
degree r and m− 1 general hyperplanes. By Bertini’s Theorem ([Ha], II.8.18), this
intersection is smooth. This proves (1).

(2) is a special case of Observation 2.6. Let as =
∑s
l=1 il. Let F• and G• be

two general flags defining Σλ and Σµ, respectively. If bi + cj−i ≥ n − k, then
Fn−k+ai−bi ∩ Gn−ai−cj−i = {0} for every i. Consequently, the intersection of the
two Schubert varieties Σλ ∩ Σµ is isomorphic to the product of Grassmannians
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∏
lG(il, nl), where nl = n − k + il − bl − cj−l+1 for 1 ≤ l ≤ j. Hence, this

intersection is smooth.
The Schubert cycles σ(n−k)k−1,0 and σ(n−k−1)k are projective spaces Pn−k and Pk,

respectively. Smooth complete intersections of type (r, 1a−1) and (r, 1s−1) in these
projective spaces have cohomology classes rσ(n−k)k−1,a and rσ(n−k)s,(n−k−1)k−s ,
respectively. This proves (3).

The incidence correspondence I := {(L,X) | L ⊂ X}, where L is a linear space
and X is a complete intersection of degrees d1, . . . , dj is smooth. By generic smooth-
ness ([Ha], III.10.7), the general fiber of the second projection is empty or smooth.
This proves the first part of (4). The second part of (4) is well-known.

Let Vi of dimension ni be j general linear spaces in an n =
∑j
i=1 ni dimensional

linear space. Since Vi are general, the span of any j − 1 of them intersects the last
one trivially. Given varieties Yi ⊂ G(kiVi), consider the following variety

Y = {[W ] ∈ G(k, n) | [W ∩ Vi] ∈ Yi}.

Then Y is isomorphic to
∏j
i=1 Yi. Given a point (W1, . . . ,Wj) ∈

∏j
i=1 Yi, then

the span W1 · · ·Wj is a k-dimensional subspace in Y . Conversely, for W ∈ Y ,

(W∩V1, . . . ,W∩Vj) ∈
∏j
i=1 Yi. It is clear that these maps are inverses of each other.

The statement about the cohomology classes is straightforward. This completes the
proof of Proposition 1.9. �

3. Smooth Schubert varieties are rigid

Proposition 3.1. Let λ be a partition for G(k, n) such that λ1 = · · · = λs = n− k
and λk = r. Let X be a subvariety of G(k, n) representing the cohomology class
σλ. Then the linear spaces parameterized by X contain a fixed s-dimensional linear
space and are contained in a fixed (n− r)-dimensional linear space.

Proof. For the proof of this proposition, it is more convenient to think of the
Grassmannian G(k, n) as the Grassmannian G(k − 1, n − 1) of projective (k − 1)-
dimensional linear spaces in PV . Let λ be a partition with λs = n− k and λk = r.
Let X be a variety representing the class σλ. Consider the incidence correspondence

IX = {(p, [W ]) | [W ] ∈ X, p ∈W} ⊂ Pn−1 ×G(k − 1, n− 1).

Let π1 and π2 denote the two projections to Pn−1 and G(k− 1, n− 1), respectively.
Since a Schubert class is indecomposable, X is an irreducible variety. The fibers of
π2 are projective spaces of dimension k− 1, hence IX is irreducible. Consequently,
the first projection π1(IX) is an irreducible, projective variety in Pn−1.

Let L ∼= Pr−1 be a general linear space. The class of the locus in G(k− 1, n− 1)
that parameterizes the set of Pk−1 that intersect L is the Pieri class σn−k−r+1. Since
the cup product of this class with σλ is zero, we conclude that a general linear space
of dimension r−1 does not intersect π1(IX). Therefore, dim(π1(IX)) ≤ n−r−1. On
the other hand, by Pieri’s formula ([?], 14.6.1), the cup product of σλ with σn−k−r
is not zero, hence dim(π1(IX)) = n − r − 1. In order to conclude that the linear
spaces parameterized by X are contained in a fixed codimension r linear space, it
suffices to prove that the degree of π1(IX) (with its reduced induced structure) is
equal to one.

Let λ∗ denote the partition dual to λ given by λ∗i = n − k − λk−i+1. Since the
cup product of X with σλ∗ is equal to the Poincaré dual of the point class, by
Kleiman’s Transversality Theorem ([Kl1]), a general Schubert variety representing
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σλ∗ intersects X in a reduced point. Furthermore, since π1(IX) is a variety of
dimension n − r − 1, a general projective linear space of dimension r intersects
π1(IX) in finitely many reduced points.

Fix a general linear space PFr+1
∼= Pr such that the intersection of PFr+1 with

π1(IX) consists of finitely many reduced points q1, . . . , qj and there exists a partial
flag F• beginning with Fr+1 such that the Schubert variety with class σλ∗ defined
with respect to F• intersects X in a reduced point. By the transitivity of the
monodromy group ([HM], 6.45), we may assume that any geometric property that
occurs at one of the intersection points qi also occurs at the others. By construction,
there is a linear space [Λ] ∈ X such that [Λ] = X ∩ Σλ∗(F•). We must necessarily
have PΛ ∩ PFr+1 = qi for one of the intersection points qi ∈ π1(IX) ∩ PFr+1. In
particular, by the transitivity of the monodromy group, we may assume that for
each qi in PFr+1∩π1(IX), there exists a linear space Λqi parameterized by X and a
Schubert cycle Σλ∗(F

qi
• ) defined with respect to a partial flag containing Fr+1 such

that X and Σλ∗(F
qi
• ) intersect transversely at [Λqi ]. Note that dim(Λqi∩Fr+1) = 1.

The locus of partial flags

G• = Fr+1 = Gn−k+1−λ∗1 ⊂ Gn−k+2−λ∗2 · · · ⊂ Gn−λ∗k
starting with the fixed general linear space Fr+1 such that the Schubert variety
Σλ∗(G•) intersects X transversely is a non-empty, Zariski-open subset U of a partial
flag variety. Since a non-empty Zariski open subset of an irreducible variety is
connected, U is connected. There is a natural morphism from U to the points
of intersection PFr+1 ∩ π1(IX) sending a partial flag G• to P(Λ ∩ Fr+1), where
[Λ] = X ∩ Σλ∗(G•). This map surjects onto PFr+1 ∩ π1(IX). Since the image of a
connected set is connected, we conclude that the intersection of π1(IX) with PFr+1

is connected. Consequently, PFr+1∩π1(IX) is a single point. Therefore, π1(IX) has
degree one and is a linear space. This proves that the linear spaces parameterized
by X have to be contained in a fixed codimension r linear space.

The fact that the linear spaces parameterized by X contain a fixed s-dimensional
linear space follows by duality. The Grassmannian G(k, n) is isomorphic to the
Grassmannian G(n−k, n). Under this isomorphism a Schubert class σλ is replaced
by σλ′ , where λ′ is the partition given by the columns of the Young diagram as-
sociated to λ. In particular, λ′ satisfies λ′n−k = s. By the previous paragraph,
all the linear spaces parameterized by the image of X under this isomorphism are
contained in a fixed codimension s linear space. Under the duality, this linear
space produces a fixed linear space of dimension s contained in all the linear spaces
parameterized by X. This concludes the proof. �

As a corollary, we recover a well-known rigidity result (see [Br], [Ho1] or [Ho2]).

Corollary 3.2. Any proper subvariety of G(k, n) representing the Schubert class σλ
with λ = ((n− k)s, pk−s) is a Schubert variety. Consequently, the smooth Schubert
varieties in Grassmannians are rigid.

Proof. Let X be a variety representing the cohomology class σλ where λ = ((n −
k)s, pk−s). By Proposition 3.1, every linear space parameterized by X contains a
fixed linear space of dimension s and is contained in a fixed linear space of codimen-
sion p. The dimension of X is (k − s)p. Since the Schubert variety parameterizing
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k-dimensional linear spaces containing a fixed s-dimensional linear space and con-
tained in a fixed codimension p linear space is irreducible of dimension (k−s)p and
contains X, we conclude that X must be equal to the Schubert variety. �

Remark 3.3. In [Br] and [Ho1], Bryant and Hong, using more involved differential
geometric arguments, prove that smooth Schubert varieties other than non-maximal
linear spaces in Grassmannians are Schur rigid.

Next we would like to define some operations on partitions that will allow us to
state a reduction lemma.

Definition 3.4. Let λ = (λ1, . . . , λk) be a partition for G(k, n).

(1) If λ1 < n − k, then define the partition λ + 1 to be the partition (λ1 +
1, . . . , λk + 1) for G(k, n) obtained by adding one to each part.

(2) If λk = 0, define the partition λ+ to be the partition (n− k, λ1, . . . , λk−1)
for G(k, n) obtained by omitting the part λk = 0 and adding the part n−k
to the resulting partition.

(3) If λ1 = n−k, define the partition λ− to be the partition for G(k− 1, n− 1)
obtained by omitting the part λ1 from λ.

Lemma 3.5 (Reduction Lemma). Let σλ be a Schubert class in G(k, n).

(1) If λ1 < n−k and σλ+1 cannot be represented by a smooth, proper subvariety
of G(k, n), then σλ cannot be represented by a smooth, proper subvariety of
G(k, n).

(2) If λk = 0 and σλ+ cannot be represented by a smooth, proper subvariety of
G(k, n), then σλ cannot be represented by a smooth, proper subvariety of
G(k, n).

(3) If λ1 = n − k and σλ− cannot be represented by a smooth, proper subvari-
ety of G(k − 1, n − 1), then σλ cannot be represented by a smooth, proper
subvariety of G(k, n).

Proof. Suppose that λ1 < n − k and that X is a smooth, proper subvariety rep-
resenting σλ. By Kleiman’s Transversality Theorem, the intersection of X with a
general smooth Schubert variety Σ(1k) is a smooth, proper subvariety of G(k, n). By
the Littlewood-Richardson rule ([?], 14.6.2), X ∩ Σ(1k) represents the cohomology
class σλ+1. This proves Part (1) of the lemma.

Suppose that λk = 0 and that X is a smooth, proper subvariety representing σλ.
By Kleiman’s Transversality Theorem, the intersection of X with a general smooth
Schubert variety Σ(n−k,0k−1) is a smooth, proper subvariety of G(k, n). This variety
represents the class σλ+ . This proves Part (2) of the lemma.

Finally, if λ1 = n − k, by Proposition 3.1, any variety X representing the class
σλ is contained in a linearly embedded sub-Grassmannian G(k−1, n−1). The class
of X in G(k − 1, n− 1) is σλ− . Part (3) of the lemma follows. �

4. Rigidity of Schubert varieties

Lemma 4.1. Let X be a proper variety representing a Schubert class σλ. Then
there exists a flat, one-parameter family Y → B over a smooth curve such that the
general fiber is isomorphic to X and the special fiber Y0 is isomorphic to a Schubert
variety Σλ.
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Proof. The Grassmannian G(k, n) has a cell-decomposition by Schubert cells, where
each cell is isomorphic to an affine space. Suppose that X is contained in the
closure of a cell. If X is equal to the closure of the cell, then X is a Schubert
variety. Otherwise, by projecting from a point not on X, X can be degenerated to
a variety contained in a cell of lower dimension. Consequently, using the action of a
one-parameter subgroup of GL(n), every subvariety of G(k, n) can be degenerated
to a scheme supported on a union of Schubert varieties (usually with multiplicities).
By the properness of the Hilbert scheme a flat limit always exists. Since the class
σλ is indecomposable in cohomology, a variety X representing σλ is irreducible.
Furthermore, the flat limit of the family is supported on a Schubert variety Σλ
and is generically reduced. Since the Schubert variety Σλ is normal, Hironaka’s
Lemma ([Ha], Theorem III.9.11, [Ko] Theorem 2 or [Hi]) guarantees that there are
no embedded components in the limit. �

Proposition 4.2. Let λ = ((n− k)r, (n− k− 1)k−r−1, n− k− 2) with k− r > 2 or
λ = ((n − k)k−2, n − k − 1, r) with r < n − k − 2 be a partition for G(k, n). Then
the only proper varieties of G(k, n) representing the Schubert class σλ are Schubert
varieties. In particular, any variety representing σλ in G(k, n) is singular.

Proof. Let X be a proper subvariety of G(k, n) representing σ(n−k)k−2,n−k−1,r. We
begin by showing that X is a variety of minimal degree. The dimension of X is
n − k − r + 1. By Pieri’s formula, the degree of X in the Plücker embedding is
n − k − r. By Lemma 4.1, X can be specialized to a Schubert variety. By semi-
continuity ([Ha], III.12.8), the dimension of the linear span of X is at least the
dimension of the linear span of a Schubert variety representing the same class. We
will next observe that a Schubert variety with class σ(n−k)k−2,n−k−1,r is a minimal
variety, i.e., it has the maximal possible dimensional linear span given its degree
and dimension. (Recall that an irreducible variety of dimension n and degree d
spans a linear space of dimension at most n+ d− 1 ([EH]).) Since X has the same
degree and dimension as the Schubert variety and the dimension of its linear span
is at least that of the Schubert variety, we conclude that X must be a minimal
variety.

To see that the Schubert variety with class σ(n−k)k−2,n−k−1,r is a minimal variety,
it suffices to show that the linear span is a projective linear space of dimension at
least 2n− 2k − 2r. Fix an ordered basis e1, . . . , en for the vector space V . Let F•
be flag where Fi is the span of the first i basis elements e1, . . . , ei. The Schubert
variety Σ(n−k)k−2,n−k−1,r(F•) contains the points

p1,...,k−2,i,j = e1 ∧ e2 ∧ · · · ∧ ek−2 ∧ ei ∧ ej ,

where i ∈ {k− 1, k}, i < j and j ∈ {k, . . . , n− r}. Hence, the span of the Schubert
variety in the Plücker embedding contains the span of these Plücker coordinate
points. Since there are 2n−2k−2r+1 such Plücker coordinate points, the projective
linear space spanned by the Schubert variety has dimension at least 2n− 2k − 2r.
Since this is the maximal possible, the dimension of the linear span must equal
2n− 2k − 2r. We thus conclude that X is a minimal variety in projective space.

By our assumptions, the degree of X is greater than two. Moreover, the dimen-
sion of X is larger than its degree. By the classification of varieties of minimal
degree, X must be a cone. In particular, X is singular. Suppose that the vertex of
the cone is p. (Note that X has a unique singular point. Observe that the Schubert
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variety with the same class has a unique singular point. By Proposition 4.1 and
the semi-continuity of the dimension of the singular locus, the dimension of the
singular locus of X must be zero. Hence, X is a cone with a unique vertex point.)

By Proposition 3.1, X is contained in a linearly embedded sub-Grassmannian
G(2, n− k− r+ 2) and has class σn−k−1−r,0 in this sub-Grassmannian. Since X is
a cone, the Zariski tangent space of X at p is equal to the linear span of X, which
is a projective linear space of dimension 2n − 2k − 2r. Since the Zariski tangent
space to G(2, n− k − r+ 2) at p also has dimension 2n− 2k − 2r and contains the
Zariski tangent space to X at p, we conclude that X ⊂ Y = TpG(2, n−k− r+ 2)∩
G(2, n−k−r+2). Comparing the Plücker equations of a Schubert variety with class
σn−k−1−r,0 with the equations of the Zariski tangent space to G(2, n−k− r+ 2) at
p, it is immediate that Y is a Schubert variety with class σn−k−1−r,0. Since both
X and Y are irreducible, projective varieties of the same dimension, we conclude
that they must be equal. Therefore, X is a Schubert variety. The claim about
σ(n−k)r,(n−k−1)k−r−1,n−k−2 follows by the duality between G(k, n) and G(n− k, n).
This concludes the proof of the proposition. �

Proposition 4.3. Let λ = (as, 0k−s) 6= (1, 0k−1). Then the only proper subva-
rieties of G(k, n) representing the cohomology class σλ are Schubert varieties. In
particular, σλ cannot be represented by a smooth, proper subvariety of G(k, n) pro-
vided k > s > 0, a 6= n− k and (as, 0k−s) 6= (1, 0k−1).

Proof. We first prove that if 0 < s < k, a 6= n − k and (as, 0k−s) 6= (1, 0k−1),
then σλ is singular. It suffices to prove this for the classes σ(n−k−1)k−1,0 in G(k, n).
If X is a smooth variety representing σas,0k−s , then the intersection of X with
a general smooth Schubert variety representing the class σ(n−k)k−s−1,(n−k−1−a)s+1

yields a smooth variety representing the class σ(n−k)k−s−1,(n−k−1)s,n−k−1−a. By
Proposition 3.1, this class is supported on a linearly embedded sub-Grassmannian
G(s+ 1, k+ a+ 1) and has the class σ(k+a−s−1)s,0 in this sub-Grassmannian. Note
that a Schubert variety σ(n−k−1)k−1,0 in G(k, n) embedded in its Plücker embedding

is a cone over the Segre embedding of Pk−1 × Pn−k−1. By Lemma 4.1, any variety
representing this class is a deformation of the cone over the Segre variety. To
conclude the proof, we appeal to the following theorem of Thom, Grauert-Kerner,
Schelssinger, Kleiman-Landolfi:

Rigidity of cones over Segre varieties. [KL, Theorem 2.2.8] Let K be a field
and let X = PnK × PmK be embedded in projective space by the Segre morphism. If
n ≥ 1 and m ≥ 2, then the cone over X is rigid over K.

By our assumptions, if k = 2, then a > 1 and n−k−1 ≥ 2. Similarly, if n−k = 2,
then k > 2. We conclude that the assumptions of Theorem 2.2.8 of [KL] are
satisfied. Since the cone over the Segre variety admits no infinitesimal deformations,
X is a cone over a Segre variety and hence is not smooth. Furthermore, the singular
point p0 of X corresponds to a k-plane Λ. Since X is a cone, for every point p ∈ X,
the line joining p and p0 is contained in X. Since a line in the Grassmannian
G(k, n) consists of k-planes that contain a fixed (k− 1)-plane and are contained in
a fixed (k + 1)-plane, we conclude that every k-plane corresponding to a point of
X must intersect Λ in a (k− 1)-dimensional linear space. Hence, X is contained in
the Schubert variety Σ(n−k−1)k−1,0. Since they are both irreducible varieties of the
same dimension, X equals the Schubert variety Σ(n−k−1)k−1,0.
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By Corollary 3.2, if s = 0, s = k or a = n − k, a variety X representing σλ
is a Schubert variety. We can now prove that if (as, 0k−s) 6= (1, 0k−1), then X
is a Schubert variety by induction on n and k − s. We may assume that 0 <
a < n − k and 0 < s < k. By induction on k and n, the singular locus of X
has class ((a + 1)s+1, 0k−s−1). By induction on k − s, the singular locus of X
is a Schubert variety of k-planes intersecting a fixed linear space Λn−k+s+1−a of
dimension n−k+s+1−a. Intersect X with a general Schubert variety Σ1k defined
with respect to a hyperplane H. By induction on n, the intersection X ∩ Σ1k is
a Schubert variety in G(k, n − 1) with class (as, 0k−s). Since the singular locus of
X ∩ Σ1k is the Schubert variety of k-planes intersecting Λ ∩ H in a subspace of
dimension n− k+ s+ 1− a, we conclude that X ∩Σ1k is the Schubert variety of k
-planes intersecting Λ ∩H in a subspace of dimension n − k + s − a. Since this is
true for a general hyperplane H, we conclude that the k-planes parameterized by
X intersect Λ in a subspace of dimension n− k+ s− a. Therefore, X is a Schubert
variety. This concludes the proof. �

Remark 4.4. Example 13 and Remark 33 of [Br] or Proposition 3.5 of [Ho2] show
that when λ = (as, 0k−s) with 1 < s < k and a > 2, the Schubert classes are Schur
rigid.

Proof of Theorem 1.6. We are now ready to prove Theorem 1.6. We need to show
that if λ is a non-smoothable partition for G(k, n), then σλ cannot be represented

by a smooth subvariety of G(k, n). Express λ = (µi11 , . . . , µ
ij
j ), where

∑
il = k and

µ1 > µ2 > · · · > µj .

We may assume that µ1 6= n− k. Otherwise, by Proposition 3.1, any subvariety
of G(k, n) representing σλ is contained in a linearly embedded sub-Grassmannian

G(k−i1, n−i1) and represents the class (µi22 , µ
i3
3 , . . . , µ

ij
j ) in this sub-Grassmannian.

If the latter class cannot be represented by a smooth subvariety, then σλ cannot be
represented by a smooth subvariety of G(k, n). Similarly, we may assume that µj =
0. Otherwise, by Proposition 3.1, any subvariety representing σλ is contained in a
linearly embedded sub-Grassmannian G(k, n− µj) and represents the class ((µ1 −
µj)

i1 , (µ2 − µj)i2 , . . . , (µj−1 − µj)ij−1 , 0ij ) in this sub-Grassmannian. If the latter
class cannot be represented by a smooth subvariety, then σλ cannot be represented
by a smooth subvariety of G(k, n). Now we proceed by induction on j.

• If j = 1, then λ is not non-smoothable and the theorem holds. In fact, the
Schubert variety Σλ is a linearly embedded sub-Grassmannian and smooth. We
may, therefore, assume that j > 1.

• If j = 2, since we are assuming that µ1 < n− k, λ is non-smoothable if i1 > 1 or
if µ1 > µ2 + 1. In either of these cases, by Proposition 4.3, any variety representing
the class σλ is a singular Schubert variety. Note that if µ1 = n− k, then σλ is the
class of a linearly embedded sub-Grassmannian and can be represented by a smooth
subvariety of G(k, n). If i1 = 1 and µ1 = µ2 +1, then σλ is the class of a hyperplane
section of a linearly embedded sub-Grassmannian and can be represented by a
smooth subvariety of G(k, n).

• If j = 3, since we are assuming that µ1 < n− k, then a non-smoothable partition
λ satisfies one of the following possibilities.
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• If µ2 > µ3+1 or i2 > 1, then applying Case (1) of the Lemma 3.5 (n−k−µ1)-
times we conclude that if σλ can be represented by a smooth subvariety of
G(k, n), then σλ′ , with λ′ = ((n−k)i1 , (n−k+µ2−µ1)i2 , (n−k+µ3−µ1)i3),
can be represented by a smooth subvariety of G(k, n). Next, applying Case
(3) of the Lemma 3.5 i1-times, we conclude that σλ′ can be represented
by a smooth subvariety of G(k, n), then σλ′′ with λ′′ = ((n − k + µ2 −
µ1)i2 , (n − k + µ3 − µ1)i3) can be represented by a smooth subvariety of
G(k− i1, n− i1). By the case j = 2, σλ′′ cannot be represented by a smooth
subvariety of G(k − i1, n − i1). Therefore, σλ cannot be represented by a
smooth subvariety of G(k, n). From now on we may assume that µ2 = µ3+1
and i2 = 1.

• If µ1 > µ2 + 1 or i1 > 1, since we are assuming that µ3 = 0, by applying
Cases (2) and (3) of Lemma 3.5 (i3)-times, we conclude that if σλ can be

represented by a smooth subvariety of G(k, n), then σλ′ with λ′ = (µi11 , µ
i2
2 )

can be represented by a smooth subvariety of G(k − i3, n − i3). Since by
induction σλ′ cannot be represented by a smooth subvariety of G(k−i3, n−
i3), we conclude that σλ cannot be represented by a smooth subvariety of
G(k, n).

Note that if µ1 = n−k, i2 = 1 and µ2 = µ3+1, then σλ is the class of a hyperplane
section of a linearly embedded sub-Grassmannian and can be represented by a
smooth subvariety of G(k, n). Similarly, if i1 = i2 = i3 = 1 and µi = µi+1 + 1,
then σλ can be represented by a smooth subvariety of G(3, n). If µ3 = r, then σλ
is the class of the variety parameterizing Schubert cycles σr−3,r−3 in the Plücker
embedding of G(2, r) that are contained in a general hyperplane section.

• Finally, if j > 3, we can easily reduce to the case j = 3 by induction. Let λ be
a non-smoothable partition. Suppose that for s < j − 1, is > 1 or µs > µs+1 + 1.
Then applying Cases (2) and (3) of Lemma 3.5 (ij)-times, we conclude that if
σλ can be represented by a smooth subvariety of G(k, n), then σλ′ with λ′ =

(µi11 , µ
i2
2 , . . . , µ

ij−1

j−1 ) can be represented by a smooth subvariety of G(k− ij , n− ij).
Since by induction on j, σλ′ cannot be represented by a smooth subvariety of
G(k− ij , n− ij), we conclude that σλ cannot be represented by a smooth subvariety
of G(k, n). Similarly, if ij−1 > 1 or µj−1 > µj+1, then applying Case (1) of Lemma
3.5 (n − k − µ1)-times followed by Case (3) of Lemma 3.5 i1-times, we conclude
that if σλ can be represented by a smooth subvariety of G(k, n), then σλ′ with
λ′ = ((n− k + µ2 − µ1)i2 , . . . , (n− k + µj−1 − µ1)ij−1 , (n− k + µj − µ1)ij ) can be
represented by a smooth subvariety of G(k − i1, n− i1). Since, by induction on j,
σλ′ cannot be represented by a smooth subvariety, σλ cannot be represented by a
smooth subvariety of G(k, n). This concludes the proof of the theorem. �

If σλ can be represented by a smooth subvariety X in G(k, n), then, by Theorem
1.6, λ has the form ((n − k)i1 , p, p − 1, p − 2, . . . , p − s + 1, (p − s)is+2). Further-
more, Proposition 3.1 implies that the Schubert class σλ′ with λ′ = (s, s − 1, s −
2, . . . , 1, 0is+2) is also representable by a smooth subvariety of G(k − i1, n− p+ s).
Hence, we can restrict our discussion to classes σλ with λ = (s, s − 1, . . . , 1, 0l) in
G(s + l, n). The cup product of the cohomology class [X] of X and the Schubert
cycle σν , with ν = ((n − s − l)l+1, 0s−1), is zero. We conclude that the incidence
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correspondence

I = {(W1,W2)|W1 ⊂W2, [W2] ∈ X} ⊂ G(l + 1, n)×X

of pairs of an (l+ 1)-dimensional subspace W1 and an (s+ l)-dimensional subspace
W2 parameterized by X and containing W1 cannot dominate G(l + 1, n) under
the first projection π1. On the other hand, considering the cup product of [X]
and σν′ , with ν′ = ((n − s − l)l, (n − s − l − 1), 0s−1), it is easy to see that the
image of π1 is a divisor in G(l+ 1, n) with class σ1. Consequently, X parameterizes
Schubert varieties with class σ(n−s−l)l+1 contained in a hyperplane section of G(l+
1, n) in its Plücker embedding. Hence, a Schubert cycle cannot be represented
by a smooth subvariety of G(k, n) unless it is the class of a linearly embedded
sub-Grassmannian or the class of a variety parameterizing linearly-embedded sub-
Grassmannians in a hyperplane section of a Grassmannian. Moreover, as discussed
in the Introduction, the classes with l = 1 can always be represented by smooth
subvarieties. Consequently, for Grassmannians G(k, n) with k = 2 or 3, Theorem
1.6 can be stated as follows.

Corollary 4.5. Let σλ1,λ2
be a Schubert class in G(2, n). Then the following are

equivalent.

(1) σλ1,λ2
can be represented by a smooth subvariety of G(2, n).

(2) λ1 = n− 2 or λ2 ≥ λ1 − 1.
(3) σλ1,λ2 is the class of a linearly embedded sub-Grassmannian or a hyperplane

section of a linearly embedded sub-Grassmannian.

Corollary 4.6. Let σλ be a Schubert class in G(3, n). Then the following are
equivalent.

(1) σλ can be represented by a smooth subvariety of G(3, n).
(2) λ is not a non-smoothable partition.
(3) σλ is the class of a linearly embedded sub-Grassmannian, the hyperplane

section of a linearly embedded sub-Grassmannian or the class of planes
with class σk−3,k−3 contained in a general hyperplane section of the Plücker
embedding of G(2, k) for k ≤ n.

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. First, observe that the condition for a partition λ = (µi11 , . . . , µ
ij
j )

to have an index 1 ≤ s < j with is = 1 and n − k > µs = µs+1 + 1 is invariant
under the duality that exchanges Schubert classes in G(k, n) and G(n− k, n).

Let λ = (µi11 , . . . , µ
ij
j ) be a partition such that there exists an index 1 ≤ s < j

with is = 1 and n−k > µs = µs+1 + 1. We construct a variety representing the co-
homology class σλ, which is not isomorphic to a Schubert variety. The construction
is identical to the construction of the variety X in Example 1.4.

First suppose that s = 1. Let al =
∑l
m=1 im. Fix a (j − 1)-step partial flag F•

with vector spaces of dimensions n − k + ai − µi for 2 ≤ i ≤ j. Fix a hyperplane
section H in the Plücker embedding of G(a2, Fn−k+a2−µ2

). Consider the following
variety

Y := {[W ] ∈ G(k, n)|W ′ ⊂W∩Fn−k+a2−µ2 for [W ′] ∈ H, and dim(W∩Fn−k+ai−µi) ≥ ai, 2 ≤ i ≤ j}.

Then Y represents the Schubert class σλ, but is not a Schubert variety unless
the hyperplane section H is a Schubert variety. For example, if H is a smooth
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hyperplane section, then the singular locus of Y has a different cohomology class
than the singular locus of the Schubert variety. Y is not singular along a Schubert
variety with class σ

(µ1+1)2,µ
i2−1
2 ,µ

i3
3 ,...,µ

ij
j

.

More generally, suppose s > 1. Let F be a vector space of dimension n − k +
as+1−µs+1. Consider the class ((µ1−µs+1)i1 , . . . , (µs−µs+1), 0is+1) in G(as+1, F ).
If we consider this class under the isomorphism between G(dim(F )− as+1, F ) and
G(as+1, F ), we get a class where s = 1. Hence, by the previous construction, this
class can be represented by a variety Z which is not a Schubert variety. Pick a
partial flag

F ⊂ Fn−k+as+2−µs+2 ⊂ · · · ⊂ Fn−k+aj−µj .

The variety Y defined as follows has the class (µi11 , . . . , µ
ij
j ), but is not a Schubert

variety.

Y := {W ∈ G(k, n) | U ⊂W∩F for some U ∈ Z and dim(W∩Fn−k+al−µl) ≥ al for s+1 ≤ l ≤ j}.

This proves that if a Schubert class is rigid, then λ = (µi11 , . . . , µ
ij
j ) cannot have an

index s with is = 1 and n− k > µs = µs+1 + 1.

Suppose that λ = (µi11 , . . . , µ
ij
j ) is a partition that does not have an index 1 ≤

s < j such that is = 1 and n − k > µs = µs+1 + 1. Let X be a variety that
represents σλ. We would like to prove that X is a Schubert variety. We will prove
this by induction on j, n and the sequence i1, . . . , ij . On the sequences (i1, . . . , ij)
with

∑
is = k, we use the ordering (i′1, . . . , i

′
l) < (i1, . . . , ij) if l < j or if l = j,

i′s = is for s < m and i′m > im for some m > 0. If j = 1, then by Corollary 3.2, X
is a Schubert variety.

If j = 2, then by Proposition 4.3, X is a Schubert variety. Suppose that the
proposition is true for all j up to j0. If µ1 = n − k or µj > 0, by Proposition
3.1, we may assume that X is contained in a linearly embedded sub-Grassmannian.
Hence, by induction on j and n, we can reduce to the case µ1 < n− k and µj = 0.
By intersecting X with a general Schubert variety Σn−k and a general Schubert
variety Σ1k and induction on ij and n, we conclude that the singular locus of X has
cohomology class

∑
σλs , where λs ranges over all singular partitions associated to

λ. In Proposition 4.1, the deformation is given by the group action. Hence, except
for the central fiber, the members of the family are isomorphic. In particular, each
irreducible component of the singular locus forms a flat family away from the central
fiber. The flat limit for each irreducible component has to be contained in the
singular locus of the Schubert variety and must be connected in codimension one.
Since the singular locus of X and the Schubert variety have the same cohomology
class and the components of the singular locus of the Schubert variety in loci of
codimension greater than one, we conclude that the singular locus of X must be a
union of irreducible components one for each singular partition associated to λ.

In particular, the singular locus of X contains a variety Y with class σλ′ , where

λ′ = (µi11 , . . . , (µt−1 + 1)it−1+1, µit−1
t , . . . , µ

ij
j ).

Since µ1 < n − k, we may set t = 2. Note that λ′ is also a rigid partition unless
i2 = 2 and µ2 = µ3 + 1. Assume first that either i2 > 2 or µ2 > µ3 + 1. Then, by
induction on the sequence (i1, . . . , ij), Y is a Schubert variety in G(k, n) defined
with respect to a flag

F• = Fn−k+a1−µ1
⊂ Fn−k+a2−µ2

⊂ · · · ⊂ Fn−k+aj−µj .
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We have to make one exception: if i2 = 1, then Fn−k+a2−µ2
should be omitted

from the sequence. Let us assume that i2 > 1. Then requiring k-planes to intersect
Fn−k+ai−µi in a subspace of dimension ai defines a Schubert variety Σλ with the
same class as X. Intersect the partial flag F• with a general codimension one linear
space L to obtain a partial flag in L. Correspondingly, intersect the variety X with
the Schubert variety Σ1k defined with respect to L. This gives rise to a variety ZL
with class σλ in G(k, n− 1). By induction on n, ZL is a Schubert variety and it is
defined with respect to the partial flag F•∩L. As we vary L, the varieties ZL cover
X and we conclude that any linear space parameterized by X intersects the linear
space Fn−k+ai−µi in a subspace of dimension at least ai. Since both X and Σλ are
irreducible varieties of the same dimension and X is contained in Σλ, we conclude
that X = Σλ.

If i2 = 1, the same argument shows that the linear spaces parameterized by X
intersect Fn−k+ai−µi in a subspace of dimension ai with the exception of i = 2
(which is omitted from the parial flag F•). If j > 3, let R be the Zariski closure of
the variety R0 in G(k − ij , Fn−k+aj−1−µj−1

) defined by

R0 = {W ′ ∈ G(k − ij , Fn−k+aj−1−µj−1
)|

W ′ = W ∩ Fn−k+aj−1−µj−1
for W ∈ X with dim(W ∩ Fn−k+aj−1−µj−1

) = k − ij}.

Then R has cohomology class σν with ν = (µi11 , . . . , µ
ij−1

j−1 ) and is a Schubert variety
by induction on j. It follows that X is also a Schubert variety. If j = 3, consider
the singular locus Y of X with class σλ′ , where λ′ = (µi11 , (µ2 +1)i2+1, (µ3−1)i3−1).
By induction on i3, Y is a Schubert variety (even when i1 = 1 and µ1 = µ2 +2 since
all the k-planes are required to intersect Fn−k+a1−µ1

in a subspace of dimension
a1). Y determines the missing partial flag element Fn−k+a2−µ2

. The argument in
the previous paragraph allows us to conclude that X is a Schubert variety.

Finally, suppose i2 = 2 and µ2 = µ3 + 1. Then let u < j be the smallest index
such that iu > 2 or µu > µu+1 + 1. If there does not exist such an index, then
is = 2 and µs = µs+1 + 1 for all 1 < s < j. Using the duality between G(k, n)
and G(n − k, n), we are reduced to the case in the previous paragraph. We may,
therefore, assume that there exists such an index u. Repeating the argument for
the index t = u instead of t = 2, it is easy to conclude that X is a Schubert variety.
This concludes the proof of the theorem.

�
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