
LECTURE 5

1. Isotropic Grassmannians

In this section, we discuss the geometry of isotropic Grassmannians. Let V be
an n-dimensional complex vector space. Let Q be a non-degenerate quadratic form.
The form Q may either be symmetric or skew-symmetric. Since the rank of a skew-
symmetric form is always even, in the latter case, we must assume that n is even.
There are some differences in the discussion depending on whether Q is symmetric
or skew-symmetric. Furthermore, when Q is symmetric, there are slight variations
in detail depending on whether n is even or odd. We will now discuss these cases
separately.

1.1. Preliminaries on quadrics. Let Q be a smooth quadric hypersurface in
Pn−1. Set m = bn2 c. The largest dimensional linear spaces contained in Q have
projective dimension m−1. If n is odd, then the maximal dimensional linear spaces

on Q form an irreducible family of dimension m(m+1)
2 . If n is even, then the maximal

dimensional linear spaces contained in Q form two isomorphic families of dimension
m(m−1)

2 . Two linear spaces belong to the same irreducible component if and only if
their dimension of intersection is equal to m− 1 modulo 2 (see [GH] p. 735).

More generally, we will be interested in linear spaces on quadric hypersurfaces
with singularities. A quadric hypersurface in Pn−1 of corank r (or, equivalently,
with a singular locus of dimension r − 1) is the cone over a smooth quadric hy-
persurface in Pn−1−r with vertex an (r − 1)-dimensional projective linear space.
If Q is a quadric hypersurface of corank r in Pn−1, then the largest dimensional
linear space on Q has dimension bn−r−22 c+r. The space of linear spaces of maximal
dimension on Q is irreducible if n− r is odd and has two irreducible components if
n−r is even. Setting l = n−r−3

2 in the former case and l = n−r−2
2 in the latter case,

the dimension of each irreducible component of the space of maximal dimensional

linear spaces is (l+1)(l+2)
2 and l(l+1)

2 , respectively. In the latter case, two linear
spaces belong to the same irreducible component if and only if their dimension
of intersection is equal to l + r modulo 2. These claims follow from the previous
paragraph since Q is a cone over a smooth quadric hypersurface in Pn−1−r.

Notation 1.1. Denote the Fano variety of s-dimensional projective linear spaces
contained in a quadric hypersurface Q ∈ Pn−1 of corank r by F rs,n(Q).

Let Q ⊂ Pn−1 be a quadric hypersurface of corank r. Let s be a positive integer
less than or equal to bn−r−22 c+ r. Consider the incidence correspondence of pairs
of a point p of Q and an s-dimensional linear space containing p:

I = { (x, [Λ]) | x ∈ Λ ⊂ Q } ⊂ Q× F rs,n(Q).

The automorphism group of Q acts transitively on the smooth points of Q. The
s-planes that contain a smooth point p lie in the tangent linear space H at p.
Q∩H is a quadric hypersurface of corank r+1. The intersection with a hyperplane
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complementary to p is a quadric hypersurface of corank r and intersects all the
s-planes containing p in an (s− 1)-dimensional linear space. We conclude that the
space of s-dimensional linear spaces containing p has the same dimension as the
space of (s−1)-dimensional linear spaces lying on a quadric hypersurface in Pn−3 of
corank r. Therefore, by induction, we can calculate the general fiber dimension of
the projection of I to Q and determine the dimension of I. The second projection
maps I onto F rs,n(Q) with fiber dimension s. We thus obtain a recursion relation
for the dimension of F rs,n(Q).

A priori we need to check that the s-dimensional linear spaces that intersect the
vertex in dimension greater than s− 1− bn−r−22 c do not form another irreducible
component (potentially of different dimension) of F rs,n(Q). It is easy to see that
linear spaces that intersect the vertex in larger than the expected dimension are
limits of linear spaces that intersect the vertex in the expected dimension. Observe
that every linear space on a quadric is contained in a maximal dimensional linear
space. Take a linear space Λ that intersects the vertex in the linear space Ω.
Assume that the dimension of Ω is larger than expected. Take a linear space ∆ in
Λ complementary to Ω. Take a linear space Γ of dimension bn−r−22 c which contains
∆, but does not intersect the vertex of Q. Since the Grassmannian of s-planes in
the span of Γ and Ω is irreducible, the claim follows.

In case s < n−r−2
2 , the space of s-dimensional linear spaces on Q is irreducible.

If s ≥ n−r−2
2 the recursion stops when we obtain a quadric of rank r in Pr+1 or

Pr with multiplicity 2. The former case occurs if n− r is even and the latter case
occurs if n − r is odd. This allows us to calculate the dimensions of the spaces of
s-dimensional linear spaces on Q recursively. It also proves that when s ≥ n−r−2

2 ,
the spaces of s-dimensional linear spaces on Q is irreducible if n− r is odd and has
two components if n− r is even. We have thus proved the following:

Lemma 1.2. Let Q be a quadric hypersurface in Pn−1 of corank r. If s < n−r−2
2 ,

then F rs,n(Q) is irreducible of dimension

(s+ 1)
2n− 3s− 4

2
.

If s ≥ n−r−2
2 and n− r is even, then F rs,n(Q) has two irreducible components each

of dimension

(s+ 1)
n− 2s+ r − 2

2
+

(n− r − 2) (n− r)
8

.

If s ≥ n−r−2
2 and n− r is odd, then F rs,n(Q) is irreducible of dimension

(s+ 1)
n− 2s+ r − 3

2
+

(n− r − 1) (n− r + 1)

8
.

1.2. Preliminaries on orthogonal Grassmannians. LetW be an n-dimensional
vector space endowed with a non-degenerate, symmetric, bilinear form Q. Set
m = bn2 c. Let 0 < k ≤ m denote a positive integer. Let OG(k, n) denote the k-
dimensional subspaces of W isotropic with respect to the form Q, unless n = 2k. In
the latter case, the parameter space of k-dimensional isotropic subspaces of W has
two isomorphic irreducible components. OG(k, n) denotes one of these irreducible
components.

The orthogonal Grassmannian OG(k, n) is isomorphic to one irreducible compo-
nent of the Fano variety F 0

k−1,n(Q) of (k − 1)-dimensional projective linear spaces
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on a smooth quadric hypersurface. The non-degenerate quadratic form Q defines
the smooth quadric hypersurface in Pn−1. A linear space is isotropic with respect to
Q if and only if its projectivization is contained in the quadric hypersurface defined
by Q. In particular, by the discussion in §1.1, the dimension of OG(k, n) is

k(2n− 3k − 1)

2

The cohomology of OG(k, n) is generated by the classes of Schubert varieties.
There are minor differences in the cohomology of OG(k, n) depending on the parity
of n due to the fact that when n is even, the half-dimensional isotropic subspaces
form two connected components. For even n, the notation has to distinguish be-
tween these two connected components. For simplicity, we will first discuss the case
of odd n, then describe the necessary modifications for even n.

We begin by describing the Schubert varieties in OG(k, 2m+ 1). Let λ denote a
sequence

m ≥ λ1 > λ2 > · · · > λs > 0

of strictly decreasing integers, where s ≤ k. Given λ, there is an associated sequence

m− 1 ≥ λ̃s+1 > · · · > λ̃m ≥ 0

of strictly decreasing integers defined by requiring that there does not exist any
parts λi for which λ̃j +λi = m. In other words, the associated partition is obtained
by removing the integers m−λ1, . . . ,m−λs from the sequence m− 1,m− 2, . . . , 0.
For example, if m = 6, then the partition associated to (6, 4) is (5, 4, 3, 1). The
Schubert varieties in OG(k, 2m+ 1) are parameterized by pairs (λ, µ), where λ is a
strictly decreasing partition of length s and µ

m− 1 ≥ µs+1 > µs+2 > · · · > µk ≥ 0

is a subpartition of λ̃ (i.e., the parts of µ are a subset of the parts of λ̃) of length
k− s. We will call such pairs of partitions allowed pairs. Observe that for maximal
isotropic Grassmannians OG(m, 2m + 1), the partition µ = λ̃ is uniquely deter-
mined by the partition λ. Consequently, in the literature it is standard to omit the
sequence µ and parametrize Schubert varieties by strict partitions λ. We will find
it useful to record the dimensions of all the flag elements where a jump in dimen-
sion occurs, so we add µ to the notation. For non-maximal Grassmannians there
are several notations in use. The advantage of our notation is that it minimizes
the amount of calculation needed to determine the dimensions of the flag elements
where a jump in dimension occurs. Since µ is a subpartition of λ̃ we can assume
that it occurs as λ̃is+1

, · · · , λ̃ik . Given a pair (λ, µ), the discrepancy dis(λ, µ) of the
pair is defined by

dis(λ, µ) = (m− k)s+

k∑
j=s+1

(m− k + j − ij).

Fix an isotropic flag F•

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊂ F⊥m−1 ⊂ · · · ⊂ F⊥1 ⊂W.

Here F⊥i denotes the orthogonal complement of Fi with respect to the bilinear
form. In terms of the geometry of the quadric hypersurface Q ⊂ Pn−1 we can
describe F⊥j as follows. A one-dimensional isotropic subspace corresponds to a
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point p ∈ Q ⊂ Pn−1. The annihilator of that subspace corresponds to the tangent
space to Q at the point p. We can take Q to be given by the equation

∑n
i=1X

2
i = 0.

We can assume the isotropic subspace is generated by v = (1, i, 0, . . . , 0). The
annihilator of v is given by vectors (v1, v2, . . . , vn) such that v1 + iv2 = 0. On the
other hand, the tangent space to the quadric hypersurface at p corresponding to v
is given by X1 + iX2 = 0. So the annihilator of a vector consists precisely of those
vectors lying in the tangent hyperplane to the quadric at the point corresponding
to the vector. To find F⊥j we take the intersection of all the tangent hyperplanes at

the points of Fj . The intersection is the projective linear space Pn−1−j everywhere
tangent to Q along the projectivization of Fj .

The Schubert variety Ωµλ(F•) is defined as the closure of the locus

{[Λ] ∈ OG(k, 2m+1)|dim(Λ∩Fm+1−λi) = i for 1 ≤ i ≤ s,dim(Λ∩F⊥µj ) = j for s < j ≤ k}.

The codimension of a Schubert variety is given by
∑s
i=1 λi + dis(λ, µ). We will

denote the cohomology class of Ωµλ by σµλ .

The description of the Schubert varieties in OG(k, 2m) requires minor modifica-
tions to account for the fact that the space of m-dimensional isotropic subspaces
have two irreducible components. Let λ denote a sequence

m− 1 ≥ λ1 > λ2 > · · · > λs ≥ 0

of strictly decreasing integers where s ≤ k. When k = m andm is even (respectively,
odd), we will assume that s is even (respectively, odd). Given λ, we can define an

associated sequence λ̃ of strictly decreasing integers

m− 1 ≥ λ̃s+1 > · · · > λ̃m ≥ 0

satisfying the condition that there does not exists λi such that λi + λ̃j = m − 1.

In other words, to obtain λ̃ remove from the sequence m − 1, . . . , 0 the integers
m−1−λ1, . . . ,m−1−λs. The Schubert varieties in OG(k, 2m) are parameterized
by pairs (λ, µ), where λ is a strictly decreasing partition of length s and µ

m− 1 ≥ µs+1 > µs+2 > · · · > µk ≥ 0

is a subpartition of λ̃ of length k − s. We will call such pairs of partitions allowed
pairs. As above, for maximal isotropic Grassmannians OG(m, 2m), the partition

µ = λ̃ is uniquely determined by the partition λ, so it is often omitted from the
notation. The pair (λ, µ) is a subpartition of a pair (λ′, λ̃′) of total length m defined
as follows. If m and s have the same parity, then λ = λ′. If m and s have different
parities, λ′ has length s + 1 and differs from λ in that it includes the smallest
number between 0 and m− 1 not already occurring in λ and not adding to m− 1
with any of the parts in µ. The discrepancy dis(λ, µ) of the pair (λ, µ) is defined

as follows: Since (λ, µ) is a subpartition of (λ′, λ̃′), we can assume that the parts

occur as λ′i1 , . . . , λ
′
is
, λ̃′is+1

, · · · , λ̃′ik . The discrepancy is defined as

dis(λ, µ) =

k∑
j=1

(m− k + j − ij).

We will make the convention that Fm denotes an m-dimensional isotropic sub-
space in one of the irreducible components. By abuse of notation, we will denote
by F⊥m−1 an m-dimensional isotropic subspace in the other irreducible component.
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Note that strictly speaking the intersection of the quadric hypersurface with F⊥m−1
consists of the union of two m-dimensional isotropic subspaces one in each irre-
ducible component. Our slight abuse of notation will make notation more compact.
We will use this convention without further mention in the rest of the paper. The
Schubert variety Ωµλ(F•) is defined as the closure of the locus

{[Λ] ∈ OG(k, 2m)|dim(Λ∩Fm−λi) = i for 1 ≤ i ≤ s, dim(Λ∩F⊥µj ) = j for s < j ≤ k}.

The codimension of a Schubert variety is given by
∑
λ′i + dis(λ, µ). We will denote

the cohomology class of Ωµλ by σµλ .

The cohomology classes σµλ , as (λ, µ) varies over all allowed pairs, form an ad-
ditive basis of the cohomology ring of OG(k, n). Given an allowed pair (λ, µ) for
OG(k, 2m+ 1), there is a dual allowed pair (λc, µc) defined by

λc1 = m− µk, . . . , λck−s = m− µs+1, µ
c
k−s+1 = m− λs, . . . , µck = m− λ1.

Similarly, if (λ, µ) is an allowed pair for OG(k, 2m), define the dual pair (λc, µc) by
setting

λc1 = m−1−µk, . . . , λck−s = m−1−µs+1, µ
c
k−s+1 = m−1−λs, . . . , µck = m−1−λ1.

If (λ, µ) and (λc, µc) are dual allowed pairs, then σµλ · σ
µc

λc is equal to the Poincaré
dual of the point class.

In this section, we recall basic facts concerning the geometry of isotropic Grass-
mannians.

Let n = 2m be a positive, even integer. Let V be an n-dimensional vector space
over C. Let Q be a non-degenerate, skew-symmetric form on V . By Darboux’s
Theorem, we can choose a basis for V such that in this basis Q is expressed as∑m
i=1 xi ∧ yi. A subspace W of V is called isotropic if wTQv = 0 for any two

vectors v, w ∈ W . The dimension of an isotropic subspace of V is at most m.
Given a vector space W , the orthogonal complement W⊥ of W is defined as the set
of v ∈ V such that vTQw = 0 for every w ∈ W . If the dimension of W is k, then
the dimension of W⊥ is n− k and the restriction of Q to W⊥ has rank n− 2k (or,
equivalently, corank k).

The Grassmannian SG(k, n) parameterizing k-dimensional isotropic subspaces
of V is a homogeneous variety for the symplectic group Sp(n). The Grassmannian
SG(m,n) parameterizing maximal isotropic subspaces has dimension

dim(SG(m,n)) =
m(m+ 1)

2
.

This can be seen inductively. The dimension of SG(1, 2) ∼= P1 is one since every
vector is isotropic with respect to Q. Consider the incidence correspondence

I = {(w,W ) | w ∈ P(W ) and [W ] ∈ SG(m,n)}

parameterizing a pair of a maximal isotropic subspace W and a point w of P(W ).
The first projection of the incidence correspondence I maps to P(V ) with fibers
isomorphic to SG(m− 1, n− 2). The second projection maps the incidence corre-
spondence to SG(m,n) with fibers isomorphic to P(W ). By the Theorem on the
Dimension of Fibers [S, I.6.7] and induction, we conclude that the dimension of

SG(m,n) is m(m+1)
2 .
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The dimension of the isotropic Grassmannian SG(k, n) is

dimSG(k, n) =
m(m+ 1)

2
+

(m− k)(3k −m− 1)

2
= nk − 3k2 − k

2
.

To see this, consider the incidence correspondence

I = {(W1,W2) | W1 ∈ SG(k, n),W2 ∈ SG(m,n),W1 ⊂W2}

parameterizing two-step flags consisting of a k-dimensional isotropic space con-
tained in a maximal isotropic space. Since every k-dimensional isotropic space can
be completed to a maximal isotropic space, the first projection is onto SG(k, n).
The fibers of the first projection are isomorphic to the isotropic Grassmannian
SG(m− k, n− 2k). The second projection is onto SG(m,n) with fibers isomorphic
to G(k,m). The Theorem on the Dimension of Fibers [S, I.6.7] and the previous
paragraph imply the claim.

More generally, we will need to study spaces parameterizing k-dimensional linear
spaces isotropic with respect to a degenerate skew form Qrn of corank r on an n-
dimensional vector space. Naturally, n − r needs to be even. Since the restriction
of Qrn to a linear space complementary to its kernel is non-degenerate, we conclude
that the largest dimensional isotropic subspace has dimension r+ n−r

2 . Set h = n−r
2 .

Then the space of (r + h)-dimensional isotropic linear spaces with respect to Qrn
is isomorphic to SG(h, 2h) and has dimension h(h+1)

2 . Considering the incidence
correspondence

I = {(W1,W2) | W1 ⊂W2 isotropic with respect to Qrn,

dim(W1) = k, and dim(W2) = h+ r},
we see that the space of k-dimensional isotropic subspaces of Qrn has dimension
h(h+1)

2 + k(h+ r − k) if k ≥ h and h(h+1)
2 + k(h+ r − k)− (h−k)(h−k+1)

2 if k < h.

The cohomology of SG(k, n) is generated by the classes of Schubert varieties.
Let 0 ≤ s ≤ k be a non-negative integer. Let λ• : 0 < λ1 < λ2 < · · · < λs ≤ m be a
sequence of increasing positive integers. Let µ• : m > µs+1 > µs+2 > · · · > µk ≥ 0
be a sequence of decreasing non-negative integers such that λi 6= µj + 1 for any
1 ≤ i ≤ s and s < j ≤ k. Then the Schubert varieties in SG(k, n) may be indexed
by pairs of admissible sequences (λ•;µ•). Fix an isotropic flag

F• = F1 ⊂ F2 ⊂ · · ·Fm ⊂ F⊥m−1 ⊂ · · ·F⊥1 ⊂ V.

The Schubert variety Σλ•;µ•(F•) is defined as the Zariski closure of the set of linear
spaces

{W ∈ SG(k, n) | dim(W ∩Fλi) = i for 1 ≤ i ≤ s,dim(W ∩F⊥µj ) = j for s < j ≤ k}.

In the literature, it is customary to denote Schubert classes in the cohomology
of SG(m,n) by strictly decreasing partitions m ≥ a1 > a2 > · · · > as > 0 of length
s ≤ m. In our notation, the sequence a• translates to the sequence λ• by setting
ai = m+ 1−λi. Note that when n = 2m, the sequence λ• determines the sequence
µ• by the requirement that λi 6= µj+1 for any 1 ≤ i ≤ s and s < j ≤ m. Therefore,
it is common to omit the sequence µ• from the notation. We will not follow this
convention. In Schubert calculus, many authors prefer to record Schubert classes
so that the codimension will be easily accessible. Our notation has the advantage
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that it is preserved under natural maps between Grassmannians arising from linear
embeddings between ambient vector spaces.

We will index Schubert classes in the cohomology of the Grassmannian G(k, n)
by increasing sequences of non-negative integers a• : 0 < a1 < a2 < · · · < ak ≤ n.
The Schubert variety Σa•(F•) with respect to a flag F• parameterizes k-dimensional
subspaces W of V that satisfy dim(W ∩ Fai) ≥ i for 1 ≤ i ≤ k.

2. The restriction problem

The orthogonal or the symplectic Grassmannian naturally includes in the ordi-
nary Grassmannian. The restriction problem asks for computing the induced map
on cohomology in terms of the Schubert classes. This is the geometric analogue of
the restriction problem in representation theory. Our solution to this problem will
be via specialization.

In the case of orthogonal Grassmannians, the quadratic form Q defines a smooth
degree two hypersurface Q in PW . We will interpret OG(k, n) as the Fano variety
of (k − 1)-dimensional projective linear subspaces on Q. We will also need to
study singular quadric hypersurfaces. Over the complex numbers, the projective
equivalence class of a quadric hypersurface is determined by its dimension and
corank. Let Qridi denote a quadratic form of corank ri obtained by restricting Q to

a vector space of dimension di. Let Lnj denote an isotropic linear space of (vector
space) dimension nj . A restriction variety in OG(k, n) is defined in terms of a
sequence

Ln1
⊂ · · · ⊂ Lns ⊂ Q

rk−s
dk−s

⊂ · · · ⊂ Qr1d1
of isotropic linear spaces and quadrics. (In Definitions 4.2 and 4.9, we will specify
the conditions that these linear spaces and quadrics need to satisfy. For the purposes
of the introduction we ignore these subtleties.) The restriction variety parameterizes
the isotropic linear spaces that intersect Lnj in a subspace of dimension j and Qridi
in a subspace dimension k − i + 1 for every 1 ≤ j ≤ s and 1 ≤ i ≤ k − s.
Schubert varieties are examples of restriction varieties with the property that the
quadrics in the sequence are as singular as possible (i.e., di + ri = n). The strategy
to calculate the class of a restriction variety is to specialize the quadrics in the
sequence one at a time to become more singular until they are maximally singular.
When we specialize the quadrics, the restriction variety breaks into a union of
simpler restriction varieties. The process is governed by the following basic facts
about quadrics.

• The corank bound. Let Qr2d2 ⊂ Qr1d1 be two linear sections of Q such that the
singular locus ofQr1d1 is contained in the singular locus ofQr2d2 . Then r2−r1 ≤ d1−d2.
In particular, the corank of a sub-quadric in Q is bounded by its codimension.

• The linear space bound. The largest dimensional isotropic linear space with
respect to a quadratic form Qrd has dimension bd+r2 c. A linear space of dimension
j intersects the singular locus of Qrd in a subspace of dimension at least max(0, j −
bd−r2 c).
• Irreducibility. A sub-quadric Qd−2d of Q is reducible and equal to the union of
two linear spaces of (vector space) dimension d− 1 meeting along a linear space of

dimension d− 2. If n = 2k, then the linear spaces constituting Qk−1k+1 belong to two
distinct connected components.
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• The variation of tangent spaces. Let a quadric Qrd be singular along a
codimension j linear subspace M of a linear space L. Then the image of the Gauss
map of Qrd restricted to the smooth points of L has dimension at most j − 1. In
other words, the tangent spaces to Qrd along the smooth points of L vary at most
in a (j − 1)-dimensional family.

The corank bound determines the order of the specialization. We increase the
corank of the smallest dimensional quadric Qridi that satisfies di + ri < di−1 + ri−1
by one, i.e., we replace Qridi in the sequence with Qri+1

di
. The algorithm is obtained

by describing the flat limit of this specialization. Suppose that a general linear
space parametrized by the restriction variety intersects the singular locus of Qridi
in a subspace of dimension xi. The linear spaces parametrized by the flat limit
intersect the singular locus of Qri+1

di
in a subspace of dimension xi or xi + 1. The

limit has more than one component when both cases are possible. ‘The linear space
bound’ and ‘the variance of tangent spaces’ dictate which of the possibilities occur.
In addition, if ri = di − 3, then by the ‘irreducibility’ property, the new quadric
Qri+1
di

is reducible forcing the limit to possibly have more components. Surprisingly,
each of these components occur with multiplicity one in the limit. The algorithm is
obtained by inductively applying this specialization to each irreducible component.
We refer the reader to §5 for the precise statement of the algorithm and detailed
examples.

The case of SG(k, n) is similar. The computation depends on four very sim-
ple geometric principles. We now explain these principles. Let Qrd denote a d-
dimensional vector space such that the restriction of Q has corank r. Let Ker(Qrd)
denote the kernel of the restriction of Q to Qrd. Let Lj denote an isotropic sub-
space of dimension j with respect to Q. Let L⊥j denote the set of w ∈ V such that

wTQv = 0 for all v ∈ Lj .

Evenness of rank. The rank of a non-degenerate skew-symmetric form is even.
Hence, d− r is even for Qrd. Furthermore, if d = r, then Qrd is isotropic.

The corank bound. Let Qr1d1 ⊂ Qr2d2 and let r′2 = dim(Ker(Qr2d2) ∩ Qr1d1). Then

r1 − r′2 ≤ d2 − d1. In particular, d+ r ≤ n for Qrd.

The linear space bound. The dimension of an isotropic subspace of Qrd is

bounded above by bd+r2 c. Furthermore, an m-dimensional linear space L satis-

fies dim(L ∩Ker(Qrd)) ≥ m− bd−r2 c.

The kernel bound. Let L be an (s + 1)-dimensional isotropic space such that
dim(L ∩ Ker(Qrd)) = s. If an isotropic linear subspace M of Qrd intersects L −
Ker(Qrd), then M is contained in L⊥.

These four principles dictate the order of the specialization and determine the
limits that occur. Given a flag, we will specialize the smallest dimensional non-
isotropic subspace Qrd, whose corank can be increased subject to the corank bound,

keeping all other flag elements unchanged. We will replace Qrd with Q̃r+2
d . The

branching rule simply says that under this specialization, the limit L′ of a linear
space L satisfying rank conditions with respect to the original flag satisfies the same
rank conditions with the unchanged flag elements and either dim(L′∩Ker(Q̃r+2

d )) =

dim(L ∩Ker(Qrd)) or dim(L′ ∩Ker(Q̃r+2
d )) = dim(L ∩Ker(Qrd)) + 1. Furthermore,

both of these cases occur with multiplicity one unless the latter leads to a smaller
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dimensional variety or the former violates the linear space bound. See Sections 3
and 8 for an explicit statement of the rule and for examples.

3. Combinatorics

In this section, we present the rule for computing restriction coefficients of
OG(k, n) and SG(k, n) combinatorially.

3.1. The orthogonal case. Consider a sequence of n integers written from left to
right. We say that a bracket or brace is in position i if i of the integers are to the
left of the bracket or brace.

Definition 3.1. Let 0 ≤ s ≤ k < n be integers. A orthogonal sequence of brackets
and braces of type (k, n) is a sequence of n natural numbers, s right brackets ] and
k − s right braces } such that:

• Every bracket or brace occupies a positive position and each position is
occupied by at most one bracket or brace.
• Every number i in the sequence satisfies 0 ≤ i ≤ k−s. The positive integers

in the sequence are non-decreasing from left to right and are to the left of
every zero in the sequence.
• Every bracket is to the left of every brace.
• If 2k = n, a bracket in the k-th position may either be a bracket ] or a

bracket decorated with a prime ]′.

For example, 1]1]122]33]0000}00}00}000 is an orthogonal sequence of brackets and
braces of type (7, 18) with s = 4. To be concrete, the first rule forbids 0]]0, 0}}0
(two brackets or two braces in the same position), 00]}00 (a bracket and a brace
in the same position), ]100 (a bracket that is not in a position). The second rule
forbids numbers that look like 1132 (3 is not allowed to be to the left of 2) or
11200300 (3 should be to the left of any zero). The third rule forbids 000}00]0 (a
brace cannot be to the left of a bracket).

Notation 3.2. We order the brackets in the sequence from left to right and the
braces in the sequence from right to left. In our example, 1]11]2122]333]40000}300}200}1000
the small numbers above the brackets and braces indicate their order. Let ρ(i, j)
denote the number of integers to the right of the i-th brace and to the left of the
j-th brace. Let ρ(i, 0) denote the number of integers to the right of the i-th brace.
In our example, ρ(3, 2) = 2, ρ(2, 1) = 2, ρ(1, 0) = 3. Let p(]i) and p(}i) denote
the number of integers to the left of the i-th bracket and i-th brace, respectively.
These record the positions of the brackets and braces. In our running example,
p(]1) = 1, p(]2) = 2, p(]3) = 5, p(]4) = 7 and p(}3) = 11, p(}2) = 13, p(}1) = 15. Let
l(i) denote the number of integers in the sequence that are equal to i. Let l(≤ i)
denote the number of positive integers in the sequence that are less than or equal
to i. In our running example, l(1) = 3, l(2) = 2, l(3) = 2, l(≤ 2) = 5, l(≤ 3) = 7.
When we are discussing more than one sequence, we will write ρD, pD and lD for
the invariants of the sequence D.

We are now ready to define quadric diagrams, which are the main combinatorial
objects of this paper. The first three conditions in the definition do not play a
role in the algorithm. They are included for precision and the reader may ignore
them in a first reading. The last three conditions are crucial and the reader should
remember them.
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Definition 3.3. A quadric diagram for OG(k, n) is an orthogonal sequence of
brackets and braces of type (k, n) with s brackets such that the following conditions
hold.

(D1) l(i) ≤ ρ(i, i− 1) for 1 ≤ i ≤ k − s.
(D2) 2p(]s) ≤ p(}k−s) + l(≤ k − s).
(D3) Suppose that the integer 0 < i < k − s occurs in the sequence. If i + 1

does not occur in the sequence, either i = 1 and every position after a
1 is occupied by a bracket, or l(j) = ρ(j, j − 1) for every j > i + 1 and
ρ(i+ 1, i) = 1.

(D4) There are at least three zeros to the left of }k−s.
(D5) Let xi be the number of brackets such that p(]j) ≤ l(≤ i). Then

xi ≥ k − i+ 1− p(}i)− l(≤ i)
2

.

(D6) The two integers immediately to the left of a bracket are equal. If there is
only one integer to the left of a bracket and s < k, then the integer is 1.

Remark 3.4. Quadric diagrams index restriction varieties, which will be intro-
duced in the next section and are the main geometric objects of study in this
paper.

Example 3.5. Let us give a few examples to clarify the meaning of these conditions.
The first condition says that the number of times i appears in the sequence is less
than or equal to the number of integers between the i-th and (i− 1)-st braces. In
particular, the following are forbidden 2220000}00}0 (l(2) = 3, but ρ(2, 1) = 2),
11000}0 (l(1) = 2, but ρ(1, 0) = 1). Let the right most bracket be at position p(]s)
and the left most brace be at position p(}k−s). The second condition says that
twice p(]s) is less than or equal to the sum of p(}k−s) and the number of positive
integers in the sequence. For example, 00]00}0, 100]00}0 are allowed, but 000]00}0
is not (2p(]1) = 6 > p(}1) = 5). The third condition is a consequence of the order
in the algorithm. The reader does not have to pay attention to it except in a few
places in the proof of the algorithm, where it simplifies the dimension counts. The
rule says that if a positive integer occurs in the sequence, then all the larger integers
(less than or equal to k − s) also occur in the sequence except in two very special
cases. For example, 1]1]330000}00}0}00 (all the 1s are followed by brackets) and
1]1330000}00}0}00 (2 is missing, but l(3) = ρ(3, 2) = 2 and l(2) = ρ(2, 1)− 1 = 0)
are allowed, but 1]130000}00}0}00 is not (2 is missing, but l(3) = 1 6= ρ(3, 2) = 2).
These conditions are preserved during the algorithm. The reader may ignore them
in a first reading.

The last three conditions are the important conditions that the reader has to re-
member. The fourth condition is self-evident. It allows 11]00]00}00 or 33000}00}00}0,
but does not allow 1100}00. The sixth condition is also self-evident. It allows for
1]22]33]0000}00}0}0 or 22]22]2000}00000}0, but disallows 2]22]000}000}0 (there is
only one integer to the left of ]1, but it is not 1) or 1234]0000}0}0}0}0 (the two
numbers preceding the bracket are not equal). The fifth condition is the one that is
hardest to visually verify without resorting to some counting. In words, it says that
the number of integers that are to the right of the right-most i and to the left of
the i-th brace has to be at least twice the total number of brackets and braces that
are at positions greater than l(≤ i) and less than or equal to p(}i). For example, it
disallows 10]00}0 (There are three zeros to the right of the 1 that are to the left of
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}. There is one bracket and one brace in positions greater than 1 and less than or
equal to 4. However, 3 6≥ 4).

We are now ready to state the algorithm. We begin by defining a new set of
sequences of brackets and braces associated to D. The new sequences Da and Db

defined below may fail to be quadric diagrams, but we address such instances below.

Definition 3.6. If there exists an index i in D such that l(i) < ρ(i, i − 1), let
κ = max(i | l(i) < ρ(i, i − 1)). Let Da be the sequence of brackets and braces
obtained by changing the (l(≤ κ) + 1)-st integer in the sequence D to κ.

If pDa(]s) > lDa(≤ κ), let η = min(i | pDa(]i) > lDa(≤ κ)). Let Db be the
sequence of brackets and braces obtained from Da by moving the bracket ]η to the
position lDa(≤ κ).

To clarify, let us give some examples. Let D = 233]0000}00}0}0. Then κ = 1.
We change the integer in the position l(≤ 1) + 1 (in this case the left most 2) to 1
to obtain Da = 133]0000}00}0}0. We slide the first bracket in Da to the right of
the 1 we added to the immediate right of it to obtain Db = 1]330000}00}0}0. Note
that in this case both Da and Db are quadric diagrams.

Next let D = 00]0]0000}0. Here κ = 1, so we turn the left most 0 into 1 to obtain
Da = 10]0]0000}0. We slide the first bracket to the right of the 1 to its immediate
right to obtain Db = 1]00]0000}0. Here note that Db is a quadric diagram, but
Da fails condition (D6). We have to turn Da into a quadric diagram. Here is the
algorithm that turns Da into a quadric diagram.

Algorithm 3.7. • If Da fails condition (D5), discard it. Da does not lead to any
quadric diagrams.
• If Da satisfies condition (D5) but not condition (D6), change the (l(≤ κ) + 1)-st
integer in the sequence to κ and move }κ one position to the left. Repeat until
you reach a sequence of brackets and braces that satisfies condition (D6). Label
the resulting sequence Dc. If Dc is a quadric diagram, we refer to it as a quadric
diagram derived from Da. Otherwise, proceed to the next step.
• If Da or Dc satisfy conditions (D5) and (D6), but fail condition (D4), replace
Da or Dc with two identical diagrams Da1 and Da2 obtained by replacing }k−s
(in Da or Dc) with ]s+1 in position p(}k−s) − 1 and turning the digits equal to
k − s to 0. If 2p(]s+1) = n, then we use (]′)s+1 instead of ]s+1 in Da2 . We refer to
Da1 and Da2 as quadric diagrams derived from Da. Furthermore, if 2k = n and
2p(]s+1) = n, then discard the diagram with ]s+1 (respectively, (]′)s+1) if s+ 1 6= k
mod (2) (respectively, if s+ 1 = k mod (2)).

In our example, we first turn Da = 10]0]0000}0 to 11]0]000}00. This diagram
still fails condition (6), so we repeat to obtain 11]1]00}000. Now condition (D6) is
satisfied, but condition (D4) fails. Since n = 8 = 2 · 4, we obtain the two diagrams
00]0]0]0000 and 00]0]0]′0000. These are the two diagrams derived from Da.

Let D = 000}000}000}, then κ = 3. We turn the left most 0 into 3 to obtain
Da = 300}000}000}. In this case, there are no brackets to the left of the 3, so there
is no Db. The sequence Da fails condition (D4). Since n is odd, we replace Da with
two identical quadric diagrams Da1 = 00]0000}000} and Da2 = 00]0000}000}.

Let D = 00]0000}00}0. Then Da = 20]0000}00}0 and Db = 2]00000}00}0.
Neither of these diagrams satisfy condition (D6). We already know that we should
replace Da with 22]000}000}0. Here is how to modify Db.
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Algorithm 3.8. • If Db does not satisfy condition (D6), let ]j be the bracket for
which it fails. Let i be the integer immediately to the left of ]j . Replace i with
i− 1 and move }i−1 one position to the left. As long as the resulting sequence does
not satisfy condition (D6), repeat this process either until the resulting sequence is
a quadric diagram (in which case this is the quadric diagram derived from Db) or
two braces occupy the same position. In the latter case, no quadric diagrams are
derived from Db.

In our example, we replace Db = 2]00000}00}0 with 1]00000}0}00, which is
a quadric diagram. If our example had been D = 00]0000}0}0, then Db =
2]00000}0}0. Replacing 2 with 1 and moving }1 to the left would produce 1]00000}}00.
Hence, in this case no quadric diagrams are derived from Db.

We need one final definition. Given a sequence of brackets and braces such that
p(]s) > l(κ), if l(≤ i) < p(]xκ+1) for all i, set yxκ+1 = k − s + 1. Otherwise, let
yxκ+1 = max(i | l(≤ i) ≤ p(]xκ+1)). If there is a 0 to the left of ]xκ+1, then yxκ+1 is
k − s+ 1. Otherwise, yxκ+1 is the largest integer that occurs to the right of ]xκ+1,
which is the first bracket occurring in a position greater than l(≤ κ). The condition
p(]xκ+1)−l(≤ κ)−1 = yxκ+1−κ will play an important role. In words, this condition
says that the number of integers larger than κ to the left of ]xκ+1 is one more than
the cardinality of the set of integers greater than κ (or zero) occurring to the left
of ]xκ+1. In view of condition (D3), a sequence satisfying this equality looks like
· · ·κ + 1 κ + 2 · · ·κ + l − 1 κ + l κ + l] · · · or · · ·κ + 1 κ + 2 · · ·κ + l − 1 00] · · · ,
where we have drawn the part of the sequence starting with the left most κ+ 1 and
ending with ]xκ+1. We are now ready to state the algorithm.

Algorithm 3.9. Let D be a quadric diagram. If l(i) = ρ(i, i− 1) for every 1 ≤ i ≤
k − s, then return D and stop. Otherwise, let Da and Db be as above.

(1) If p(]xκ+1) − l(≤ κ) − 1 > yxκ+1 − κ or p(]s) ≤ l(κ) in D, then return the
quadric diagrams that are derived from Da.

(2) If Da violates condition (D5), then return the quadric diagrams that are
derived from Db.

(3) Otherwise, return the quadric diagrams that are derived from both Da and
Db.

Remark 3.10. In the proof of Theorem 5.12, we will check in detail that Algorithm
3.9 always returns at least one quadric diagram. Briefly, Da does not lead to a
quadric diagram only if it violates condition (D5). In that case, by the definition
of κ, there has to be equality in condition (D5) for all indices κ ≤ i ≤ k − s in the
diagram D. Then, condition (D4) implies that there has to be a bracket to the right
of κ in Da; and condition (D6) implies that p(]xκ+1) − l(≤ κ) − 1 = yxκ+1 − κ in
D. Finally, while running Algorithm 3.36, if two braces occupy the same position,
then condition (D5) is violated for the index κ − 1 in the diagram D. These
considerations imply that there is a quadric diagram derived from Db by Algorithm
3.9 (see paragraph 6 of the proof of Theorem 5.12 for more details).

3.2. The symplectic case.

Notation 3.11. Let 0 ≤ s ≤ k be an integer. A sequence of n natural numbers of
type s for SG(k, n) is a sequence of n natural numbers such that every number is
less than or equal to k − s. We write the sequence from left to right with a small
gap to the right of each number in the sequence. We refer to the gap after the
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i-th number in the sequence as the i-th position. For example, 1 1 2 0 0 0 0 0 and
3 0 0 2 0 1 0 0 are two sequences of 8 natural numbers of types 1 and 0, respectively,
for SG(3, 8).

Definition 3.12. Let 0 ≤ s ≤ k be an integer. A sequence of brackets and braces of
type s for SG(k, n) consists of a sequence of n natural numbers of type s, s brackets
] ordered from left to right and k − s braces } ordered from right to left such that:

(1) Every bracket or brace occupies a position and each position is occupied
by at most one bracket or brace.

(2) Every bracket is to the left of every brace.
(3) Every positive integer greater than or equal to i is to the left of the i-th

brace.
(4) The total number of integers equal to zero or greater than i to the left of

the i-th brace is even.

Example 3.13. 11]200}0}00 and 300}20}10}0 are typical examples of sequences
of brackets and braces for SG(3, 8) that have the two examples from Notation 3.11
as their sequences of natural numbers. When writing a sequence of brackets and
braces, we often omit the gaps not occupied by a bracket or a brace.

Example 3.14. Let us give several non-examples to clarify Definition 3.12. The
first condition disallows diagrams such as ]0000} (the first bracket is not in a po-
sition), 0]]000, 000}}0, 00]}00 (two brackets, two braces, or a bracket and a brace
occupy the same position, respectively). The second condition disallows diagrams
such as 00}0]000 (a brace cannot be to the left of a bracket). The third condition
disallows diagrams such as 100}30}20}0 (3 is to the right of the third brace and 2 is
to the right of the second brace). The fourth condition disallows diagrams such as
1]2000}0}00 (the number of zeros to the left of the second brace, and the number
of zeros and twos to the left of the first brace are odd).

Notation 3.15. By convention, the brackets are indexed from left to right and
the braces are indexed from right to left. We write ]i and }i to denote the i-th
bracket and i-th brace, respectively. Their positions are denoted by p(]i) and p(}i).
The position of a bracket or a brace is equal to the number of integers to its left.
For notational convenience, we declare that, in a sequence of brackets and braces
of type s for SG(k, n), the brace }k−s+1 denotes ]s and an integer in the sequence
equal to k − s + 1 should be read as 0. Let l(i) denote the number of integers in
the sequence that are equal to i. Let ri be the total number of positive integers less
than or equal to i that are to the left of }i. For 0 < j < i, let ρ(i, j) = p(}j)− p(}i)
and let ρ(i, 0) = n − p(}i). Equivalently, ρ(i, 0) (respectively, ρ(i, j)) denotes the
number of integers to the right of the i-th brace (respectively, to the right of the
i-th brace and to the left of the j-th brace).

Example 3.16. For the sequence of brackets and braces 300}20}10}0 for SG(3, 8),
the positions are p(}3) = 3, p(}2) = 5, p(}1) = 7. We have ri = l(i) = 1, for
1 ≤ i ≤ 3, ρ(i, i− 1) = 2, for 2 ≤ i ≤ 3, and ρ(1, 0) = 1.

Example 3.17. For the sequence of brackets and braces 1]22]00}00}0 for SG(4, 8),
the positions are p(]1) = 1, p(]2) = 3, p(}2) = 5, p(}1) = 7. We have r1 = l(1) = 1,
l(2) = 2, and r2 = 3. Moreover, ρ(2, 1) = 2 and ρ(1, 0) = 1.

Definition 3.18. Two sequences of brackets and braces are equivalent if the lengths
of their sequence of numbers are equal, the brackets and braces occur at the same
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positions, and the collection of digits that occur between any consecutive brackets
and/or braces are the same up to reordering.

Example 3.19. The sequences 1221]00200}000}00, 1122]20000}000}00 and the
sequences 003}02}01}0, 300}20}10}0 are equivalent pairs of sequences. We can
depict an equivalence class of sequences by the representative where the digits
are listed so that between any two consecutive brackets and/or braces the positive
integers precede the zeros and are listed in non-decreasing order. We will always use
this canonical representative and often blur the distinction between the equivalence
class and this representative.

Definition 3.20. A sequence of brackets and braces is in order if the sequence
of numbers consists of a sequence of non-decreasing positive integers followed by
zeros except possibly for one i immediately to the right of }i+1 for 1 ≤ i < k − s.
Otherwise, we say that the sequence is not in order. A sequence is in perfect order
if the sequence of numbers consists of non-decreasing positive integers followed by
zeros.

Example 3.21. The sequences 300}20}10}000, 11]22]00}00}00, 1]33]0000}200}0}0
are in order. Furthermore, 11]22]00}00}00 is in perfect order. The sequences
11]00]100}000, 1]20000}1}0}00, 122]100}00}00 are not in order.

Definition 3.22. A sequence of brackets and braces is saturated if l(i) = ρ(i, i−1)
for 1 ≤ i ≤ k − s.

Example 3.23. The sequences 11]22]00}00}00 and 1]22]100}00}00 are saturated,
whereas, 22]00}00}00 and 1]0000}00}000 are not.

The next definition is a technical definition that plays a role in the proof and is
a consequence of the order in which the game is played. The reader can define a
symplectic diagram as a sequence of brackets and braces that occurs in the game
and refer to the conditions only when necessary.

Definition 3.24. A symplectic diagram for SG(k, n) is a sequence of brackets and
braces of type s for SG(k, n) for some 0 ≤ s ≤ k such that:

(S1) l(i) ≤ ρ(i, i− 1) for 1 ≤ i ≤ k − s.
(S2) Let τi be the sum of p(]s) and the number of positive integers between ]s

and }i. Then

2τi ≤ p(}i) + ri.

(S3) Either the sequence is in order or there exists at most one integer 1 ≤ η ≤
k − s such that the sequence of integers is non-decreasing followed by a
sequence of zeros except for at most one occurrence of η between ]s and
}η+1 and at most one occurrence of i < η after }i+1.

(S4) Let ξj denote the number of positive integers between }j and }j−1. If an
integer i occurs to the left of all the zeros, then either i = 1 and there is a
bracket in the position following it, or there exists at most one index j0 such
that ρ(j, j−1) = l(j) for j0 6= j > min(i, η) and ρ(j0, j0−1) ≤ l(j0)+2−ξj0 .
Moreover, any integer η violating order occurs to the right of }j0 .

Remark 3.25. Conditions (S1) and (S2) are necessary to guarantee that symplec-
tic diagrams represent geometrically meaningful objects. Conditions (S3) and (S4)
are consequences of the order the game is played and describe the most complicated
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possible diagrams that can occur. The reader can ignore these conditions. They
are necessary to carry out the dimension counts and to prove that the algorithm is
defined at each step. They are not needed in order to run the algorithm.

Example 3.26. Let us give some examples to clarify Definition 3.24. Condition
(S1) allows for diagrams such as 11]22]2]00}000}00 but disallows 22]3300}2}00}000
(there are two 3’s and three 2’s in the sequence but ρ(2, 3) = 1 and ρ(1, 2) =
2). Condition (S2) disallows diagrams such as 000]10}0 (r1 = 1, τ1 = 4, but
2 · 4 > 5 + 1). Condition (S3) allows for 2344]300}00}00}10}0 (a non-decreasing
sequence of positive integers 2344 followed by a sequence consisting of one 3, one
1 and zeros), but disallows 22]110000}2200}0000}00 (there are two 1s and two 2s
following the non-decreasing sequence 22) or 22]133]00}00}00}0 (there are two 3s
following the non-decreasing sequence 22). Condition (S4) allows for diagrams such
as 11]3300}00}1}000, 1]1]33]00}00}00}00, however, it disallows diagrams such as
144]00}00}00}00}0 (1 occurs in the initial non-decreasing part of the sequence, but
2 and 3 do not occur. 1 is not followed by a bracket and l(3) = 0 6= ρ(3, 2) = 2,
l(2) = 0 6= ρ(2, 1) = 2).

The next definition is crucial for the game and the reader should remember these
conditions.

Definition 3.27. A symplectic diagram is called admissible if it satisfies the fol-
lowing additional conditions.

(A1) The two integers to the left of a bracket are equal. If there is only one
integer to the left of a bracket and s < k, then the integer is one.

(A2) Let xi be the number of brackets ]h such that every integer to the left of ]h

is positive and less than or equal to i. Then

xi ≥ k − i+ 1− p(}i)− ri
2

.

Example 3.28. Condition (A1) disallows diagrams such as 11]23]00}00}00}00 (the
digits preceding the second bracket are not equal), 2]200}00}00 (there is a bracket
in position 1, but the first digit is not 1). Condition (A2) is hard to visualize
without resorting to counting. Let p be the position of the rightmost bracket such
that every digit to the left of p is positive and less than or equal to i. In words,
condition (A2) says that the total number of zeros and integers greater than i in
the sequence is at least twice the number of brackets and braces in positions p+ 1
through p(}i). The following diagrams violate condition (A2): 22}00}00 (x2 = 0,
p(}2) = r2 = 2, but 0 < 1), 200}2}00} (the number of braces up to p(}2) = 4 is
2; the number of zeros is 2, but 2 < 2 · 2), 11]33]00}00}1}000 (the total number of
brackets and braces between positions 3 and 9 = p(}1) is 4. The number of zeros
and integers greater than 1 is 6, but 2 · 4 > 6).

Remark 3.29. The admissible symplectic diagrams are the main combinatorial
objects in this paper. They represent symplectic restriction varieties, which are
the main geometric objects of the paper and will be defined in the next section.
The symplectic diagram records a non-necessarily isotropic flag. The correspond-
ing symplectic restriction variety parameterizes isotropic spaces that satisfy certain
rank conditions with respect to this flag. The definition of an admissible sym-
plectic diagram reflects the basic facts about isotropic subspaces discussed in the
introduction, as we will see in the next section.
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Definition 3.30. The symplectic diagram D(σλ;µ) associated to the Schubert class
σλ;µ in SG(k, n) is the saturated symplectic diagram in perfect order, where the
brackets occur at positions λ1, . . . , λs and the braces occur at positions n−µs+1, · · · ,
n− µk.

Example 3.31. The symplectic diagram associated to σ2,4;4,2 in SG(4, 10) is
11]22]00}00}00.

Lemma 3.32. The diagram D(σλ;µ) is an admissible symplectic diagram.

Proof. Let n = 2m. Since 0 < λ1 < · · · < λs ≤ m < n − µs+1 < · · · < n − µk,
the brackets and braces occur in different positions and the brackets are to the left
of the braces. Since the sequence is saturated and in perfect order, the number
of integers in the sequence equal to i is µk−i+1 − µk−i+2 ≤ µs+1 < m (with the
convention that µk+1 = 0), for 1 ≤ i ≤ k− s and occur to the left of }k−s. Finally,
the number of integers equal to zero or greater than or equal to i to the left of }i
is n − 2µk−i+1 = 2(m − µk−i+1). Therefore, D(σλ;µ) satisfies all 4 conditions in
Definition 3.12.

By definition, D(σλ;µ) is saturated, so l(i) = ρ(i, i− 1) and conditions (S1) and
(S4) hold. Since the diagram is in perfect order, (S3) holds and

τi = max(λs, µs+1) ≤ m.
On the other hand, p(}i) + ri = n− µk−i+1 + µk−i+1 = n = 2m ≥ 2τi. Therefore,
D(σλ;µ) satisfies all the conditions in Definition 3.24.

Finally, since λj 6= µi + 1 for any i, j, the two integers preceding a bracket must
be equal. Furthermore, if λ1 = 1, µ1 ≥ 1. Hence, condition (A1) holds. For
1 ≤ i ≤ k−s, k− i+1− (p(}i)−ri)/2 = k− i+1+µk−i+1−m. From the sequence
0, 1, . . . ,m− 1, remove the integers λ1 − 1, λ2 − 1, . . . , λs − 1 to obtain a sequence
αm < αm−1 < · · · < αs+1. By assumption µk−i+1 = αj for some j ≥ k − i + 1.
Hence, k− i+1+µk−i+1−m ≤ αj− (m− j) = xi. To see the last equality, observe
that xi is the number of integers λh that are less than or equal to µk−i+1 = αj .
This number is equal to the number of integers (αj − (m − j)) between 0 and αj
that do not occur in the sequence αm, . . . , αj . Hence, condition (A2) holds. We
conclude that D(σλ;µ) is an admissible symplectic diagram. �

The game is defined on admissible symplectic diagrams. We will see in the
next section that saturated admissible diagrams in perfect order represent Schubert
varieties in SG(k, n). The goal of the algorithm is to transform every admissible
symplectic diagram to a collection of saturated admissible diagrams in perfect order.
Given an admissible symplectic diagram D, we will associate to it one or two
sequences Da and/or Db of brackets and braces. Initially, neither Da nor Db has to
be admissible. We will shortly describe an algorithm that modifies Da and Db so
that they become admissible. The game records a degeneration of the flag elements
represented by D.

Definition 3.33. LetD be an admissible symplectic diagram of type s for SG(k, n).
For the purposes of this definition, read any mention of k−s+1 as 0 and any mention
of }k−s+1 as ]s.
(1) If D is not in order, let η be the integer in condition (S3) violating the order.

(i) If every integer η < i ≤ k − s occurs to the left of η, let ν be the leftmost
integer equal to η + 1 in the sequence of D. Let Da be the canonical
representative of the diagram obtained by interchanging η and ν.
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(ii) If an integer η < i ≤ k − s does not occur to the left of η, let ν be the
leftmost integer equal to i + 1. Let Da be the canonical representative of
the diagram obtained by swapping η with the leftmost 0 to the right of }i+1

not equal to ν and changing ν to i.

(2) If D is in order but is not a saturated admissible diagram in perfect order, let
κ be the largest index for which l(i) < ρ(i, i− 1).

(i) If l(κ) < ρ(κ, κ− 1)− 1, let ν be the leftmost digit equal to κ+ 1. Let Da

be the canonical representative of the diagram obtained by changing ν and
the leftmost 0 to the right of }k+1 not equal to ν to κ.

(ii) If l(κ) = ρ(κ, κ− 1)− 1, let η be the integer equal to κ− 1 immediately to
the right of }κ.
(a) If κ occurs to the left of η, let ν be the leftmost integer equal to κ

in the sequence of D. Let Da be the canonical representative of the
diagram obtained by changing ν to κ− 1 and η to zero.

(b) If κ does not occur to the left of η, let ν be the leftmost integer equal to
κ+ 1. Let Da be the canonical representative of the diagram obtained
by swapping η with the leftmost 0 to the right of }κ+1 not equal to ν
and changing ν to κ.

Let p be the position in D immediately to the right of ν. If there exists a bracket
at a position p′ > p in Da, let q > p be the minimal position occupied by a bracket
in Da. Let Db be the diagram obtained from Da by moving the bracket at position
q to position p. Otherwise, Db is not defined.

Example 3.34. Let D = 2300}10}0}0, then η = 1 violates the order and ν = 2
and 3 occur to the left of it. Hence, we are in case (1)(i) and Da = 1300}20}0}0 is
obtained by swapping 1 and 2. Similarly, let D = 200]200}00}, then the second 2
violates the order and Da = 220]000}00}, Db = 22]0000}00}.

Let D = 124400}00}1}0}00, the 1 in the ninth place violates the order and 3
does not occur to its left, so we are in case (1)(ii) and Da = 123400}10}0}0}00.

Let D = 22]00}00}00, then D is in order and κ = 1. Since l(1) = 0 < ρ(1, 0)−1,
we are in case (2)(i) and Da = 12]00}10}00 and Db = 1]200}10}00.

Let D = 3300}200}0}, then D is in order and κ = 3. Since l(3) = 2 = ρ(3, 2)−1,
we are in case (2)(ii)(a) and Da = 2300}000}0}.

Finally, let D = 330000}00}1}0, then D is in order and κ = 2. Since l(2) =
0 = ρ(2, 1)− 1 and 2 does not occur in the sequence, we are in case (2)(ii)(b) and
Da = 230000}10}0}0.

We will soon check that both Da and Db are symplectic diagrams; however, they
do not have to be admissible. We now describe algorithms for turning them into
admissible diagrams.

Algorithm 3.35. If Da is not an admissible symplectic diagram, perform the
following steps to turn it into an admissible diagram.

Step 1. If Da does not satisfy condition (A2), let i be the maximal index for which
condition (A2) fails. Define a new diagram Dc as follows. Let the two rightmost
integers equal to i in Da be in the places π1 < π2. Delete }i and move the i in
place π2 to place π1 + 1. Slide the integers in places π1 < π < π2 and brackets and
braces in positions π1 < p < π2 one to the right. Add a bracket at position π1 + 1.
Subtract one from the integers i < h ≤ k − s; and if i = k − s, change the integers
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equal to k − s to 0. Let Dc be the resulting diagram and replace Da with Dc. If
Da satisfies condition (A2), proceed to the next step.

Step 2. If Da fails condition (A1), let ]j be the smallest index bracket for which it
fails and let i be the integer preceding ]j . Change this i to i− 1 (k− s if i = 0) and
move }i−1 (}k−s if i = 0) one position to the left. Repeat this procedure until the
sequence of brackets and braces satisfies condition (A1). Let the resulting sequence
be Dc. In both steps, we refer to Dc as a quadric diagram derived from Da.

Algorithm 3.36. If Db does not satisfy condition (A1), run Step 2 of Algorithm
3.35 on Db. Explicitly, let ]j be the minimal index bracket for which (A1) fails. Let
i be the integer immediately to the left of ]j . Replace i with i − 1 and move }i−1
one position to the left. As long as the resulting sequence does not satisfy condition
(A1), repeat this process either until the resulting sequence is an admissible sym-
plectic diagram (in which case, this is the symplectic diagram derived from Db) or
two braces occupy the same position. In the latter case, no admissible symplectic
diagrams are derived from Db.

Example 3.37 (Examples of Algorithm 3.35). Let D = 22]33]00}00}00}00. Then
the diagram Da = 12]33]00}00}10}00 fails condition (A2) since x1 = 0 < 1 =
5 − (10 − 2)/2. Hence, according to Step 1 of Algorithm 3.35, we replace Da

with 11]1]22]00}00}000 (delete }1, move the 1 in position 9 to position 2 and slide
everything in positions 2-8 one position to the right, add a bracket in position 2, and
subtract 1 from the integers greater than 1). The latter is an admissible diagram.

Let D = 00}00}00. Then Da = 22}00}00 fails condition (A2) since x2 = 0 <
1 − (2 − 2)/2. Hence, Step 1 of Algorithm 3.35 replaces Da with 00]00}00 (delete
}2 and add a bracket in position 2), which is admissible.

Similarly, if D = 11]33]00}00}00}00, then the diagram Da = 11]23]00}20}00}00
fails condition (A2) since x2 = 1 < 2. Hence, according to Step 1 of Algorithm
3.35, we replace Da with 11]22]2]00}000}00, which is admissible.

If D = 22]2]200}0000}00, then the diagram Da = 12]2]200}1000}00 is not ad-
missible since it fails condition (A1) for ]1. Step 2 of Algorithm 3.35 replaces Da

first with 11]2]200}100}000 (change the 2 preceding ]1 to 1 and move }1 one posi-
tion to the right). Note that this diagram fails condition (A1) for ]2. Hence, Step 2
replaces it with 11]1]200}10}0000 (change the 2 preceding ]2 to 1 and move }1 one
position to the left). This diagram is admissible, hence it is the diagram derived
from Da.

Example 3.38 (Examples of Algorithm 3.36). Let D = 11]33]00}00}00}00, then
Db = 11]2]300}20}00}00 fails condition (A1). Algorithm 3.36 replaces it with
11]1]300}20}0}000, which is admissible.

Let D = 00]0000}00}00}, then Db = 3]30000}00}00} does not satisfy condition
(A1) since the digit to the left of ]1 has to be 1. Algorithm 3.36 replaces Db first with
2]30000}0}000}, which still fails condition (A1). Hence, Algorithm 3.36 replaces
this diagram with 1]30000}0}00}0, which is admissible.

If D = 00]0000}2}0}, then Da = 30]2000}0}0} and Db = 3]20000}0}0}. They
both fail condition (A1). When we run Algorithm 3.36 on Db, we turn the 3 into
2 and slide }2 one position to the left. In that case, we obtain 1]30000}}00}.
Since two braces occupy the same position, no diagrams are derived from Db in
this case. When we run Algorithm 3.35 on Da, we obtain the admissible diagram
33]200}00}0}.
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Let D be an admissible symplectic diagram and let ν be as in Definition 3.33.
Let π(ν) denote the place of ν in the sequence of integers. If p(]s) > π(ν), then
]xν−1+1 is the first bracket to the right of ν. If the integer to the immediate left of
]xν−1+1 is positive, let yxν−1+1 be this integer. Otherwise, let yxν−1+1 = k − s+ 1.
The condition p(]xν−1+1) − π(ν) − 1 = yxν−1+1 − ν plays an important role. In
words, this condition says that the number of values larger than ν or equal to zero
that the integers to the left of ]xν−1+1 attain is one more than the cardinality of
the set of integers consisting of zero and integers larger than ν occurring to the left
of ]xν−1+1. In view of conditions (S3), (S4) and (A1), a sequence satisfying this
equality looks like

· · · ν ν + 1 · · · ν + l − 1 ν + l ν + l] · · · or · · · ν ν + 1 · · · ν + l 00] · · · ,
where we have drawn the part of the sequence starting with the left most ν and
ending with ]xν−1+1. We are now ready to state the algorithm.

Algorithm 3.39. Let D be an admissible, symplectic diagram of type s for
SG(k, n). If D is saturated and in perfect order, return D and stop. Otherwise, let
Da and Db be defined as in Definition 3.33.

(1) If p(]s) ≤ π(ν) or p(]xν−1+1)−π(ν)−1 > yxν−1+1− ν in D, then return the
admissible symplectic diagrams that are derived from Da.

(2) Otherwise, return the admissible symplectic diagrams that are derived from
both Da and Db.

We run the algorithm on two symplectic diagrams.
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Example 3.40.

00}00}00→ 00]00}00→ 00]0]000

↓

1]100}00

In this example, first Da = 22}00}00 is not admissible since the diagram fails
condition (A2). Therefore, we replace it by 00]00}00. Next, Da = 10]10}00 and
Db = 1]100}00. Da is not admissible since it does not satisfy condition (A2). Hence,
we replace it by the admissible diagram 00]0]000. Db is admissible. Note that the
last two diagrams are saturated and in perfect order, so the algorithm terminates.
We will soon see that this calculation shows i∗σ2,4 = σ2,3; + σ1;2 in SG(2, 6).

Finally, we give a larger example in SG(3, 10) that illustrates the inductive struc-
ture of the game.

Example 3.41.

300}20}10}000→ 200}00}10}000→ 200]00}10}000→ 1]0000}00}000

↓ ↓

100]00}00}000 1]2200}00}000

↙ ↘ ↓

100]0]000}000 11]200}0}0000 1]1200}10}000

↙ ↘ ↓ ↓

000]0]0]00000 11]00]100}000 11]11]00}0000 1]1100}00}000

↙ ↘ ↓

11]1]0000}000 11]11]00}0000 1]1100]00}000

We will see that this calculation shows i∗σ3,5,7 = σ3,4,5; + σ2,3;3 + 2σ2,4;4 + σ1,5;3 in
H∗(SG(3, 10),Z).

Definition 3.42. A degeneration path is a sequence of admissible symplectic dia-
grams

D1 → D2 → · · · → Dr

such that Di+1 is one of the outcomes of running Algorithm 3.39 on Di for 1 ≤ i < r.

The main theorem of this paper is the following.

Theorem 3.43. Let D be an admissible symplectic diagram for SG(k, n). Let
V (D) be the symplectic restriction variety associated to D. Then, in terms of the
Schubert basis of SG(k, n), the cohomology class [V (D)] can be expressed as

[V (D)] =
∑

cλ;µσλ;µ,

where cλ;µ is the number of degeneration paths starting with D and ending with the
symplectic diagram D(σλ;µ).

Theorem ?? stated in the introduction is a corollary of Theorem 3.43.
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Definition 3.44. Let σa• be a Schubert class in G(k, n). If aj < 2j − 1 for some
1 ≤ j ≤ k, then i∗σa• = 0 and we do not associate a symplectic diagram to σa• .
Suppose that aj ≥ 2j − 1 for 1 ≤ j ≤ k. Let u be the number of i such that
ai = 2i − 1. For j such that aj 6= 2j − 1, let uj be the number of integers i < j
such that ai = 2i− 1. Let vj be the number of integers i > j such that ai = 2i− 1.
Then the diagram D(a•) associated to i∗σa• is a diagram consisting of u brackets
at positions 1, 2 · · · , u and a brace for each aj > 2j − 1 at position aj − uj + vj .
The sequence of integers consists of u integers equal to 1 followed by zeros except
for one integer equal to k − j − vj + 1 immediately following the first bracket or
brace to the right of }k−j−vj+1 (or in the first position if j + vj = 1) for each odd
aj > 2j − 1.

Example 3.45. The diagram D(σ3,5,7) in SG(3, 8) is 300}20}10}0. The dia-
gram D(σ1,3,6,7,10) in SG(5, 10) is 1]1]1]00}00}000. The diagram D(σ1,3,7,8,9,12)
in SG(6, 14) is 1]1]1]300}0}00}00000

Remark 3.46. The reader will notice that D(σa•) is the diagram obtained by
running Algorithm 3.35 on the diagram that has a brace at positions aj and whose
sequence consists of zeros except for one k−j+1 immediately to the right of }k−j+2

when aj is odd.

Lemma 3.47. If aj ≥ 2j−1 for 1 ≤ j ≤ k, then D(a•) is an admissible symplectic
diagram.

Proof. The brackets occur at positions 1, . . . , u. Let aj and aj+l be two consecutive
integers in the sequence a• satisfying ai > 2i − 1. Then the positions of the
corresponding braces are aj−uj +vj and aj+l−uj+l+vj+l. Since uj+l = uj + l−1
and vj+l = vj − l + 1, the positions of the two braces differ by the quantity β =
aj+l − aj − 2l + 2. If l = 1, β > 0. If l > 1, then aj < aj+1 = 2j + 1. Since
aj+l ≥ 2j + 2l, β is also positive. The first brace corresponds to the smallest index
j0 such that aj0 > 2j0 − 1 and occurs at position aj0 − (j0 − 1) + (u − j0 + 1) =
u + aj0 − 2j0 + 2 ≥ u + 2. The number of positive integers less than or equal
to k − j − vj + 1 to the left of }k−j−vj+1 is u (respectively, u + 1) if aj is even
(respectively, odd). Hence, the number aj−uj +vj−u(−1) = aj−2uj(−1) (where
−1 occurs if aj is odd) of integers equal to zero or greater k− j − vj + 1 to the left
of }k−j−vj+1 is even. Therefore, conditions (1)-(4) of Definition 3.12 hold.

By construction, l(i) ≤ 1 for i > 1 and l(1) = u(+1) depending on whether
the largest aj > 2j − 1 is even (or odd). In either case, one easily sees that
l(1) ≤ ρ(1, 0). The number of positive integers to the left of }k−j−vj+1 is equal to u
plus the number oj of odd al < aj such that al > 2l−1. Since 2(uj +oj) ≤ 2j ≤ aj ,
we have that 2(u+ oj) ≤ aj −uj + vj +u = aj + 2vj and condition (S2) holds. The
sequence is in order and the only integers other than k − u occurring in the initial
part of the sequence are ones, which are followed by brackets. We conclude that all
the conditions in Definition 3.24 hold.

Since any bracket is preceded by 1, condition (A1) holds. Finally, for }k−j−vj+1,

the quantity j + vj − aj−uj+vj−u(−1)
2 = j + u − aj(−1)

2 ≤ u (where −1 occurs if
aj is odd) since aj > 2j − 1. We conclude that D(a•) is an admissible symplectic
diagram. �

Corollary 3.48. Let σa• be a Schubert class in G(k, n). If aj < 2j − 1 for some
1 ≤ j ≤ k, then set i∗σa• = 0. Otherwise, let D(σa•) be the diagram associated to
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σa• . Express

i∗σa• =
∑

cλ;µσλ;µ

in terms of the Schubert basis of SG(k, n). Then cλ;µ is the number of degeneration
paths starting with D(σa•) and ending with the symplectic diagram D(σλ;µ).

Proof. In Lemma 7.20, we will prove that the intersection of SG(k, n) with a gen-
eral Schubert variety in G(k, n) with class σa• is a restriction variety of the form
V (D(σa•)). The corollary is immediate from this lemma and Theorem 3.43. �

We conclude this section by proving that Algorithm 3.39 is well-defined and
terminates. The proof of Theorem 3.43 is geometric and will be taken up in the
next two sections.

Proposition 3.49. Algorithm 3.39 replaces an admissible symplectic diagram with
one or two admissible symplectic diagrams.

Proof. If D is a saturated symplectic diagram in perfect order, then the algorithm
returns D and there is nothing further to check. We will first check that Da and Db

are (not necessarily admissible) symplectic diagrams. The diagram Db is obtained
from Da by moving a bracket to the left. Conditions (2), (3), (4) of Definition
3.12 and conditions (S1), (S2), (S3) and (S4) of Definition 3.24 are preserved under
moving a bracket to the left. Since ν 6= 1 is the leftmost integer in D equal to a
given integer, by condition (A1) for D, there cannot be a bracket at position p in
D or Da. Hence, condition (1) is satisfied for Db. We conclude that if Da is a
symplectic diagram, then Db is also a symplectic diagram. We will now check that
Da is a symplectic diagram in each case.

In case (1)(i), by condition (S3) for D, let η be the unique integer that violates
the order. Since η is violating the order, η is to the left of }η+1. Da is obtained
by swapping η and ν, the leftmost integer equal to η + 1. This operation does not
change the positions of the brackets and braces and keeps l(i) fixed for every i.
After the swap, every integer i is still to the left of }i for every i since η was to the
left of }η+1. Furthermore, the operation also preserves or decreases τi for every i.
We thus conclude that conditions (1) through (4) of Definition 3.12 and condition
(S1), (S2) and (S4) of Definition 3.24 hold for the diagram Da. After the swap, η is
part of the non-decreasing initial sequence in Da. Hence, the diagram Da is either
in order or η + 1 is the only integer violating the order. Condition (S3) holds for
Da. We conclude that Da is a symplectic diagram.

In case (1)(ii), let η be the unique integer that violates the order. Assume that
η < i ≤ k − s does not occur to the left of η. Then i does not occur anywhere
in the sequence and, in condition (S4) for D, i = j0. We claim that the i-th and
(i − 1)-st braces in D must look like · · · }iη}i−1 · · · . By conditions (S3) and (S4)
for D, η is to the right of }i and to the left of }η+1. If η is between }i+h and }i+h−1
for h 6= −1, then since ρ(i + h, i + h − 1) = l(i + h) by condition (S4), the parity
in condition (4) is violated for }i+h−1. We conclude that η is between }i and }i−1.
Furthermore, 1 ≤ ρ(i, i − 1) ≤ l(i) + 2 − ξi = 1 by condition (S4). The formation
of Da does not affect conditions (1) through (3) in Definition 3.12. Condition (4)
holds for Da since the formation of Da changes the number of integers that are
equal to zero or greater than j to the right of }j only when j = i and for }i it
changes the number by two. Since the formation of Da only increases l(i) by one
and decreases or preserves l(j) for j 6= i, Da satisfies (S1). Similarly, τi increases
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by one and all other τj remain fixed or decrease. On the other hand, ri increases
by two, hence Da satisfies condition (S2). There is one exception. If i = k − s and
every integer to the left of ]s is positive, τk−s increases by two. Then, τk−s = rk−s,
hence 2τk−s ≤ p(}k−s) + rk−s and Da satisfies (S2). The diagram Da is either
in order or η is still the only integer violating the order, hence Da satisfies (S3).
Finally, the formation of Da changes l(i) = 1 and decreases l(i+ 1) by one. Hence,
l(i) = ρ(i, i− 1) for Da. By condition (S4) for D, we have that ρ(j, j − 1) = l(j) in
Da for any j for which the equality held for D except for j = i+ 1. Furthermore,
ξi+1 = 1 in Da, so ρ(i+ 1, i) = l(i+ 1) + 1 = l(i+ 1) + 2− ξi+1 in Da. Hence (S4)
holds for Da. We conclude that Da is a symplectic diagram.

From now on assume that D is in order. Then there cannot be i ≥ κ such that i
is immediately to the right of }i+1. Suppose there exists such an i. The number χ(i)
and χ(i+ 1) of zeros and integers greater than i, respectively i+ 1, to the left of }i,
respectively }i+1, has to be even. However, χ(i) = χ(i+1)+ l(i+1)+ρ(i+1, i)−1.
Since by assumption ρ(i+ 1, i) = l(i+ 1), we conclude that either χ(i) or χ(i+ 1)
cannot be even leading to a contradiction.

In case (2)(i), changing ν to κ and the first zero to the right of }κ+1 does not
change the positions of brackets and braces, it decreases l(κ+1) by one and increases
l(κ) by two. Furthermore, the sequence Da is still in order, unless κ = k − s and
there are zeros to the left of ]s. In the latter case, the κ to the right of ]s is the
unique integer violating order. Since by assumption l(κ) < ρ(κ, κ − 1) − 1 in D,
l(κ) ≤ ρ(κ, κ − 1) in Da. The parity of the integers equal to zero or greater than
i also remains constant for all 1 ≤ i ≤ k − s. We conclude that conditions (1)
through (4) in Definition 3.12 and conditions (S1) and (S3) in Definition 3.24 hold
for Da. The quantity τi remains constant for i > κ and increases by one for i ≤ κ
unless κ = k−s, l(k−s) ≥ p(]s) and τk−s increases by two. In the latter case, τk−s
is less than or equal to both rk−s and p(}k−s) and (S2) holds. In the former case,
rκ increases by two, hence (S2) holds for the index κ. Since ρ(κ, κ− 1) < l(κ)− 1,
(S2) also holds for indices i < κ. If there exists an index i < κ in D such that
i is not a 1 followed by a bracket, then in condition (S4) for D, we have that
j0 = κ. Furthermore, ρ(κ, κ− 1) = l(κ) + 2. Hence, the formation of Da preserves
the equalities in condition (S4) except for j = κ or κ + 1. In Da, we have that
ρ(κ, κ− 1) = l(κ) and ρ(κ+ 1, κ) = l(κ+ 1) + 1 = l(κ+ 1) + 2− ξκ+1. We conclude
that condition (S4) holds for Da. Therefore, Da is a symplectic diagram.

Finally, the argument showing that Da is a symplectic diagram in case (2)(ii)(a)
is identical to the argument in case (1)(i) and the argument in case (2)(ii)(b) is
identical to the case (1)(ii), so we leave them for the reader. We conclude that
both Da and Db are symplectic diagrams. However, they need not be admissible.
We now check that Algorithms 3.35 and 3.36 preserve the fact that the resulting
sequences are symplectic diagrams and output admissible symplectic diagrams.

Da may fail to be admissible either because it fails condition (A1) or (A2) in
Definition 3.27. The formation of Da from D does not change the quantities xh,
p(}h). In cases (1)(i) and (2)(ii)(a) the quantity rh either remains the same or
decreases. Hence, in these cases Da satisfies condition (A2). In case (1)(ii), rh
remains the same or decreases except for ri, which increases by two. Hence, the
inequality in condition (A2) can only be violated for the index i by one. If it is

violated, we conclude that in D, we have xi = k−i+1− p(}i)−ri
2 . Recall that in this
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case D looks like · · · }iη}i−1 · · · . Since i does not appear in D, xi = xi−1. Writing
the inequality in (A2) for D and the index i − 1 and noting that ri−1 = ri + 1

and p(}i−1) = p(}i) + 1, we see that xi = xi−1 ≥ k − i + 2 − p(}i)−ri
2 = xi + 1.

Since D satisfies (A2), this is a contradiction. We conclude that Da satisfies (A2)
also in the case (1)(ii). By similar reasoning, in cases (2)(i) and (2)(ii)(b), Da can
violate the inequality in (A2) only for the index κ by one. After Step 1 of Algorithm
3.35, all the inequalities in condition (A2) remain unchanged or improve and }κ
is eliminated. We conclude that after Step 1, the resulting diagram satisfies (A2).
When the inequality in (A2) is violated for Da, it is violated for the index κ by at
most 1. When we form Db in cases (2)(i) and (2)(ii)(b), xκ also increases by one.
Hence, Db, when it exists, always satisfies (A2).

Observe that the operation in Step 1 of Algorithm 3.35 preserves the fact that Da

is a symplectic diagram. By construction, conditions (1)-(4) and (S1) and (S2) hold.
The diagram resulting after Step 1 is in order, hence (S3) holds. The operation
renames l(i) as l(i− 1) for i > κ+ 1 and ρ(i+ 1, i) as ρ(i, i− 1) for i > κ+ 1. The
operation does not change the quantities l(i) and ρ(i, i−1) when i < κ and replaces
l(κ) and l(κ + 1) with their sum under the name l(κ). The quantities ρ(κ, κ − 1)
and ρ(κ+ 1, κ) are replaced by ρ(κ, κ−1) +ρ(κ+ 1, κ)−1 and renamed ρ(κ, κ−1).
Hence, the equalities in condition (S4) are preserved. Since (A1) also holds for the
resulting diagram Dc, we conclude that if Da fails condition (A2), then Step 1 of
Algorithm 3.35 produces an admissible symplectic diagram.

Observe that changing a digit to the left of a bracket and moving a brace one unit
to the left, increases xi and ri by one and decreases p(}i) by one. Hence, it preserves
the inequality in condition (A2). It also preserves the conditions (1) through (4)
and (S1) through (S4), with the possible exception of (1) in case p(}i+1) = p(}i)−1.
Condition (A1) is violated for Da when there is a bracket in position p(ν) + 1 and
it is violated only for that bracket. After l applications of Step 2 of Algorithm 3.35,
Condition (A1) is still violated if there exists brackets at positions p(ν) + 1, p(ν) +
2, · · · , p(ν) + l. Since there are a finite number of brackets, this process stops and
the resulting diagram satisfies condition (A1). In this case, the only brace that
moves is }ν−1. Since l(ν) ≤ ρ(ν, ν − 1) in D, the intermediate sequences and the
resulting sequence all satisfy condition (1). If Db does not satisfy condition (A1),
then the only bracket that can violate it is the one in position p(ν). In this case,
Algorithm 3.36 successively decreases the integer to the right of the bracket in p(ν)
by one until it either becomes equal to the integer to its right or to one in case there
isn’t an integer to its right. Hence, this algorithm terminates in finitely many steps.
A diagram might violate condition (1) in the process, but in that case the diagram
is discarded. Hence, after finitely many steps either the diagram is discarded or
results in an admissible symplectic diagram. We conclude that Algorithm 3.39,
replaces D with one or two admissible symplectic diagrams. �

Proposition 3.50. After finitely many applications of Algorithm 3.39, every ad-
missible symplectic diagram is transformed to a collection of admissible symplectic
diagrams in perfect order.

Proof. If the diagram D is not in order, after one application of the algorithm either
the diagram is in order or the integer violating the order increases or the position of
the integer violating the order in the sequence decreases. Since these steps cannot
go on indefinitely, after finitely many steps, the diagram is in order. Furthermore,
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during the process either the number of braces decreases or the number of positive
integers less than or equal to i, for 1 ≤ i ≤ k − s in the initial part of the sequence
remains constant or increases. If the diagram is in order, then at each application
of the algorithm either the number of braces decreases or the number of positive
integers less than or equal to i, for 1 ≤ i ≤ k − s, in the initial part of the
sequence increases. Since these cannot go on indefinitely, we conclude that repeated
applications of the algorithm transform an admissible symplectic diagram into a
collection of admissible symplectic diagrams in perfect order. Hence, the algorithm
terminates in finitely many steps. �

4. Restriction varieties in the orthogonal Grassmannians

In this section, we introduce restriction varieties in orthogonal Grassmannians
and discuss their basic properties. Restriction varieties are subvarieties of OG(k, n)
that parameterize isotropic k-planes that intersect elements of a given flag in spec-
ified dimensions. We do not require the flag to be isotropic; however, we need to
impose some basic numerical restrictions in order to obtain geometrically meaning-
ful subvarieties.

Notation 4.1. Let W be a vector space of dimension n. Let Q be a non-degenerate,
symmetric bilinear form on W . We denote an isotropic linear space of (vector space)
dimension nj by Lnj . In case 2nj = n, Lnj and L′nj denote isotropic linear spaces

in different connected components. Let Qridi denote a sub-quadric of corank ri cut
out by a di-dimensional linear section of Q. We denote the singular locus of Qridi
by Qri,singdi

. For convenience, we let r0 = 0 and d0 = n.

Definition 4.2. A sequence of linear spaces and quadrics (L•, Q•) associated to
OG(k, n) is a totally ordered set

Ln1
( Ln2

( · · · ( Lns ( Q
rk−s
dk−s

( · · · ( Qr1d1

of isotropic linear spaces Lnj (or possibly L′ns in case 2ns = n) and sub-quadrics
Qridi of Q such that

(1) 2ns ≤ dk−s + rk−s.

(2) 2(k − i+ 1) ≤ ri + di for every 1 ≤ i ≤ k − s.
(3) ri+1 + di+1 ≤ ri + di ≤ n for every 1 ≤ i < k − s.
(4) Q

ri−1,sing
di−1

⊆ Qri,singdi
for every 1 < i ≤ k − s.

(5) dim(Lnj ∩Q
ri,sing
di

) = min(nj , ri).

(6) Let x1 denote the number of isotropic subspaces in the sequence contained
in the singular locus of Qr1d1 . For every 1 ≤ i ≤ k − s, either ri = r1 = x1,
or rl − ri ≥ l − i − 1 for every l > i. Furthermore, if rl = rl−1 > x1 for
some l, then di − di+1 = ri+1 − ri for all i ≥ l and dl−1 − dl = 1.

Remark 4.3. Conditions (1), (2) and (3) express basic facts about quadrics. Con-
ditions (1) and (2) express the “Linear space bound” that the dimension of an
isotropic linear space with respect to a quadratic form of corank r in d variables is
at most half of d+r. Since Lns ⊂ Q

rk−s
dk−s

, Condition (1) needs to be satisfied. Below,

in defining restriction varieties, we will require the isotropic k-planes to intersect
Qridi in a subspace of dimension k− i+1. Hence, Condition (2) needs to be satisfied.
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Condition (3) expresses the “Corank bound” that a hyperplane section of a quadric
of corank r can have corank at most r + 1. Conditions (4) and (5) express that
the singular loci of the quadrics Qridi are in the most special position. The singular
locus of the quadric Qridi contains the singular locus of all the larger dimensional
quadrics in the sequence. Furthermore, isotropic linear spaces in the sequence of
dimension greater (resp., less) than ri contain (resp., are contained in) the singu-
lar locus of Qridi . Finally, Condition (6) is a technical condition: If a quadric Qridi
is more singular than the linear spaces in the sequence force it to be, then each
quadric contained in Qridi is more singular than the one larger quadric containing

it except in a very special case detailed in Condition (6). These conditions will
automatically hold for all the varieties in our algorithm, hence the reader does not
need to remember these conditions to implement the algorithm.

We will use sequences of brackets and braces introduced in the previous section
for representing the geometric sequences.

Definition 4.4. Let (L•, Q•) be a sequence for OG(k, n). The sequence of brackets
and braces associated to (L•, Q•) is a sequence of non-negative integers of length
n, s right brackets and k − s right braces such that

(1) The sequence consists of ri − ri−1 integers equal to i for 1 ≤ i ≤ k − s
placed in increasing order followed by a sequence of n− rk−s zeros.

(2) The right square brackets are placed after the nj-th integer in the sequence
for 1 ≤ j ≤ s and the right braces are placed after the di-th integer in the
sequence for 1 ≤ i ≤ k − s.

In case 2ns = n, we distinguish between Lns and L′ns by writing ] and ]′, respec-
tively, for the right bracket after the ns-th digit.

Example 4.5. The sequence of brackets and braces 1]22]000}00}0 represents the
sequence L1 ⊂ L3 ⊂ Q3

6 ⊂ Q1
8. To determine the (vector space) dimension di of

the span of the quadric Qridi , we count the number of digits to the left of the i-th
brace. For example, there are 8 digits to the left of the right most brace, so d1 = 8.
There are six digits to the right of the second brace, so d2 = 6. To determine ri, we
count the number of positive digits less than or equal to i. In this example, there
are 3 positive digits less than or equal to 2, so r2 = 3. There is a unique one, so
r1 = 1. Finally, to determine nj , we count the number of digits to the left of the
j-th square bracket. In this example, n1 = 1, n2 = 3. The reader will notice that
the Zariski closure of the subvariety of OG(4, 9) parameterizing isotropic subspaces
Λ that satisfy

dim(Λ ∩ L1) = 1,dim(Λ ∩ L3) = 2,dim(Λ ∩Q3
6) = 3,dim(Λ ∩Q1

8) = 4

is the Schubert variety Ω3,1
4,2. Note that the sequence µ in our notation for Schubert

varieties denotes the codimensions (equivalently, coranks) of the quadrics defining
the variety, so it is very easy to read from the diagram.

The sequence of brackets and braces associated to (L•, Q•) is a sequence of
brackets and braces in the sense of the previous section. Since n1 < · · · < ns <
dk−s < · · · < d1, the brackets and braces occupy different positions. Since the
quadrics contain the linear spaces, the brackets are to the left of all the braces.
The positive integers are increasing and less than or equal to the number of braces
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and they are all to the left of the zeros by construction. The position of a bracket
p(]j) is equal the dimension nj of the linear space Lnj . The position of a brace p(}i)
is equal to the dimension of the span di of the quadric Qridi . The dimension ri of the

singular locus of Qridi is the number of positive integers l(≤ i) less than or equal to

i. Finally, l(i) is ri− ri−1 and ρ(i, i−1) = di−1−di. Hence, these sequences satisfy
conditions (D1) (which is equivalent to Condition (3)), (D2) (which is equivalent
to condition (2)) and (D3) (which is equivalent to Condition (6)).

Definition 4.6. Given a sequence (L•, Q•), let xi denote the number of isotropic

linear spaces Lnj of the sequence contained in Qri,singdi
. Similarly, let yj be the

integer such that ryj−1 < nj ≤ ryj . If ri < nj for every 1 ≤ i ≤ k − s, set
yj = k − s+ 1.

Remark 4.7. We will require the (k − i + 1)-dimensional subspace contained in

Qridi to intersect Qri,singdi
in a subspace of dimension xi. The index yj is the smallest

index i such that Lnj is contained in the singular locus of Qridi . By conditions (4)

and (5), every quadric of index at least yj will be everywhere singular along Lnj .

We need some further assumptions on the sequence (L•, Q•) before it reflects
the properties of the corresponding variety.

Example 4.8. Consider the sequence L3 ⊂ Q1
5 ⊂ Q1

6 depicted by

100]00}0}0.
By ‘the linear space bound’, any isotropic 3-plane in OG(3, 7) which is contained
in Q1

6 necessarily must contain the singular point of Q1
6. (Geometrically, any plane

in a five dimensional quadric cone contains the vertex.) Hence the sequence L1 ⊂
Q1

5 ⊂ Q1
6

1]0000}0}0
better reflects the geometric properties of isotropic 3-planes contained in Q1

6. Sim-
ilarly, consider the sequence Q2

4 ⊂ Q0
6 depicted by

2200}00}0.
The quadric Q2

4 is reducible. (Geometrically, a quadric surface which is singular
along a line is the union of two planes.) Hence, two sequences of the form L3 ⊂ Q0

6

000]000}0
better reflect the geometry of the corresponding variety.

These examples motivate the following definition.

Definition 4.9. A sequence (L•, Q•) associated to OG(k, n) is admissible if the
linear spaces and quadrics satisfy the following additional conditions:

(7) rk−s ≤ dk−s − 3.

(8) For every 1 ≤ i ≤ k − s,

xi ≥ k − i+ 1− di − ri
2

.

(9) For any 1 ≤ j ≤ s, there does not exist 1 ≤ i ≤ k− s such that nj − ri = 1.
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Remark 4.10. If Condition (7) is violated, then Q
rk−s
dk−s

would either be reducible

or non-reduced. Condition (8) expresses the fact that in a quadric Qridi , a linear
space of dimension k − i + 1 has to intersect the singular locus in dimension at
least k − i + 1 − di−ri

2 (see Remark 4.7). Condition (9) expresses the fact that if
nj − ri = 1 for some pair, then the tangent spaces to Qridi would be constant along

Lnj . Hence the (k − i + 1)-dimensional subspace contained in Qridi would actually

be contained in Qri+1
di−1 with singular locus Lnj . The reader should remember these

three conditions in order to implement the algorithm.

Lemma 4.11. The sequence of brackets and braces associated to an admissible
sequence is a quadric diagram. Conversely, every quadric diagram corresponds to
an admissible sequence (L•, Q•).

Proof. We already saw that the sequence associated to (L•, Q•) is a sequence of
brackets and braces that satisfies the conditions (D1), (D2) and (D3). Conditions
(7), (8) and (9) translate to the conditions (D4), (D5) and (D6). If rk−s ≤ dk−s−3,
then there are at least three zeros to the left of }k−s since the total number of
positive integers in the sequence (rk−s) is three less than the position of }k−s.
Using the facts that di = p(}i) and ri = l(≤ i), Conditions (8) and (D5) are direct
translations of each other. Finally, if the two digits preceding a bracket ]j are a < b,
then nj − ra = 1 contradicting Condition (9). If a bracket is at the first position,
then n1 = 1. If r1 = 0, then n1 − r1 = 1 contradicting Condition (9). Hence,
the digit preceding ]1 must be 1. We conclude that conditions (D6) and (9) are
equivalent. Finally, observe that Condition (8) implies Condition (2). We have
included Condition (2) to simplify certain statements in the proof of the algorithm.
We conclude that the data defining quadric diagrams and admissible sequences are
equivalent. �

Definition 4.12. Let (L•, Q•) be an admissible sequence for OG(k, n). A restric-
tion variety V (L•, Q•) is the subvariety of OG(k, n) defined as the Zariski closure
of the following quasi-projective variety

V (L•, Q•)
0 := { [W ] ∈ OG(k, n) | dim(W∩Lnj ) = j,dim(W∩Qridi) = k−i+1,dim(W∩Qri,singdi

) = xi }.

Example 4.13. Schubert varieties in OG(k, n) are restriction varieties defined with
respect to sequences satisfying di + ri = n for all 1 ≤ i ≤ k − s (see Lemma 4.18).
The intersection of a general Schubert variety in G(k, n) with OG(k, n) (when non-
empty) is a restriction variety associated to a sequence where s = 0 and ri = 0
for 1 ≤ i ≤ k (see Proposition 6.2 for the precise statement). Hence, restriction
varieties are a class of varieties that interpolate between the restriction of Schubert
varieties in G(k, n) and Schubert varieties in OG(k, n).

Remark 4.14. A restriction variety does not have to be irreducible. For example,

000}0}0

in OG(2, 5) consists of two irreducible components. (Geometrically, the correspond-
ing restriction variety parametrizes lines on a smooth quadric surface in P3.) When
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the inequality in Condition (8) is an equality for an index i, then the (di + ri)/2-
dimensional linear spaces in Qridi form two irreducible components. The (k− i+ 1)-
dimensional subspaces contained in Qridi may be distinguished by their parity of the
dimension of their intersection with linear spaces in each of these components.

Definition 4.15. Let (L•, Q•) be an admissible sequence. An index 1 ≤ i ≤ k− s
such that

xi = k − i+ 1− di − ri
2

is called a special index. For each special index, a marking m• of (L•, Q•) designates
one of the irreducible components of di+ri2 -dimensional linear spaces of Qridi as even
and the other one as odd, such that

• If di1 + ri1 = di2 + ri2 , for two special indices i1 < i2, and the component
containing a linear space V is designated even for i2, then the component
containing V is designated even for i1 as well; and
• If 2ns = di + ri for a special index i, then the component to which Lns

belongs is assigned the parity of s; and
• If n = 2k, m• assigns the component containing Lk the parity that charac-

terizes the component OG(k, 2k).

A marked restriction variety V (L•, Q•,m•) is the Zariski closure of the subvariety
of V (L•, Q•)

0 parameterizing k-dimensional isotropic subspaces W , where, for each
special index i, W intersects subspaces of dimension di+ri

2 of Qridi designated even

(respectively, odd) by m• in a subspace of even (respectively, odd) dimension.

Proposition 4.16. The marked restriction variety V (L•, Q•,m•) associated to a
marked admissible sequence is an irreducible variety of dimension

dim(V (L•, Q•,m•)) =

s∑
j=1

(nj − j) +

k−s∑
i=1

(di + xi − 2s− 2i) (1)

Proof. We prove this proposition by induction on k. Suppose k = 1. If s = 1, then
clearly the variety is isomorphic to projective space of dimension n1 − 1 and the
proposition holds. If s = 0, then the variety is isomorphic to a quadric hypersurface
in Pd1−1 singular along a linear space of codimension at least three (by Condition
(7) in Definition 4.9). Since such a quadric is irreducible of dimension d1 − 2, the
base case of the induction follows.

Now suppose that the proposition holds up to k − 1. If k − s = 0, then the
proposition is immediate. In that case, the isotropic subspaces are contained in the
Grassmannian G(k, nk) and the restriction variety is an ordinary Schubert variety
(Σnk−n1−k+1,...,nk−nk−1−1) in G(k, nk). The irreducibility and the dimension follow
from these considerations. We may assume that k − s > 0. Let (L•, Q

′
•) be the

sequence for OG(k−1, n) obtained from (L•, Q•) by omitting Qr1d1 from the sequence

(and subtracting one from the indices of the quadrics). Observe that (L•, Q
′
•) is also

an admissible sequence: Conditions (1)-(9) remain valid when we omit the largest
quadric. Letm′• be the restriction of the markingm• to this new sequence, wherem′

designates the same components of linear spaces as even if ri+di < r1+d1 and swaps
the designation for linear spaces with ri + di = r1 + d1. Let V (L•, Q•,m•)

0 denote
the intersection of V (L•, Q•,m•) with V (L•, Q•)

0, the Zariski open set used to
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define V (L•, Q•). We then have a morphism f : V (L•, Q•,m•)
0 → V (L•, Q

′
•,m

′
•)

0

by taking the intersection of the linear spaces of dimension k in V (L•, Q•,m•)
0 with

Qr2d2 . By induction, we can assume that the the image is an irreducible variety of
dimension predicted by the proposition. We now study the fibers of this morphism.
Fix a point [W ] in the image. By assumption, the dimension of intersection of
W with the singular locus of Qr1d1 is x1. Then any k-dimensional linear space

containing W has to be contained in the quadric Q′ cut out on Q1 by the linear
space everywhere tangent to W . This is a quadric of corank r1 + k − 1 − x1 in a
linear space of dimension d1− (k−1−x1). We have to choose a k-plane containing
W . We can choose a linear section Q′′ of Q′ complementary to W . Choosing a
k-plane is equivalent is to choosing a point on Q′′. Hence, the dimension of the
fiber is d1 − k + 1 + x1 − 2− k + 1. Furthermore, by Condition (8)

x1 ≥ k −
d1 − r1

2
.

If the inequality is strict, it follows that

r1 + k − 1− x1 < (d1 − k + 1 + x1)− 2,

hence Q′′ and consequently the fiber is irreducible. If equality holds, then Q′′ is
a union of two linear spaces. The marking m• selects one of these components by
specifying the parity of the dimension of intersection with the k-dimensional linear
space. Hence, the fiber is irreducible. This concludes the proof. �

Remark 4.17. Since Equation 1 does not depend on the marking m•, every irre-
ducible component of the restriction variety V (L•, Q•) has dimension

s∑
j=1

(nj − j) +

k−s∑
i=1

(di + xi − 2s− 2i).

Observe that V (L•, Q•) has an irreducible component for every marking m•. The
markings m• parameterize the irreducible components of V (L•, Q•). Correspond-
ingly, given a sequenceD of brackets and braces, we define dim(D) by the expression

s∑
j=1

(p(]j)− j) +

k−s∑
i=1

(p(}i) + xi − 2s− 2i).

Lemma 4.18. Schubert varieties in OG(k, n) are the restriction varieties where the
admissible sequence defining the restriction variety satisfies ri + di = n for every
1 ≤ i ≤ k − s. When n = 2k, we also require that the k-dimensional linear spaces
to intersect the k-dimensional linear space Lk in the sequence in a subspace of the
correct parity.

Proof. Set α = b(n − 1)/2c. Let the sequence λ be defined by setting λj = α +
1 − nj . Let the sequence µ be given by setting µk−i+1 = ri. We claim that the
restriction variety V (L•, Q•) is the Schubert variety Ωµλ. Since the sequence satisfies
Conditions (4) and (5), it suffices to show that there does not exist nj and ri such
that nj − ri = 1 for any i and j. This is guaranteed by Condition (9) defining
admissible sequences. When 2k = n, we require that the length of λ have the same
parity as k (alternatively, we could interpret a restriction variety with the wrong
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parity as a Schubert variety for the other connected component of OG(k, 2k)). Note
that under the assumptions of the lemma, the restriction variety is automatically
irreducible. Suppose equality holds in Condition (8) for some i0. Then n is even.
Condition (9) and the assumption on the sequence imply that equality holds for
every i ≥ i0. In particular, equality must hold for the index k − s. Combining
Conditions (9) and equality in Condition (8), we have

ns ≥ rk−s + 1 + s−
(
s+ 1− dk−s − rk−s

2

)
=
dk−s + rk−s

2
=
n

2
.

Using Condition (1), we deduce that ns = n/2. Hence, the marking is uniquely
determined by the sequence. �

5. The Algorithm for computing the classes of restriction varieties
in Grassmannians

5.1. The strategy and examples. The strategy to calculate the class of a re-
striction variety V (L•, Q•) is to specialize it into a union of Schubert varieties by
successively making the quadrics in the sequence more singular. By the corank
bound (Condition (3)), if ri + di = ri−1 + di−1, then Qridi is as singular as it can be

given that it is contained in Q
ri−1

di−1
, so its corank cannot be increased. If ri +di = n

for all 1 ≤ i ≤ k − s, then V (L•, Q•) is a Schubert variety and there is nothing
further to do. Otherwise, there is a smallest dimensional quadric whose corank can
be increased. We increase the corank of this quadric (fixing all the other linear
spaces and quadrics) by one by specializing the quadric in a pencil. As a result of
this specialization, the restriction variety breaks into a union of restriction varieties
each with multiplicity one. In the rest of this section, we will describe the com-
ponents and show that they occur with multiplicity one. We first discuss several
fundamental examples that illustrate the possibilities.

Example 5.1. We first compute the class of V (Q0
4) depicted by

0000}0

in OG(1, 5). Projectively, V (Q0
4) parametrizes points on a smooth quadric hyper-

surface Q in P4 that are contained in a smooth hyperplane section Q0
4. We specialize

the hyperplane section until it becomes tangent to Q. This specialization replaces
Q0

4 with Q1
4 (singular at the point of tangency). In the process, the restriction

variety is transformed to

1000}0.
This is the quadric diagram Da described in §3. Observe that if the linear spaces
had to intersect the singular locus, then they would just be the singular point of
Q1

4. The singular point has smaller dimension than the quadric Q1
4. That’s why in

these cases the quadric diagrams derived from Db do not occur. The cohomology
class of a smooth hyperplane section is the same as that of a singular hyperplane
section, hence V (Q0

4) and V (Q1
4) have the same cohomology class. Since V (Q1

4) is
a Schubert variety with class σ1 in OG(1, 5), this concludes the calculation.

During this process, a quadric may become reducible. As a slight variation, we
compute the class of V (Q0

3) depicted by

000}0
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in OG(1, 4). Projectively, V (Q0
3) parametrizes points contained in a smooth conic

in a smooth quadric surface Q in P3. We specialize the plane of the conic until
it becomes tangent to Q, replacing Q0

3 with Q1
3. Note that Q1

3 violates Condition
(7) (its corank is two less than its ambient dimension). Geometrically, a singular
conic is a union of two lines which belong to two different rulings on the quadric
surface Q. The sequence of brackets and braces 100}0 fails condition (D4). We
replace it by the two quadric diagrams 00]00 and 00]′00 according to §3. Hence,
the restriction variety corresponding to the diagram 000}0 is replaced by the two
restriction varieties corresdponding to

00]00 and 00]′00.

Geometrically, the class of a conic is the sum of the classes of two lines on the
quadric one in each ruling. This concludes the calculation since the latter two
varieties are Schubert varieties with classes σ0 and σ2, respectively. Hence, the
class of V (Q0

3) in OG(1, 4) is σ0 + σ2. This example shows that in the algorithm,
we have to replace a quadric by two linear spaces if the specialization forces the
quadric to become reducible (or, equivalently, violate Condition (7)).

Example 5.2. Next we calculate the class of the restriction variety V (L2 ⊂ Q0
4)

in OG(2, 5) depicted by
00]00}0.

Geometrically, this example corresponds to calculating the class of the inclusion
of OG(2, 4) in OG(2, 5). More concretely, we calculate the class of the space of
lines contained in the smooth quadric surface Q0

4 and intersect the line L2 (in a
point). Note that Q0

4 is a smooth hyperplane section of the ambient quadric Q
in P4. We specialize it until it becomes tangent to Q at a point on L2. This
replaces Q0

4 with Q1
4, the quadric cone singular at the point of tangency. This

is depicted by Da = 10]00}0, which violates condition (D5). By the linear space
bound (Condition (8)), lines contained in a quadric cone in P3 all pass through
the vertex of the cone. Hence, the degeneration replaces V (L2 ⊂ Q0

4) with the
restriction variety V (L1 ⊂ Q1

4)
1]000}0.

This is the quadric diagram Db defined in §3. This restriction variety is the Schubert
variety with class σ1

2 . Note that in this case, this is the diagram derived from Db and
Da does not lead to any diagrams since it violates condition (D5). Geometrically,
this corresponds to the fact that the lines are required to pass through the singular
point.

Example 5.3. Finally, consider the variety V (L2 ⊂ Q0
6) in OG(2, 7).

00]0000}0→ 1]00000}0
↓
11]000}00

Geometrically, this variety parametrizes lines on a smooth quadric Q in P6 that
intersect a line L2 and are contained in a smooth hyperplane section Q0

6 of Q. As
before, we specialize the linear space defining Q0

6 to be tangent to Q along a point
of the line L2, replacing Q0

6 with Q1
6. In the limit, there are two possibilities. In

the first case, the lines may all pass through the singular point of Q1
6. This case
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(V (L1 ⊂ Q1
6)) is depicted by the quadric diagram Db = 1]00000}0. In the second,

case the lines intersect L2 in a point other than the vertex. This is denoted by
the sequence of brackets and braces Da = 10]0000}0. Note that this sequence fails
condition (D6). By “the variation of tangent spaces”, the tangent spaces to Q1

6 are
constant along the line L2. Therefore, the lines in Q1

6 that intersect L2 in a point
other than the singular point have to be contained in the quadric Q2

5 given by the
intersection of Q with the linear space everywhere tangent to Q along L2. This
possibility (V (L2 ⊂ Q2

5)) is depicted by 11]000}00, which is the quadric diagram
derived from Da as in §3. Both of these varieties are Schubert varieties and occur
with multiplicity one in the limit. Hence, the class of V (L2 ⊂ Q0

6) is σ1
3 + σ2

2 .

Example 5.3 shows the basic branching. When we increase the corank of the
quadric, the linear spaces intersect the new singular locus either in a larger dimen-
sional vector space (unless this possibility leads to a smaller dimensional variety as
in Example 5.1) or in the same dimensional vector space (unless this possibility is
excluded by the linear space bound (Condition (8)) as in Example 5.2). Additional
branching occurs when one of the quadrics become reducible (as in Example 5.1).
The general rule is obtained by repeating these three fundamental examples. In
fact, these examples capture all the geometric complexity of restriction varieties in
orthogonal Grassmannians. Next we give a complicated example that illustrates
the inductive structure of the Algorithm.

Example 5.4. Consider the restriction variety V = V (Q0
4 ⊂ Q0

6 ⊂ Q0
8) in OG(3, 9).

Concretely, V is the intersection ofOG(3, 9) with a general Schubert variety Σ3,2,1(F•)
in G(3, 9). We calculate the class of V in terms of Schubert classes in OG(3, 9) as
follows.

0000}00}00}0→ 3000}00}00}0 ×2→ 000]000}00}0→200]000}00}0 ×2→ 000]0]0000}0→ 100]0]0000}0
↓

22]0000}00}0→ 1]20000}00}0→ 1]22000}00}0
↓

11]0000}0}00→ 11]2000}0}00

We explain the salient features of this example. In the first two steps, we increase
the corank of the smallest dimensional quadric Q0

4 by one. After the second step,
we obtain Q2

4, which is a reducible quadric equal to the union of two linear spaces of
dimension three. (in terms of the combinatorics of quadric diagrams 3300}00}00}0
violates condition (D4), so has to be replaced by two copies of 000]000}00}0.)
Correspondingly, the restriction varieties breaks into two irreducible components
both isomorphic to the restriction variety V (L3 ⊂ Q0

6 ⊂ Q0
8). The symbol ×2

above the right arrow indicates that there are two components of the limit with the
same class (though they are distinct varieties, each occurring with multiplicity one).
In the next two steps, we increase the corank of the quadric Q0

6 by one. After the
second step, either the linear spaces intersect the singular locus of Q2

6 and we get the
restriction variety indicated by the down arrow or the linear spaces do not intersect
the singular locus of Q2

6. In the latter case, the tangent spaces to Q2
6 are constant

along L3. Hence, these linear spaces must intersect the quadric Q3
5 everywhere

tangent along the three dimensional linear space in a two-dimensional subspace.
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Note that the latter quadric Q3
5 is reducible, the union of two linear spaces. Hence,

in this case there are two components which are indicated after the right arrow.
(In terms of the combinatorics of quadric diagrams we have Da = 220]000}00}0
and Db = 22]0000}00}0. Db is a quadric diagram, but Da fails condition (D6),
so we replace it with Dc = 222]00}000}0, which fails condition (D4). We have to
replace Dc by two copies of 000]0]0000}0). The rest of the calculation is similar to
the previous examples. We conclude that the class of the variety is equal to

4σ1
2,1 + 2σ3,1

4 + 2σ3,2
3 .

5.2. The algorithm. We now give the algorithm for computing the class of the
variety V (L•, Q•) in terms of Schubert classes in OG(k, n). First, we begin with a
slogan that can help guide the reader through the combinatorics.

The Rule in Slogan Form: Increase the dimension of the singular locus of the
smallest dimensional quadric allowed by the corank bound (Condition (3)) by one.
The linear spaces intersect the new singular locus either in a subspace of the same
dimension as before or in one larger dimension, unless one of these possibilities
leads to a smaller dimensional variety or is precluded by the linear space bound
(Condition (8)).

This section and §3 make this slogan precise.

Definition 5.5. Let (L•, Q•) be an admissible sequence. We say that the quadric
Qridi is saturated if ri = n−di. V (L•, Q•) is saturated if every quadric Qridi , 1 ≤ i ≤
k − s, in its definition is saturated. If the admissible sequence contains a quadric
which is not saturated, define the active index κ to be the largest index i for which
ri − ri−1 < di−1 − di (where, by convention, we set r0 = 0 and d0 = n).

Remark 5.6. By Lemma 4.18, a saturated restriction variety is a Schubert variety.
If a quadric Qridi in the definition of a restriction variety is not saturated, then Q

rj
dj

is not saturated for any j ≥ i. In particular, the smallest dimensional quadric
Q
rk−s
dk−s

is not saturated. The quadric Qrκdκ is the smallest dimensional quadric in

the sequence (L•, Q•) which is not maximally singular given the larger quadrics
containing it.

We will compute the class of V (L•, Q•) by successively increasing rκ by one,
where κ is the active index. This corresponds to a specialization of the flag defining
the restriction variety. In the process, V (L•, Q•) will specialize into a union of
restriction varieties. Applying the degeneration to each of the resulting varieties, we
will be able to decompose any restriction variety into a union of Schubert varieties.

Degeneration 5.7. Let Sing(Q) denote the singular locus of a quadric Q. To
avoid multiple indices set L = Lnxκ+1

. Let p ∈ L ∩ Sing(Q
rκ+1

dκ+1
). Suppose that

p 6∈ Sing(Qrκdκ). Recall that L is the smallest dimensional isotropic linear space

in (L•, Q•) that is not entirely contained in Sing(Qrκdκ). It is understood that if

κ = k−s, the condition that p ∈ Sing(Q
rκ+1

dκ+1
) is vacuous. Similarly, if xκ = s, then

p ∈ Qrκdκ ∩ Sing(Q
rκ+1

dκ+1
), but p 6∈ Sing(Qrκdκ).

Let S = Span(Qrκdκ) and let U = Sing(Qrκdκ). Let T = TpQ
rκ−1

dκ−1
be the tangent

space to Q
rκ−1

dκ−1
at p. By Condition (5), Q

rκ−1

dκ−1
is smooth at p so the tangent
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hyperplane exists. Moreover, since p is not a singular point of Qrκdκ , T cannot
contain Qrκdκ . We conclude that T ∩ S := M is a codimension one linear space.

On the other hand, since Q
rκ+1

dκ+1
is singular at p, M automatically contains Q

rκ+1

dκ+1
.

Let N = Span(M,U). Note that N has dimension dκ. Consider the pencil of
linear spaces determined by N and S. Since N and S have M in common, they
span a linear space of dimension dκ + 1. In this linear space and in appropriate
coordinates, this pencil can be expressed as tx + (1 − t)y, where y = 0 defines

N and x = 0 defines S. This pencil of linear spaces cut out a pencil Q
rκ(t)
dκ

(t) of
sub-quadrics on Q. When t = 1, this is the original quadric Qrκdκ . When t = 0,

it is a quadric of corank rκ + 1. Note that all of these quadrics contain Q
rκ+1

dκ+1

and are contained in Q
rκ−1

dκ−1
. Consequently, there exists a one-parameter family of

sequences (L•(t), Q•(t)), where only the quadric Q
rκ(t)
dκ

(t) varies in the pencil just
constructed. At a general t, the sequence is projectively equivalent to the original
sequence. At the special point t = 0, the sequence (L•(0), Q•(0)) is equivalent
to a sequence where rκ has been replaced by rκ + 1. Correspondingly, there is a
one-parameter family of restriction varieties V (t) defined with respect to the flags
(L•(t), Q•(t)). As long as t 6= 0, these varieties are isomorphic. Hence, they form a
flat family. By the properness of the Hilbert scheme, there exists a flat limit V (0).
Our algorithm is obtained by describing V (0).

Notation 5.8. For the rest of the paper, we will always use Degeneration 5.7.
Given an admissible sequence (L•, Q•), (L•(t), Q•(t)) will denote the position of
the flag at time t under this degeneration. To simplify notation, we will use (La•, Q

a
•)

to denote the special position of the flag at t = 0. The dimension of the linear spaces
and the dimension and corank of the quadrics in (La•, Q

a
•) will be denoted by n′j , d

′
i

and r′i, respectively. Note that except for r′κ, these invariants equal to those of
(L•, Q•) and r′κ = rκ + 1.

Observe that the sequence of brackets and braces associated to (La•, Q
a
•) is Da

defined in §3. The degeneration increases rκ by one. This is represented by changing
the integer in the (rκ+1)-st place in the quadric diagram corresponding to (L•, Q•)
to κ.

The reader should note that the sequence (La•, Q
a
•) does not have to be ad-

missible. The algorithm will consist of decomposing (La•, Q
a
•) into a collection of

admissible sequences (Lj•, Q
j
•). The flat limit will be supported along the union of

the restriction varieties corresponding to these sequences. We replace V (L•, Q•) by

a collection of restriction varieties V (Lj•, Q
j
•) each occurring with multiplicity one.

Hence, the cohomology class of V (L•, Q•) is the sum of the cohomology classes

of V (Lj•, Q
j
•). The varieties V (Lj•, Q

j
•) will be “closer” to Schubert varieties. By

“closer” we mean that the admissible sequence (Lj•, Q
j
•) will have either sj = s+ 1

(one more linear space and one fewer quadric); or rji ≥ ri with strict inequality for
at least one i (one of the quadrics will have a higher dimensional singularity). If we
keep applying the algorithm to each of the varieties that are output, the varieties
will eventually become saturated. Hence, we will express the class of V (L•, Q•) as
a sum of Schubert cycles.

A reminder about our notation: Recall that κ denotes the active index of (L•, Q•).
xi denotes the number of isotropic subspaces of the sequence contained in the
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singular locus of Qridi . In particular, if xi < s, then Lnxi+1
denotes the small-

est dimensional isotropic space in the sequence strictly containing Qri,singdi
(in the

quadric diagram notation, Lnxi+1 is depicted by the left most bracket such that

one of the digits to its left is zero or greater than i). yj denotes the index of the
largest dimensional quadric containing Lnj in its singular locus or yj = k− s+ 1 if
there are none (in terms of quadric diagrams, yj is the positive digit to the imme-
diate left of the j-th bracket or yj = k − s+ 1 if this digit is zero.) The condition

nxκ+1 − rκ − 1 = yxκ+1 − κ means that the codimension of Qrκ,singdκ
in Lnxκ+1

is
one more than the number of quadrics in the sequence that contain Qrκdκ but do not
contain Lnxκ+1 in their singular locus.

Algorithm 5.9. We now give the algorithm that describes the maximal dimen-
sional components of the flat limit of Degeneration 5.7.

Step 1. If V (L•, Q•) is saturated (i.e., a Schubert variety), output V (L•, Q•) and
stop. The algorithm terminates. Otherwise,

• Let (La•, Q
a
•) be the sequence obtained by replacing Qrκdκ in (L•, Q•) with

Qrκ+1
dκ

= Q
r′κ
d′κ

.

• If xκ < s, then let (Lb•, Q
b
•) be the sequence obtained by replacing Lnx′κ+1

in (La•, Q
a
•) with Lr′κ (the singular locus of Q

r′κ
d′κ

).

and proceed to Step 2.
Step 2. Depending on the case, replace V (L•, Q•) by the following union of re-
striction varieties and stop.
• If xκ = s or if nxκ+1 − rκ − 1 > yxκ+1 − κ in the sequence (L•, Q•), replace
V (L•, Q•) with the restriction varieties obtained by running Algorithm 5.10 on
(La•, Q

a
•).

• If (La•, Q
a
•) violates Condition (8) (i.e., x′κ < k − κ + 1 − d′κ−r

′
κ

2 ), then replace
V (L•, Q•) with the restriction varieties obtained by running Algorithm 5.10 on
(Lb•, Q

b
•).

• If xκ < s, nxκ+1 − rκ − 1 = yxκ+1 − κ in the sequence (L•, Q•) and Condition

(8) is satisfied for (La•, Q
a
•) (i.e., x′κ ≥ k − κ + 1 − d′κ−r

′
κ

2 ), then replace V (L•, Q•)
with the restriction varieties obtained by running Algorithm 5.10 on both sequences
(La•, Q

a
•) and (Lb•, Q

b
•).

Algorithm 5.10 (Normalizing the sequence). Given a sequence (Lα• , Q
α
• ) equal

to (La•, Q
a
•) or (Lb•, Q

b
•) defined in Algorithm 5.9, run the following loop on the se-

quence. We will call the process of replacing the sequence (L•, Q•) by the sequences
produced by this algorithm normalizing the sequence.

i. If the sequence (Lα• , Q
α
• ) is admissible, output the sequence (Lα• , Q

α
• ) and

stop. Otherwise, proceed to [ii].

ii. If rk−s + 2 ≥ dk−s (i.e., Condition (7) is violated) in (Lα• , Q
α
• ), replace

(Lα• , Q
α
• ) by two sequences (Li•, Q

i
•) for i = 1, 2, where (Li•, Q

i
•) is the

sequence obtained from (Lα• , Q
α
• ) by replacing Q

rk−s
dk−s

with Ldk−s−1 unless

2(dk−s − 1) = n. If 2(dk−s − 1) = n, then in one of the sequences replace
Q
rk−s
dk−s

with Ldk−s−1 and in the other with L′dk−s−1. If in addition 2k = n,

discard the sequence that parameterizes linear spaces that has the wrong
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parity for the dimension of intersection with Lk. For each of the sequences
(Li•, Q

i
•), return to Step [i] and run the loop again setting (Lα• , Q

α
• ) =

(Li•, Q
i
•). If rk−s + 2 < dk−s (i.e., Condition (7) holds), proceed to [iii].

iii. If Condition (9) is violated for (Lα• , Q
α
• ), while Condition (9) is violated,

let µ be the largest index for which it is violated. Form a new sequence

(Lβ• , Q
β
• ) by replacing Q

rµ
dµ

in (Lα• , Q
α
• ) with Q

rµ+1
dµ−1. Discard the sequence

(Lβ• , Q
β
• ) if dµ+1 = dµ−1 in (Lα• , Q

α
• ). If there are no remaining sequences,

the algorithm terminates and does not our put any sequences. If (Lβ• , Q
β
• )

satisfies Condition (9), proceed to Step [i] and run the loop again setting

(Lα• , Q
α
• ) = (Lβ• , Q

β
• ).

We already observed that the sequence (La•, Q
a
•) is represented by the sequence

of brackets and braces Da defined in §3. Next observe that (Lb•, Q
b
•) is represented

by Db defined in §3. (Lb•, Q
b
•) is obtained from (La•, Q

a
•) by replacing the smallest

dimensional linear space containing the singular locus of Q
r′κ
dκ

with the singular locus

of Q
r′κ
dκ

. This corresponds to shifting the left most bracket whose position is greater

than lDa(≤ κ) to the position lDa(≤ κ).

The problem, as observed in §3, is that Da and Db need not be quadric diagrams.
Equivalently, (La•, Q

a
•) and (Lb•, Q

b
•) may fail to be admissible. Algorithm 5.10

replaces them by admissible sequences. The sequence (La•, Q
a
•) may fail to satisfy

Conditions (7), (8), or (9). If it fails to satisfy Condition (8), this sequence does
not lead to a variety supported on the flat limit. If it fails to satisfy Condition
(7), then Algorithm 5.10 in Step (ii) replaces the sequence by two sequences. The

geometric meaning of this step is that the quadric Q
r′κ
dκ

is reducible consisting of a
union of two linear spaces. When n is even and the linear spaces have dimension
n/2, they belong to two different connected components. These are distinguished
in the algorithm.

When (La•, Q
a
•) fails to satisfy Condition (9) such as in the sequence represented

by 10]0]0]00000}0, the loop in Step iii of Algorithm 5.10 increases the dimension of
the singular locus of the quadric failing Condition (9) by one and decreases its di-
mension by one until Condition (9) is satisfied. In this case, the loop would produce
the sequences represented by 11]0]0]0000}00, 11]1]0]000}000 and 11]1]1]00}0000,
which satisfies Condition (9). Note however that Condition (7) may now fail to be
satisfied, hence needs to be checked again. In Algorithm 5.10, it would have made
more sense to swap Steps ii and iii. We write it this way for consistency with the
case of flag varieties.

The sequence (Lb•, Q
b
•) may also fail to satisfy Condition (9). For example, the

sequence represented by 3]0000}00}0} fails Condition (9). The loop in Step iii
of Algorithm 5.10 increases the dimension of the singular loci and decreases the
dimension of the quadrics containing the quadric failing Condition (9) successively.
In this case, the loop would produce the sequences represented by 2]0000}0}00}
and 1]0000}0}0}0, successively.

The geometric meaning of Step iii in Algorithm 5.10 is as follows. When ri =
nj − 1, by “the variation of tangent spaces”, the tangent space to Qridi is constant
along Lnj . Hence, if a linear space intersects Lnj , then it must be contained in
this fixed tangent space. Therefore, the subspaces that are contained in Qridi are
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already contained in the codimension one quadric cut out on Qridi by the linear
space everywhere tangent to Qridi along Lnj . The dimension of this quadric is one
smaller and its singular locus contains Lnj . Step iii of the Algorithm 5.10 replaces
Qridi with this quadric.

The geometric meaning of Algorithm 5.9 is apparent. Step 1 checks whether a
given restriction variety is a Schubert variety. If so, the algorithm stops. Other-
wise, we increase the corank of Qrκdκ by one using Degeneration 5.7. There are two

possibilities. Either the linear spaces intersect the new singular locus of Qrκ+1
dκ

in a

vector space of dimension xκ (this possibility corresponds to the sequence (La•, Q
a
•)

and is depicted by Da) or they intersect the singular locus in a subspace of dimen-
sion xκ + 1 (this possibility is depicted by the sequence (Lb•, Q

b
•) and is depicted

by Db). Under the first condition in Step 2, the variety corresponding to (Lb•, Q
b
•)

has smaller dimension than the original variety V (L•, Q•). Therefore, the sequence
(Lb•, Q

b
•) does not lead to a component of the flat limit of the Degeneration 5.7. We

replace the original sequence by sequences obtained from (La•, Q
a
•). In the second

case, (La•, Q
a
•) violates Condition (8), hence the dimension of intersection of the

linear spaces with the singular locus Q
r′κ
dκ

has to increase. Therefore, the only possi-

bilities are derived from the sequence (Lb•, Q
b
•). In the final case, sequences derived

from both sequences (La•, Q
a
•) and (Lb•, Q

b
•) give components of the flat limit of the

Degeneration 5.7. This is the geometric branching.

From our description of the two algorithms, it is clear that Algorithm 5.9 and
Algorithm 3.9 are the same algorithm, one phrased in terms of admissible sequences
and the other in terms of the quadric diagrams representing them. In the rest of
the section, we will work with the geometric algorithm.

We will check shortly that Algorithm 5.9 replaces a restriction variety with re-
striction varieties. Hence, we can apply the algorithm to each of the resulting
varieties until the end result is a collection of Schubert varieties. Before proceed-
ing, we urge the reader to work through the examples in the beginning of this
section.

Definition 5.11. A degeneration path for V1 is a sequence of restriction varieties
V1 → V2 → · · · → Vm starting with V1 and ending with a Schubert variety Vm such
that Vi+1 is one of the varieties assigned to Vi by Algorithm 5.9.

Theorem 5.12. The class of a restriction variety V is equal

[V ] =
∑

[Vi]

where Vi are the restriction varieties produced by Algorithm 5.9. In particular, the
coefficient cµλ in

[V ] =
∑

cµλσ
µ
λ

is the number of degeneration paths starting with V and ending in a variety with
cohomology class σµλ . Furthermore, the algorithm respects the marking of restriction
varieties.

Proof. We prove the theorem in three steps. We first check that Algorithm 5.9
transforms restriction varieties into a collection of restriction varieties of the same
dimension. Then we interpret replacing Qrκdκ by Qrκ+1

dκ
in Step 1 of Algorithm 5.9
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as applying Degeneration 5.7. Using a dimension count, we show that the flat limit
is supported along the varieties produced by the algorithm. Finally, we check that
the flat limit is reduced at the generic point of each of these varieties. Theorem
5.12 follows. We begin by analyzing each case in the algorithm separately.

• If the sequence (L•, Q•) is saturated, then Lemma 4.18 implies that V (L•, Q•) is
a Schubert variety. In this case, there is nothing further to do. Accordingly, Algo-
rithm 5.9 terminates. From now on we may assume that (L•, Q•) is not saturated.

The new sequences (La•, Q
a
•), (L

b
•, Q

b
•) formed in Step 1 may fail to be admissible.

However, Conditions (1)-(6) are satisfied for them and for any of the sequences
output by Algorithm 5.9. We begin by verifying this for (La•, Q

a
•). Conditions

(4) and (5) hold by construction. Since Conditions (1) and (2) hold for (L•, Q•)
and replacing rκ by rκ + 1 can only increase the left-hand-side of the inequalities,
Conditions (1) and (2) also hold for (La•, Q

a
•). The active index κ is chosen so

that Qrκdκ satisfies the strict inequality dκ + rκ < dκ−1 + rκ−1 ≤ n in Condition

(3). Increasing rκ by one can at worst turn these inequalities into equalities and
improves the corresponding inequality for the index κ. Therefore, Condition (3)
holds for (La•, Q

a
•). The sequence (La•, Q

a
•) satisfies Condition (6) by the choice of

κ. The ranks of the quadrics ri remain unchanged for indices i 6= κ. The choice of
κ implies that j − i ≤ di − dj = rj − ri for every j > i ≥ κ in (L•, Q•). Hence,
replacing rκ with rκ + 1 ensures the inequality r′i − r′κ ≥ i − κ − 1 for i > κ.
The inequalities for r′κ − r′i improve by one for κ > i. Finally, the second half of
Condition (6) is also immediate from the choice of κ. We conclude that Conditions
(1)-(6) hold for (La•, Q

a
•).

Next we note that the sequence (Lb•, Q
b
•) is obtained from (La•, Q

a
•) by replacing

the linear space Lnx′κ+1
with the smaller dimensional linear space Lr′κ . Replacing a

linear space by a smaller dimensional one clearly preserves Conditions (1)-(4) and
(6). Since all the quadrics with corank ri ≤ r′κ are singular along Lr′κ , Condition

(5) also holds. Hence, the sequence (Lb•, Q
b
•) satisfies Conditions (1)-(6).

Finally, we analyze how Algorithm 5.10 affects Conditions (1)-(6). We make the
observation that if Condition (9) fails for (La•, Q

a
•), then it fails only for the index

κ. If Condition (9) fails for (Lb•, Q
b
•), then it can only fail for indices i < κ.

• In Step ii of Algorithm 5.10, the quadric Q
rk−s
dk−s

is replaced by a linear

space Ldk−s−1 of dimension dk−s − 1. Conditions (2)-(6) are unaffected by
this change. By assumption, we have dk−s ≤ rk−s + 2. Hence 2ns+1 =
2(dk−s − 1) ≤ dk−s + rk−s ≤ dk−s−1 + rk−s−1. This verifies Condition (1).

• In Step iii of Algorithm 5.10, a quadric Qridi is replaced by a quadric of
corank ri + 1 and ambient dimension di − 1. Note that all the inequalities
in (1)-(3) are invariant under this transformation. Conditions (4) and (5)
hold by construction. Condition (9) may fail to be satisfied for the index
κ in (La•, Q

a
•) or for some indices i < κ in (Lb•, Q

b
•). In the former case the

loop increases the rank rκ to that of at most rκ+1 and it is clear that the
resulting sequence satisfies Condition (6). If (Lb•, Q

b
•) violates Condition

(9), it either violates it for all 1 ≤ i ≤ κ or only for κ− 1. In the first case,
in (L•, Q•) we must have r1 = rκ = xκ in (L•, Q•) and the loop produces
a sequence that satisfies the same equalities. Else rκ−1 = rκ in (L•, Q•)
and by Condition (6) for (L•, Q•), dκ−1 − 1 = dκ and the loop in Step iii,
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does not produce any sequences. Hence, the sequences produced in Step iii
satisfy Conditions (1)-(6).

We conclude that all the sequences occurring in the algorithm satisfy Conditions
(1)-(6).

If Conditions (7)-(9) hold in a sequence for all the indices i ≥ α, then Algorithm
5.10 does not modify the quadrics with these indices. Hence, every intermediate
sequence formed during Algorithm 5.10 also satisfies Conditions (7)-(9) for indices
i ≥ α.

Condition (8) may fail to hold for (La•, Q
a
•). However, since (L•, Q•) is admissible,

Condition (8) can only fail in (La•, Q
a
•) for the index κ and the right hand side of

the inequality can exceed the left hand side by at most 1/2. Moreover, in (L•, Q•),
we must have the equality

xκ = k − κ+ 1− dκ − rκ
2

.

The choice of κ implies that equality holds in Condition (8) for all the indices i > κ
in the sequence (L•, Q•). Since ri + di = rκ + dκ for all i > κ, we can rewrite the
inequality in Condition (8) for the index i as

xi ≥ xκ + ri − rκ + κ− i.

By Condition (9), rκ+1 − rκ − 1 ≥ xκ+1 − xκ. Hence, we see that equality holds
for the index κ + 1. By induction, it follows that equality holds for all the indices
κ ≤ i ≤ k − s. Furthermore, nxκ+1 − rκ − 1 = yxκ+1 − κ in (L•, Q•). Finally,
note that if xκ = s, then equality for the index k − s implies that dk−s = rk−s + 2
contradicting Condition (7) for (L•, Q•). We conclude that if Condition (8) fails
for (La•, Q

a
•), then xκ < s and nxκ+1 − rκ − 1 = yxκ+1 − κ. Therefore, the cases in

Algorithm 5.9 are exhaustive and mutually exclusive. We may assume from now
on that the sequence (La•, Q

a
•) satisfies Condition (8). We also conclude that the

sequence (Lb•, Q
b
•) satisfies both Conditions (7) and (8). Since xκ < s, Condition

(7) has to hold for (La•, Q
a
•). Replacing a linear space with a smaller linear space

does not affect Condition (7). Replacing Lx′κ+1 with Lr′κ increases the left hand
side of the inequality in Condition (8) by one without affecting the right hand side.

Therefore, (Lb•, Q
b
•) is either admissible or fails Condition (9). As we observed

while verifying Step iii of Algorithm 5.10 preserves Conditions (1)-(6), no new
sequences are formed unless Condition (9) fails for all the indices 1 ≤ i ≤ κ − 1.
In this case, any sequence formed in Step iii of Algorithm 5.10 clearly satisfies
Condition (9), hence is admissible. Hence, every sequence formed in Step 4 of
Algorithm 5.9 is admissible.

Condition (7) may fail to hold for (La•, Q
a
•) or while running Step iii of Algorithm

5.10 on (La•, Q
a
•). This may happen in only one of two ways. The sequence (L•, Q•)

either has dk−s = rk−s + 3 and κ = k − s; or dk−s = rk−s + 3 + 2α, κ = k − s and
(L•, Q•) has α linear spaces of dimensions rk−s+2, rk−s+3, . . . , rk−s+α+1 = ns.
By the observation three paragraphs above, κ = k− s. Hence, either Condition (7)
is directly violated for (La•, Q

a
•) or Condition (7) is violated after applying Step iii

of Algorithm 5.10 for the index κ α times. The equality dk−s = rk−s + 3 + 2α
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follows by combining Condition (8)

s− α > s+ 1− dk−s − rk−s
2

for (L•, Q•) with the inequality dk−s−rk−s−2α ≤ 3 that expresses that Condition
(7) is violated after α-steps. In either of the two cases, Step ii of Algorithm 5.10
outputs admissible sequences.

Finally, if Condition (9) fails for the sequence (La•, Q
a
•), then, as observed above,

it fails only for the index κ. Applying Step iii of Algorithm 5.10 either produces
a sequence which is admissible or which violates Condition (7). In the latter case,
running Step ii of Algorithm 5.10 outputs an admissible sequence. We conclude
that all the sequences output by Algorithm 5.9 are admissible. We now analyze the
dimensions of the corresponding varieties.

• The expression in Equation (1) for the dimension of a restriction variety
remains unchanged when we replace Qrκdκ with Qrκ+1

dκ
.

• In Cases 2 and of the Algorithm, we have the equality nx′κ+1−r′κ = yx′κ+1−
κ. Hence, when we replace Lnx′κ+1

with Lr′κ to form (Lb•, Q
b
•), xi increases

by one for the indices κ ≤ i < yxκ+1. The dimension of the linear space
with index x′κ+1 decreases by n′xκ+1−r′κ. All other terms in the expression
in Equation (1) remain unchanged.
• Step iii of Algorithm 5.10 increases xµ by one and decreases dµ by one,

hence preserves the expression in Equation (1).

• Finally, replacing Q
dk−s−2
dk−s

with Ldk−s−1 in Step ii of Algorithm 5.10 in-

creases the first sum in Equation (1) by dk−s− s−2. It changes the second
sum by −xs − dk−s + 2s+ 2. Since we must have xs = s, we conclude that
this step also preserves the expression in Equation (1).

Combining these observations, we conclude that every sequence produced by
Algorithm 5.9 is admissible and gives rise to a restriction variety of the same di-
mension as V (L•, Q•). The algorithm can be recursively applied to each of the
resulting restriction varieties. It is clear that the algorithm must terminate in a
collection of Schubert varieties. At each stage of the algorithm, either the corank
of a quadric in the sequence increases by at least one or the number of quadrics
in the sequence decreases. Since there are finitely many quadrics in the sequence
and the corank of the quadrics are bounded above, eventually the sequence must
become saturated. Then the resulting varieties are Schubert varieties.

We now analyze Degeneration 5.7 to conclude that the support of the flat limit
is the union of restriction varieties replacing V (L•, Q•) in Algorithm 5.9. In order
to restrict the possible irreducible components of the support of the flat limit, we
write down conditions that the linear spaces in the limit have to satisfy. We then
observe that these conditions already cut out varieties of dimension equal to the
dimension of V (L•, Q•). The following observation puts strong restrictions on the
support of the flat limit.

Observation 5.13. The linear spaces parameterized by the restriction varieties
V (L•(t), Q•(t)) intersect the linear spaces Lnj (t) in a subspace of dimension at
least j and the quadrics Qridi(t) in a linear space of dimension at least k − i + 1.

Similarly, they intersect Qri,singdi
(t) in a linear space of dimension at least xi. Since

intersecting a proper variety in at least a given dimension is a closed condition,
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the linear spaces parameterized by the flat limit V (0) have to intersect the linear
spaces Lnj (0) in a subspace of dimension at least j and the quadrics Qridi(0) in a

subspace of dimension at least k− i+ 1. Furthermore, they intersect Qri,singdi
(0) in

a subspace of dimension at least xi.

A quick inspection of the algorithm will reveal that in each of the limits either
the linear spaces intersect the vertex of Qrκ+1

dκ
(0) in a subspace of dimension xκ+ 1

and otherwise remain as unconstrained as possible given Observation 8.3; or the
linear spaces continue to intersect Qrκ+1

dκ
(0) in a subspace of dimension xκ and only

satisfy the constraints imposed by Observation 8.3. A priori in the limit the linear
spaces could become more special. However, we claim that these loci have strictly
smaller dimension and do not form an irreducible component of the support of the
flat limit. We now verify this claim.

Let Y be an irreducible component of the support of the flat limit of Degeneration
5.7. Then we can build a sequence of consisting of k linear spaces and quadrics
such that the closure of the locus of linear spaces intersecting the i-th element in
the sequence (counting in increasing dimension) in dimension i contains Y . We
complete the linear spaces and quadrics in the sequence (La•, Q

a
•) to a set of linear

spaces and quadrics whose dimensions increase by one at each stage making sure
that Conditions (4) and (5) of Definition 4.2 are satisfied. We then select those
linear spaces and quadrics that have a jump in the dimension of intersection with
a general linear space parameterized by Y . We thus obtain a set of k linear spaces
and quadrics. By construction the closure of the locus X of linear spaces that
intersect the i-th one in dimension i contains Y . Observation 8.3 implies that the
i-th linear space or quadric in the sequence thus obtained has dimension less than
or equal to the i-th linear space or quadric (counting in increasing dimension) in
the sequence (La•, Q

a
•). By Proposition 7.21, Equation (1) gives an upper bound on

the dimension of X (note that we used the fact that the sequence is admissible in
the proof only to deduce the equality).

We now estimate the dimension of X. We obtain the sequence defining X by
replacing linear spaces and quadrics in (La•Q

a
•) by smaller dimensional ones in in-

creasing order. We will do this in greater generality in preparation for the discussion
of orthogonal flag varieties.

• If we replace a linear space of dimension n′i+j in the (i+ j)-th position with
a linear space of dimension n∗i in the i-th position not contained in (La•, Q

a
•),

then according to Equation (1) the dimension changes as follows. Let y′i+j
and y∗i be the smallest index quadrics containing the corresponding linear
spaces in their singular locus. The dimension decreases by n′i+j − n∗i + j +
y′i+j − y∗i . Since Conditions (6) and (9) hold for (L•, Q•), we have that
n′i+j − n∗i + y′i+j − y∗i ≥ 0. Consequently the decrease in the dimension is
at least j with equality when n′i+j − n∗i + y′i+j − y∗i = 0.

• If we replace the i-th largest quadric in a vector space of dimension d′i by
the (i + j)-th largest quadric in a vector space of dimension d∗i+j , then
according to Equation (1) the dimension decreases by d′i−d∗i+j +x′i−x∗i+j .
This decrease is at least j with strict inequality unless Condition (9) fails
for r′i.
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• Finally, if we replace the quadric Q
r′i
d′i

with the linear space Ln∗j , then the

first sum in Equation (1) changes by n′j − s− 1. The second sum changes
by −d′i + (k − s− y∗j − x′i) + (2s+ 2). Hence, the total change is

−d′i + n∗j + k + 1− x′i − y∗j ,

where y∗nj denotes the index of the largest dimensional quadric containing
L∗nj in its singular locus. We rewrite this expression as follows:

(k − i+ 1− bd
′
i − r′i

2
c − x′i) + (n∗j − d

d′i + r′i
2
e+ k − s− y∗j ) + (−k + s+ i).

The sum in the first parentheses is strictly negative unless Condition (8)
is violated or there is equality in Condition (8); otherwise it is zero. The
sum in the second parentheses is strictly negative unless j = s + 1 and
d′i + r′i = dk−s + rk−s; otherwise it is zero. Finally, the third sum is strictly
negative unless i = k − s; otherwise it is zero.

Since our degeneration is flat, Y has to have the same dimension as V (L•, Q•).
Since X contains Y , our dimension calculation puts strong restrictions on X.

First, suppose xκ = s in (L•, Q•). Then by Conditions (6) and (9) for (L•, Q•),
n′l− r′i + y′l− i > 0 for every l with n′l > r′i in (La•, Q

a
•). Furthermore, Condition (9)

holds for (La•, Q
a
•). If d′k−s − r′k−s > 2, then replacing any linear space or quadric

with a smaller dimensional one strictly decreases the dimension. Note also that
(La•, Q

a
•) is admissible. In this case, we conclude that X has to be V (La•, Q

a
•). Since

V (La•, Q
a
•) and V (L•, Q•) have the same dimension, we conclude that Y has to be

a component of V (La•, Q
a
•). If d′k−s − r′k−s = 2, then Q

r′k−s
d′k−s

is necessarily reducible

consisting of two linear spaces of dimension d′k−s−1. If 2(d′k−s−1) = n, then these
linear spaces belong to two different connected components. We can therefore

replace Q
r′k−s
d′k−s

with either of these linear spaces to obtain two sequences. Note that

replacing any other linear space or quadric with a smaller dimensional one strictly
decreases the dimension. Hence X has to be the variety corresponding to one of
these sequences. Since X has the same dimension as V (L•, Q•), we conclude that
Y has to be an irreducible component of X. Observe that Algorithm 5.9 selects
the sequences corresponding to X.

Next, suppose that xκ < s and nxκ+1 − rκ − 1 > yxκ+1 − κ in (L•, Q•). Then
the sequence (La•, Q

a
•) is admissible. Furthermore, by our dimension calculation,

replacing any linear space or quadric in (La•, Q
a
•) leads to a strictly smaller dimen-

sional locus. We conclude that X = V (La•, Q
a
•) and Y has to be an irreducible

component of V (La•, Q
a
•).

Next, suppose that xκ < s and Condition (8) is violated for (La•, Q
a
•) for κ. Note

that in that case, there must be an equality in Condition (8) in (L•, Q•) for the
index κ. Hence, by Conditions (6) and (8), rκ−1 < rκ in (L•, Q•). By the “linear

space bound”, every linear space of dimension k − κ + 1 contained in Q
r′κ
d′κ

must

intersect the singular locus of this quadric in dimension at least xκ + 1. Hence, we
can replace the sequence (La•, Q

a
•) with the sequence (Lb•, Q

b
•). By our dimension

calculation, replacing any linear space or quadric by a smaller dimensional one
results in a variety of strictly smaller dimension. Hence, we conclude that Y has
to be an irreducible component of V (Lb•, Q

b
•). As we observed above, (Lb•, Q

b
•) may
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fail Condition (9) for i < κ. In that case, by the “variation of tangent spaces”, any
linear space of dimension k − i + 1 intersecting Lr′κ in dimension xi is necessarily
contained in the quadric everywhere tangent to Q along Lr′κ . Hence, we can replace

the sequence (Lb•, Q
b
•) as in Step iii of Algorithm 5.10 to obtain an equivalent

definition of the same variety (Note that since rκ−1 < rκ in (L•, Q•), the definition
of κ ensures that dµ − 1 < dµ−1 while running Step iii of Algorithm 5.10).

Finally, suppose that xκ < s and nxκ+1 − rκ − 1 = yxκ+1 − κ in (L•, Q•)
and (La•, Q

a
•) satisfies Condition (8). Let i ≤ κ be the smallest index such that

nx′i+1−r′i = yx′i+1−i in (La•, Q
a
•). Note that by Conditions (6) and (9) for (L•, Q•),

there may be such indices precisely when rκ−1 = rκ, ri ≥ xκ and ri = rκ−κ+ i+ 1
in (L•, Q•). By our dimension counts, replacing Lx′κ+1 with Lr′j for an index

i ≤ j ≤ κ can result in a sequence that has the same dimension as V (L•, Q•).
Replacing any other linear space or quadric with a smaller dimensional one, gives
a smaller dimensional variety. The rest of the analysis of this case is more subtle.
We need to argue that unless j = κ, these loci do not occur in the limit. For a
general linear space Wt ∈ V (L•(t), Q•(t)), let Wt,j = Q

rj
dj

(t) ∩Wt for i ≤ j < κ.

The tangent space to Q
rj
dj

along Wt,j intersects Lnxκ+1
in a subspace of dimension

rj + 1. By semi-continuity, this must be true for every linear space contained in
V (L•(t), Q•(t)) and also in the limit V (L•(0), Q•(0)). However, the tangent space
to Q

rj
dj

at a general linear space parameterized by the variety associated to the

sequence obtained from (La•, Q
a
•) by replacing Lx′κ+1 with Lr′j intersects Lnxκ+1 in

dimension rj = r′j . We conclude that the support of Y cannot equal such a locus.

Hence X is the locus associated to one of the sequences (La•, Q
a
•) or (Lb•, Q

b
•). These

sequences may fail to satisfy Condition (9). In that case, Step iii of Algorithm 5.10
replaces them by equivalent varieties unless for (Lb•, Q

b
•) we have dκ−1− 1 = dκ. In

the latter case, by “the variation of tangent spaces”, the (k − κ + 2)-dimensional

subspaces of the linear spaces W parameterized by X have to be contained in Q
r′κ
d′κ

.

In other words, we have to replace Q
r′κ−1

d′κ−1
by a smaller quadric. By our dimension

counts, such a locus has strictly smaller dimension, hence cannot support Y .

In order to conclude the proof, we need to verify that the limits all occur and
are reduced at the generic point of each of these loci. This is a straightforward
local calculation. Let U be the Zariski open set of our family of restriction varieties

parameterizing linear spaces W (t) such that dim(W (t) ∩ Qrκ(t)dκ
(t)) = k − κ + 1.

Let Z be the family of restriction varieties obtained by applying Degeneration
5.7 to the admissible sequence obtained from (L•, Q•) by omitting the quadrics
Qr1d1 , . . . , Q

rκ−1
dκ−1

. Then there exists a natural morphism f : U → Z sending W (t)

to W (t) ∩Qrκ(t)dκ
(t), which is smooth at the generic point of each of the irreducible

components of the fiber of Z at t = 0. We may, therefore, assume that κ = 1.
Furthermore, without loss of generality, we may assume that n = dκ + rκ + 1 and
xκ = 0. We will check that the multiplicity is one by exhibiting cycles that intersect
V (L•, Q•) in one point and exactly one of the potential limits in one point. This will
allow us to conclude that each of the limits occur with multiplicity one. There is a
Schubert cycle in the class of the variety V (La•, Q

a
•) (respectively, V (Lb•, Q

b
•)) that

occurs with coefficient one and does not occur in the class of V (Lb•, Q
b
•) (respectively,

V (La•, Q
a
•)). We use the dual of these Schubert cycles for our computation. Note
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that by our assumptions on κ and n, di + ri = dκ + rκ = n − 1 for every i ≥ κ.
Hence, n− dk−s + 1 = rk−s + 2 and 2(rk−s + 2) ≤ rk−s + dk−s + 1 = n.

First, suppose xκ = s(= 0) and dκ = rκ + 3 in (L•, Q•). In this case, this is
the standard family of a quadric breaking into a union of two linear spaces. Both
occur in the limit with multiplicity one. In this case there is nothing to check. Next
suppose xκ = s(= 0) and dκ > rκ + 3 in (L•, Q•). Let βi = n − di + 1. Let S be
the Schubert variety defined with respect to a general isotropic flag

Lβ1
⊂ · · · ⊂ Lβk−s .

In case 2βk−s = n, we will always define a second Schubert variety S′ by replacing
Lβk−s with L′βk−s . Note that under our assumptions V (Q•) is irreducible. Both

V (Q•) and V (Qα• ) intersect S (and S′ when appropriate) in a reduced point. The

spans Span(Qridi) and Span(Q
r′i
di

) intersect the linear space Lβi in a one dimensional

subspace for every 1 ≤ i ≤ k. Any k-dimensional linear space contained in V (Q•)∩
S or V (Qα• ) ∩ S must contain these one-dimensional subspaces. Hence, the k-
dimensional linear space is uniquely determined as the Span((Qridi ∩Li), 1 ≤ i ≤ k)

or Span((Q
r′i
di
∩Li), 1 ≤ i ≤ k), respectively. By Kleiman’s Transversality Theorem

[Kl1], we conclude that the intersection of the two varieties consists of a single
reduced point. When 2βk−s = n, two general linear spaces in the class L = Lβk−s
intersect in a unique point if n = 0 modulo 4 and are otherwise disjoint. A general
linear space in the class L and a general linear space in the class L′ = L′βk−s
intersect in a unique point if n = 2 modulo 4 and are otherwise disjoint. When
V (Q′•) has two components, repeating the argument with S′, we conclude that both
components occur with multiplicity one.

Next, suppose that xκ(= 0) < s and (La•, Q
a
•) fails to satisfy Condition (8). Let

αxκ+1 = α1 = n− rκ. Let αj = n− nj−1 for j > xκ+1. Let βi = n− di + 1. Let S
be the Schubert variety defined with respect to the linear spaces and quadrics

Lβ1 ⊂ · · · ⊂ Lβk−s ⊂ Qn−αsαs ⊂ · · · ⊂ Qn−α1
α1

.

Proposition 4.18 implies that S is a Schubert variety. We claim that S intersects
both V (L•, Q•) and V (Lb•, Q

b
•) in a unique, reduced point. The linear spaces Lβi

intersect the quadrics Qridi and Q
rbi
dbi

in unique points. Any k-dimensional linear

space in the intersection of S and V (L•, Q•) or S and V (Lb•, Q
b
•) must contain the

(k − s)-dimensional linear space Λ spanned by these points. In S ∩ V (L•, Q•), the

quadrics everywhere tangent to Λ determine unique points in Q
n−αj
αj ∩Lnj for j > 0.

In S∩V (Lb•, Q
b
•), the quadrics everywhere tangent to Λ determine unique points in

Q
n−αj
αj ∩ Lnj for j > 1 and furthermore the k-plane has to contain the point Lrbκ ∩

Qn−α1
α1

(which is contained in the singular locus of all the quadrics). Hence, in both
cases, the k-dimensional linear space in the intersection is uniquely determined. We
proved above that ns = n/2 in this case. Hence, both V (L•, Q•) and V (Lb•, Q

b
•)

are irreducible. Therefore, V (Lb•, Q
b
•) occurs in the limit with multiplicity one.

Next, suppose xκ(= 0) < s and nxκ+1 − rκ − 1 > yxκ+1 − κ. In this case, let i0
denote the smallest index for which equality holds in Condition (8) in (L•, Q•). If
there is no such index, set i0 = 0 and ri0 = 0. For nj ≤ ri0 , let αj = n − nj + 1.
For nj > ri0 , set αj = n − nj−1. Next, for each index i < i0, let li be the largest
positive integer such that ri + li + 1 = nxi+li . If there does not exist such li, set
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li = 0. Let βi = n− di + li + 1 for i < i0 and let βi = n− di + 1 for i ≥ i0. Let S
be the Schubert variety defined by the sequence

Lβ1
⊂ · · · ⊂ Lβk−s ⊂ Qn−αsαs ⊂ · · · ⊂ Qn−α1

α1
.

When 2βk−s = n, define S′ by replacing Lβk−s with L′βk−s . Note that Proposition

4.18 implies S is a Schubert variety. As in the previous cases, it is straightforward
to see that S intersects both V (L•, Q•) and V (La•, Q

a
•) in a unique, reduced point.

When appropriate, the same holds for S′. We conclude that V (La•, Q
a
•) occurs in

the limit with multiplicity one.

Finally, suppose xκ(= 0) < s, nxκ+1 − rκ − 1 = yxκ+1 − κ and Condition (8) is
satisfied for (La•, Q

a
•). Then duals for V (La•, Q

a
•) and V (Lb•, Q

b
•) are obtained as in

the previous cases. Let S be the Schubert variety defined exactly as in the previous
paragraph. Let T be the Schubert variety defined by replacing αxκ+1 = n−nxκ+1+1
in the definition of S with αxκ+1 = n − rκ. Then it is straightforward to see that
both S and T intersect V (L•, Q•) in a unique reduced point. S (respectively, T )
intersects V (La•, Q

a
•) (respectively, V (Lb•, Q

b
•)) in a unique, reduced point and has

empty intersection with V (Lb•, Q
b
•) (respectively, V (La•, Q

a
•)). It follows that both

limits occur with multiplicity one. Finally, by replacing S with S′ and T with T ′

when appropriate, it is easy to see that in case these varieties are reducible, both
components occur with multiplicity one and that the algorithm preserves marking.
This concludes the proof of the theorem. �

Remark 5.14. From the analysis in the proof of Theorem 5.12, it follows that
at each stage of the degeneration a restriction variety breaks into at most three
irreducible components.

6. Applications of Algorithm 5.9

In this section we discuss a couple of immediate applications of Algorithm 5.9.
The Introduction discusses other applications.

6.1. The moduli space of vector bundles on hyperelliptic curves. There
is a beautiful, classical construction that associates to a general pencil of quadric
hypersurfaces in P2g+1 a hyperelliptic curve C of genus g. In fact, every smooth hy-
perelliptic curve of genus g arises this way [GH, §6], [?]. We recall the construction
for the reader’s convenience.

Let Q1 and Q2 be general quadric hypersurfaces in P2g+1. Let tQ1 +uQ2 be the
pencil generated by Q1 and Q2. Consider the incidence correspondence I parame-
terizing pairs (Q,C), where Q is a quadric hypersurface contained in the pencil and
C is a connected component of the space of g-dimensional projective linear spaces
on Q. The incidence correspondence I is irreducible and maps to P1 by the first
projection π1. When Q is a smooth quadric, the space of g-dimensional projective
linear spaces on Q has two connected components. Hence, I is a double cover of
P1. When Q has corank one, then the space of g-dimensional projective spaces has
only one component. Hence, π1 is ramified at the 2g + 2 points in the pencil that
are quadrics of corank one. By the Riemann-Hurwitz formula, we conclude that I
is a hyperelliptic curve of genus g.

To see that there are 2g + 2 corank one quadrics in a general pencil, observe
that the pencil can be identified with a (2g+ 2)× (2g+ 2) symmetric matrix whose
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entries are linear homogeneous polynomials in t and u. The quadrics of corank
one correspond to matrices with zero determinant. Since the determinant is a
homogeneous polynomial of degree 2g+ 2 in t and u, it will have 2g+ 2 roots in P1.
If the pencil is general, these roots will be distinct and the corresponding symmetric
matrix will have corank exactly one. Furthermore, it is clear from this description
that one can construct a pencil with any 2g+2 distinct roots. Hence, every smooth
hyperelliptic curve of genus g arises via this construction.

Let C be a smooth hyperelliptic curve of genus g ≥ 2. Let MV2,o(Cg) denote the
moduli space of rank two vector bundles with a fixed determinant of odd-degree
on C. Realize C as a double cover of a pencil of quadric hypersurfaces in P2g+1.
By a celebrated theorem of Desale and Ramanan [?], MV2,o(Cg) is isomorphic to
the space of (g− 2)-dimensional projective linear spaces contained in this pencil of
quadric hypersurfaces in P2g+1. Equivalently, if Q1 and Q2 are two smooth quadric
hypersurfaces that generate the pencil, MV2,o(Cg) is isomorphic to the space of
(g − 2)-dimensional projective linear spaces contained in both Q1 and Q2.

We can view the space X parameterizing (g − 2)-dimensional projective linear
spaces contained in Q1 as the orthogonal Grassmannian OG(g − 1, 2g + 2), which
naturally includes in G(g − 1, 2g + 2). We can also view the space of (g − 2)-
dimensional projective linear spaces contained in Q2 as a subvariety Y of G(g −
1, 2g+2). Of course, Y is isomorphic to X; however, its embedding in G(g−1, 2g+2)
differs from that of X by translation with an element of PGL(2g+2). By Kleiman’s
Transversality Theorem, X and Y intersect transversally. Therefore, the class of
the intersection Y ∩OG(g− 1, 2g+ 2) in H∗(OG(g− 1, 2g+ 2),Z) is the pull-back
of the class of Y in H∗(G(g − 1, 2g + 2),Z) under the map induced by inclusion.

The class of Y in G(g− 1, 2g+ 2) is well-known to be 2g−1σg−1,g−2,...,2,1. There
are several ways of calculating this class. First, it is the top Chern class of the
vector bundle Sym2(S∗) on G(g − 1, 2g + 2), where S∗ denotes the dual of the
tautological bundle of G(g−1, 2g+2). Calculating the top Chern class of Sym2(S∗)
is a standard exercise in using the splitting principle. Alternatively, one can use
degenerations for a more pleasant calculation. Very briefly, break the quadric into
a union of two linear spaces using a general pencil Q+ tL1L2. The flat limit of the
space of (g − 2)-dimensional projective linear spaces contained in Q is the space
of (g− 2)-dimensional projective linear spaces contained in L1 or L2 that intersect
Q ∩ L1 ∩ L2 in (g − 3)-dimensional projective linear spaces (see [?] or [?]). Now
inductively break Q ∩ L1 ∩ L2 into a union of linear spaces using a general pencil.
Continuing this process for (g − 1) steps, we obtain 2g−1 flags of the form

P2g ⊃ P2g−2 ⊃ P2g−4 ⊃ · · · ⊃ P4,

where P2g−2i is one of the two linear spaces obtained by degenerating the (2g −
2i)-dimensional quadric. Inductively, the flat limit of Y is the space of (g − 2)-
dimensional projective linear spaces that intersect P2g−2i in a projective space of
dimension g− 2− i. We conclude that the class of Y is is 2g−1σg−1,g−2,...,2,1 in the
cohomology of G(g − 1, 2g + 2).

In conclusion, the class of MV2,o(Cg) is 2g−1 times the class of the restriction
variety associated to the Schubert class σg−1,g−2,...,1 in G(g − 1, 2g + 2). More
explicitly, the class of MV2,o(Cg) in OG(g − 1, 2g + 2) is equal to 2g−1 times the
class of the restriction variety associated to the admissible sequence

Q0
5 ⊂ Q0

7 ⊂ · · · ⊂ Q0
2g−1 ⊂ Q0

2g+1.
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Using Algorithm 5.9 the class can be easily computed. Here we give the class for
the first few genera.

(1) [MV2,o(C2)] = 2σ1

(2) [MV2,o(C3)] = 4σ1
0 + 4σ3,1

(3) [MV2,o(C4)] = 16σ3,1
2 + 16σ1

1,0 + 16σ4,1
1

(4) [MV2,o(C5)] = 64σ3,1
3,1 + 64σ1

2,1,0 + 64σ5,1
2,1 + 32σ4,1

3,0 + 32σ5,4,1
3 + 32σ3,1

5,0 +

32σ5,3,1
5 + 32σ3,2

4,0 + 32σ5,3,2
4

More generally, one obtains a recursion in the genus for the class. Suppose that
the class of MV2,o(Cg−1) in OG(g − 3, 2g) is given by

[MV2,o(Cg−1)] =
∑

cλ,µ[Ωµλ],

where Ωµλ is defined with respect to a sequence (Lλ• , Q
µ
• ). Let t be the largest index

of a linear space in the sequence such that nt = t. Define a new sequence (L̃λ• , Q̃
µ
• )

by setting L̃λnj = Lλnj for all 1 ≤ j ≤ s and Q̃
µ,ri+1

di+1
= Qµ,ridi

for 1 ≤ i ≤ g − 3 − s.
Set Q̃µ,r1d1

= Qt2g+1−t. Then we have that

[MV2,o(Cg)] = 2
∑

cλ,µ[V (L̃λ• , Q̃
µ
• )].

Remark 6.1. When g = 2, MV2,o(C2) is a complete intersection of two quadric
hypersurfaces in P5 [GH, §6]. Ciprian Manolescu (in private correspondence) posed
the question whether MV2,o(Cg) can be a complete intersection for g > 2. In
fact, one can ask for a much weaker property. Can MV2,o(Cg) be a complete
intersection of ample divisors in OG(g− 1, 2g+ 2)? The codimension of MV2,o(Cg)

inOG(g−1, 2g+2) is g(g−1)
2 . The codimension of the Schubert variety σg−2,g−3,...,2,1g

is g + 1. Hence, the sum of the codimensions of these two varieties is g2+g
2 + 1. If

g > 2, this is less than the dimension of OG(g−1, 2g+2). Hence, if MV2,o(Cg) were
a complete intersection of ample divisors, σg−2,g−3,...,2,1g ·[MV2,o(Cg)] 6= 0. However,
the cup product of these classes is clearly zero since the one-dimensional vector space
defining the Schubert variety can be chosen to not be contained in Q0

2g+1 defining
the restriction variety. Hence, we conclude that for g > 2, MV2,o(Cg) cannot be
a complete intersection of ample divisors even in OG(g − 1, 2g + 2), let alone in

G(g − 1, 2g + 2) or P(2g+2
g−1 )−1.

6.2. A geometric algorithm for computing the product of arbitrary Schu-
bert cycles. The pull-back of a Schubert class under the inclusion j : OG(k, n)→
G(k, n) can be expressed as a sum of classes of restriction varieties. Consider a
Schubert cycle Σλ1,...,λk defined with respect to a general partial flag

Fn−k+1−λ1
⊂ Fn−k+2−λ2

⊂ · · · ⊂ Fn−λk .
The intersection of this flag with the quadric hypersurface Q leads to the sequence
of quadrics

Q0
n−k+1−λ1

⊂ Q0
n−k+2−λ2

⊂ · · · ⊂ Q0
n−λk .

Note that since none of the quadrics are singular, the Conditions (3)-(6) of Defi-
nition 4.2 are automatically satisfied. Similarly, since there are no linear spaces in
the sequence, Condition (1) is automatically satisfied. However, Condition (2) may
be violated. In that case, the corresponding variety is empty and the pull-back is
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zero. From now on we assume that the sequence satisfies all the conditions in Def-
inition 4.2. If the sequence is admissible, then the pull-back of the Schubert cycle
is the class of the corresponding restriction variety. However, the sequence may
fail to be admissible and thus the pull-back maybe the sum of classes of restriction
varieties. We now describe how to express the pull-back as a sum of these. Since
Condition (2) in Definition 4.2 is satisfied, n−k+ i−λi ≥ 2i for all i. Suppose that
equality holds for i ≤ α and the inequality is strict for i = α+ 1. Then the quadric
Qn−k+1−λ1 consists of two points p1, p2. The linear spaces have to contain one of
the pi and be contained in the tangent space to Q along pi. Then Q1

n−k+2−λ2
con-

sists of two lines intersecting at pi. The linear spaces containing pi have to contain
one of these lines. Continuing we deduce the following proposition.

Proposition 6.2. Let σλ1,...,λk be a Schubert cycle in G(k, n). Let j : OG(k, n)→
G(k, n) be the natural inclusion. Then

(1) j∗σλ1,...,λk = 0 unless n− k − i ≥ λi for every 1 ≤ i ≤ k.
(2) Suppose that n−k− i = λi for i = 1, . . . , α and n−k− i > λi for i = α+1.

Further suppose that if 2k = n, then α 6= k. Let (L•, Q•) be the admissible
sequence

L1 ⊂ L2 ⊂ · · · ⊂ Lα−1 ⊂ Lα ⊂ Qαn−k+α+1−λα+1
⊂ · · · ⊂ Qαn−1−λk−1

⊂ Qαn−λk .

Then j∗σλ1,...,λk = 2α[V (L•, Q•)], where [V (L•, Q•)] denotes the cohomol-
ogy class of the restriction variety V (L•, Q•). If 2α = 2k = n, then the
class is 2α−1 times the Poincaré dual of a point.

7. Symplectic restriction varieties

In this section, we interpret admissible symplectic diagrams geometrically. We
introduce symplectic restriction varieties and discuss their basic geometric proper-
ties.

Recall that Q denotes a non-degenerate skew-symmetric form on a vector space
V of dimension n. Let Lnj denote an isotropic subspace of Q of dimension nj . Let
Qridi denote a linear space of dimension di such that the restriction of Q to it has
corank ri. Let Ki denote the kernel of the restriction of Q to Qridi .

Definition 7.1. A sequence (L•, Q•) is a partial flag of linear spaces Ln1
( · · · (

Lns ( Q
rk−s
dk−s

( · · · ( Qr1d1 such that

• dim(Ki ∩Kh) ≥ ri − 1 for h > i.
• dim(Lnj ∩ Ki) ≥ min(nj ,dim(Ki ∩ Q

rk−s
dk−s

) − 1) for every 1 ≤ j ≤ s and

1 ≤ i ≤ k − s.

The main geometric objects of this paper will be sequences satisfying further
properties.

Definition 7.2. A sequence is in order if

• Ki ∩Kh = Ki ∩Ki+1, for all h > i and 1 ≤ i ≤ k − s, and
• dim(Lnj ∩Ki) = min(nj ,dim(Ki∩Q

rk−s
dk−s

)), for 1 ≤ j ≤ s and 1 ≤ i < k−s.
A sequence (L•, Q•) is in perfect order if

• Ki ⊆ Ki+1, for 1 ≤ i < k − s, and
• dim(Lnj ∩Ki) = min(nj , ri) for all i and j.
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Definition 7.3. A sequence (L•, Q•) is called saturated if di + ri = n, for 1 ≤ i ≤
k − s.

The next definition is the analogue of Definition 3.24 and is a consequence of the
order of specialization.

Definition 7.4. A sequence (L•, Q•) is called a symplectic sequence if it satisfies
the following properties.

(GS1) The sequence (L•, Q•) is either in order or there exists at most one integer
1 ≤ η ≤ k − s such that

Ki ⊆ Kh for h > i > η and Ki ∩Kh = Ki ∩Ki+1 for i < η and h > i.

Furthermore, if Kη ⊆ Kk−s, then

dim(Lnj ∩Ki) = min(nj ,dim(Ki ∩Q
rk−s
dk−s

)) for i < η and

dim(Lnj ∩Ki) = min(nj ,dim(Ki ∩Q
rk−s
dk−s

)− 1) for i ≥ η.
If Kη 6⊆ Kk−s, then

dim(Lnj ∩Ki) = min(nj ,dim(Ki ∩Q
rk−s
dk−s

)) for all i.

(GS2) If α = dim(Ki ∩Q
rk−s
dk−s

) > 0, then either i = 1 and nα = α or there exists

at most one j0 such that, for j0 6= j > min(i, η), rj − rj−1 = dj−1 − dj .
Furthermore,

dj0−1 − dj0 ≤ rj0 − rj0−1 + 2− dim(Kj0−1) + dim(Kj0−1 ∩Q
rj0
dj0

)

and Kη 6⊂ Q
rj0
dj0

.

Remark 7.5. Given a sequence (L•, Q•), the basic principles concerning skew-
symmetric forms imply inequalities among the invariants of a sequence. The even-
ness of rank implies that di − ri is even for every 1 ≤ i ≤ k− s. The corank bound
implies that ri−dim(Qridi ∩Ki−1) ≤ di−1−di. The linear space bound implies that

2(ns + ri− dim(Ki ∩Lns)) ≤ ri + di for every 1 ≤ i ≤ k− s. These inequalities are
implicit in the sequence (L•, Q•).

Remark 7.6. For a symplectic sequence (L•, Q•), the invariants nj , ri, di to-
gether with the dimensions dim(Lnj ,Ki) and dim(Qrhdh∩Ki) determine the sequence

(L•, Q•) up to the action of the symplectic group. This will become obvious when
we construct these sequences by choosing bases.

Definition 7.7. A symplectic sequence (L•, Q•) is admissible if it satisfies the
following additional conditions:

(GA1) nj 6= dim(Lnj ∩Ki) + 1 for any 1 ≤ j ≤ s and 1 ≤ i ≤ k − s.
(GA2) Let xi denote the number of isotropic subspaces Lnj that are contained in

Ki. Then

xi ≥ k − i+ 1− di − ri
2

.

The translation between sequences and symplectic diagrams. Symplectic
sequences can be represented by symplectic diagrams introduced in §3. An isotropic
linear space Lnj is represented by a bracket ] in position nj . A linear space Qridi
is represented by a brace } in position di such that there are exactly ri positive
integers less than or equal to i to the left of the i-th brace. Finally, dim(Lnj ∩Ki)
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and dim(Qrhdh ∩Ki), h > i, are recorded by the number of positive integers less than

or equal to i to the left of ]j and }h, respectively.

Example 7.8. 11]200}0}00 records a sequence L2 ⊂ Q3
5 ⊂ Q2

6, where L2 ⊂
Ker(Q2

6). In the diagram, there is one bracket that occurs in position 2. There
are two braces that occur in positions 5 and 6. We thus conclude that the sequence
contains one isotropic subspace of dimension 2 (L2) and two non-isotropic subspaces
of dimensions 5 (Q5) and 6 (Q6). There are two integers equal to 1 and one integer
equal to 2 in the sequence. Hence, the corank of the restriction of Q to the six (re-
spectively, five) dimensional subspace Q2

6 (Q3
5) is two (three). Finally, since every

integer to the left of the bracket is equal to one, we conclude that L2 ⊂ Ker(Q2
6).

More explicitly, given a symplectic sequence (L•, Q•), the corresponding sym-
plectic diagram D(L•, Q•) is determined as follows: The sequence of integers begins
with dim(Ln1

∩ K1) integers equal to 1, followed by dim(Ln1
∩ Ki) − dim(Ln1

∩
Ki−1) integers equal to i, for 2 ≤ i ≤ k − s, in increasing order, followed by
n1 − dim(Ln1 ∩ Kk−s) integers equal to 0. The sequence then continues with
dim(Lnj ∩K1)− dim(Lnj−1

∩K1) integers equal to 1, followed by dim(Lnj ∩Ki)−
max(dim(Lnj−1

∩Ki),dim(Lnj ∩Ki−1)) integers equal to i in increasing order, fol-
lowed by nj−max(nj−1,dim(Lnj ∩Kk−s)) zeros for j = 2, . . . , s in increasing order.

The sequence then continues with dim(Q
rk−s
dk−s
∩K1)−dim(Lns ∩K1) integers equal

to 1, followed by dim(Q
rk−s
dk−s
∩Ki)−max(dim(Q

rk−s
dk−s
∩Ki−1),dim(Lns ∩Ki)) inte-

gers equal to i in increasing order, followed by zeros until position dk−s. Between
positions di and di−1 (i > k−s), the sequence has dim(Q

ri−1

di−1
∩K1)−dim(Qridi∩K1)

integers equal to 1, followed by dim(Q
ri−1

di−1
∩Kh)−max(dim(Qridi ∩Kh),dim(Q

ri−1

di−1
∩

Kh−1)) integers equal to h in increasing order, for h ≤ i−1, followed by zeros until
position di−1. Finally, the sequence ends with n− d1 zeros. The brackets occur at
positions nj and the braces occur at positions di.

Proposition 7.9. The diagram D(L•, Q•) is a symplectic diagram of type s for
SG(k, n). Furthermore, if (L•, Q•) is admissible, then D(L•, Q•) is admissible.

Proof. By construction each bracket or brace occupies a position. Since n1 < n2 <
· · · < ns < dk−s < · · · < d1, a position is occupied by at most one bracket or brace.
Since nj < di for every 1 ≤ j ≤ s and 1 ≤ i ≤ k−s, every bracket occurs to the left
of every brace. By construction, it is clear that dim(Lnj ∩Ki) and dim(Qrhdh ∩Ki),
for h ≥ i, are recorded by the number of positive integers less than or equal to i
to the left of ]j and }h, respectively. Hence, every integer equal to i occurs to the
left of }i. Finally, the total number of integers equal to zero or greater than i to
the left of }i is equal to the rank of the restriction of Q to Qridi . Since this rank
is necessarily even, the total number of integers equal to zero or greater than i to
the left of }i is even. This shows that we have a sequence of brackets and braces of
type s.

The sequence of brackets and braces is a symplectic diagram. The corank bound
implies that ri − dim(Qridi ∩Ki−1) ≤ di−1 − di. The left hand side of the inequality
is represented by the number of integers equal to i in the sequence. The right hand
side of the inequality is equal to the number of integers between }i and }i−1. We
thus get the inequality l(i) ≤ ρ(i, i − 1) required by Condition (S1) in Definition
3.24. By the linear space bound, the largest dimensional linear space contained in
Qridi has dimension bounded by (di + ri)/2. The invariant ri is equal to both the
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number of positive integers less than or equal to i contained to the left of }i and
dim(Ki). The span of Lns and the kernels Kh for h ≥ i is an isotropic subspace of
Qridi . The dimension of this subspace is denoted by τi and is equal to the sum of

p(]s) and the number of positive integers between ]s and }i. Hence, 2τi ≤ p(}i) + ri
and condition (S2) of Definition 3.24 holds.

If the sequence is in (perfect) order, then the corresponding sequence of brackets
and braces is in (perfect) order. Assume the sequence is not in order. The definition
of a sequence implies that, for i < k − s, there can be at most one i which is not
to the left of }k−s. Suppose the sequence satisfies Condition (GS1). Then, there
exists an integer η such that for i > η those integers that are not to the left of
}k−s are to the immediate left of }i+1. Furthermore, condition (GS1) implies that
the positive numbers up to η are in non-decreasing order and η is the only integer
violating the order. Thus condition (S3) is satisfied. Finally, condition (GS2)
directly translates to condition (S4). We conclude that the sequence of brackets
and braces is a symplectic diagram.

If the sequence (L•, Q•) is admissible, then the corresponding symplectic diagram
is also admissible. Let i be the minimal index such that Lnj ⊂ Ki. If there isn’t
such an index, let i = k − s + 1. If i > 1, then condition (GA1) implies that
dim(Lnj ∩ Ki−1) ≤ nj − 2. Hence, the two integers preceding ]j are equal to i

(or 0 if i = k − s + 1). If i = 1, then all the integers preceding ]j are equal
to 1. Furthermore, if nj = 1, condition (GA1) implies that Lnj ⊂ Ki for all
1 ≤ i ≤ k − s. We conclude that condition (A1) holds. The invariant xi is equal
to both the number of isotropic subspaces Lnj contained in Ki and the number of
brackets such that every integer to the left of it is positive and less than or equal
to i. Since di = p(}i), conditions (A2) and (GA2) are exactly the same. This
concludes the proof of the proposition. �

Remark 7.10. Proposition 7.9 also explains the definition of a symplectic diagram
in geometric terms. Condition (4) of Definition 3.12 is implied by the evenness of
rank and simply states that di − ri has to be even. As discussed in the proof of
Proposition 7.9, condition (S1) is a translation of the corank bound and condition
(S2) is implied by the linear space bound.

Conversely, we can associate an admissible sequence to every admissible sym-
plectic diagram. By Darboux’s Theorem, we can take the skew-symmetric form
to be defined by

∑m
i=1 xi ∧ yi. Let the dual basis for xi, yi be ei, fi such that

xi(ej) = δji , yi(fj) = δji and xi(fj) = yi(ej) = 0. Given an admissible symplectic
diagram, we associate e1, . . . , ep(]s) to the integers to the left of ]s in order. We
then associate ep(]s)+1, . . . , er′ to the positive integers to the right of ]s and left of

}k−s in order. Let ei1 , . . . , eil be vectors that have so far been associated to zeros.
Then associate fi1 , . . . , fil to the remaining zeros to the left of }k−s in order. If
there are any zeros to the left of }k−s that have not been assigned a basis vector,
assign them er′+1, fr′+1, . . . , er′′ , fr′′ in pairs in order. Continuing this way, if there
is a positive integer between }i+1 and }i associate to it the smallest index basis
element eα that has not yet been assigned. Assume that the integers equal to i+ 1
have been assigned the vectors ej1 , . . . , ejl . Assign to the zeros between }i+1 and
}i, the vectors fj1 , . . . , fjl . If there are any zeros between }i+1 and }i that have not
been assigned a vector, assign them eα+1, fα+1, . . . , eβ , fβ in pairs until the zeros
are exhausted. Let Lnj be the span of the basis elements associated to the integers
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to the left of ]j . Let Qridi be the span of the basis elements associated to the integers

to the left of }i. We thus obtain a sequence (L•, Q•) whose associated symplectic
diagram is D.

Example 7.11. To 11]233]0000}00}0}00 we associate the sequence of vectors

e1, e2, e3, e4, e5, e6, f6, e7, f7, f4, f5, f3, f1, f2.

Then L2 is the span of e1, e2, L5 is the span of e1 through e5, Q5
9 is the span of e1

through e7 and f6, f7, Q3
11 is the span of e1 through e7 and f4 through f7. Finally,

Q2
12 is the span of Q3

11 and f3.
To 22]33]0000}00}100}0 we associate the sequence of vectors

e1, e2, e3, e4, e5, f5, e6, f6, f3, f4, e7, f1, f2, f7.

L2 is the span of e1, e2, L4 is the span of e1 through e4, Q4
8 is the span of e1

through e6 and f5, f6, Q2
10 is the span of Q4

8 and f3, f4 and Q1
13 is the span of Q2

10

and e7, f1, f2.
Finally, to 22]300]300}00}100}0 we associate the sequence of vectors

e1, e2, e3, e4, e5, e6, f4, f5, f3, f6, e7, f1, f2, f7.

Then L2 is the span of e1 and e2, L5 is the span of e1 through e5, Q4
8 is the span

of e1 through e5 and f4, f5, Q2
10 is the span of Q4

8 and f3, f6. Finally, Q1
13 is the

span of all the vectors but f7.

Remark 7.12. Notice that equivalent symplectic diagrams correspond to permu-
tations of the basis elements that do not change the vector spaces in (L•, Q•).

Remark 7.13. The construction of a symplectic sequence (L•, Q•) from a sym-
plectic diagram D is well-defined. By condition (S2), the number of zeros to the left
of ]s is less than or equal to the number of zeros between ]s and }k−s. Hence, we
can choose vectors fi1 , . . . , fil corresponding to the vectors ei1 , . . . , eil . Similarly, if
there does not exist a positive integer between }i+1 and }i, then by condition (S1),
l(i+1) ≤ ρ(i+1, i). We can, therefore, associate vectors fj1 , . . . , fjl to the zeros be-
tween }i+1 and }i. If there exists a positive integer between }i+1 and }i, then there
is only one positive integer between them by condition (S3). If l(i+ 1) = ρ(i+ 1, i),
then condition (4) is violated. Hence, l(i + 1) < ρ(i + 1, i) and we can associate
vectors fj1 , . . . , fjl to the zeros between }i+1 and }i. Thus the construction of the
sequence makes sense. It is now straightforward to check that the sequence associ-
ated to an admissible symplectic diagram is an admissible sequence. Furthermore,
the two constructions are inverses of each other.

We are now ready to define symplectic restriction varieties.

Definition 7.14. Let (L•, Q•) be an admissible sequence for SG(k, n). Then
the symplectic restriction variety V (L•, Q•) is the Zariski closure of the locus in
SG(k, n) parameterizing

{W ∈ SG(k, n) | dim(W ∩ Lnj ) = j for 1 ≤ j ≤ s,dim(W ∩Qridi) = k − i+ 1

and dim(W ∩Ki) = xi for 1 ≤ i ≤ k − s}.

Remark 7.15. The geometric reasons for imposing conditions (A1) and (A2) in
Definition 3.27 are now clear. Condition (A1) is an immediate consequence of the
kernel bound. If dim(Lnj ∩Ki) = nj − 1 and a linear space of dimension k − i+ 1
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intersects nj in dimension j and Ki in dimension j − 1, then the linear space is
contained in L⊥nj . Hence, we need to impose condition (A1).

The inequality

xi ≥ k − i+ 1− di − ri
2

is an easy consequence of the linear space bound. We require the k-dimensional
isotropic subspaces to intersect Qridi in a subspace of dimension k − i + 1 and to
intersect the singular locus of Qridi in a subspace of dimension xi. By the linear
space bound, any linear space of dimension k − i + 1 has to intersect the singular
locus in a subspace of dimension at least k − i+ 1− di−ri

2 , hence the inequality in
condition (A2) holds.

Example 7.16. The two most basic examples of symplectic restriction varieties
are:

(1) A Schubert variety Σλ;µ in SG(k, n), which is the restriction variety asso-
ciated to a symplectic diagram D(σλ;µ), and

(2) The intersection Σa• ∩ SG(k, n) of a general Schubert variety in G(k, n)
with SG(k, n), which is the restriction variety associated to D(a•).

In general, symplectic restriction varieties interpolate between these two examples.

Lemma 7.17. A symplectic restriction variety corresponding to a saturated and
perfectly ordered admissible sequence is a Schubert variety in SG(k, n). Conversely,
every Schubert variety in SG(k, n) can be represented by such a sequence.

Proof. Let F1 ⊂ · · · ⊂ F⊥1 ⊂ V be an isotropic flag. If Σλ,µ is a Schubert variety
defined with respect to this flag, then the symplectic restriction variety defined with
respect to the sequence Lnj = Fλj and Qridi = F⊥µk−i+1

is a saturated and perfectly
ordered admissible sequence.

Conversely, suppose that the sequence (L•, Q•) is a saturated and perfectly or-
dered admissible sequence. Since the sequence is saturated, we have that Qridi =

K⊥i . Since the sequence is in perfect order, we have that dim(Lnj ∩ Ker(Qridi)) =

min(ri, nj). Consequently, the set of linear spaces {Lnj ,Ker(Qridi)} can be ordered
by inclusion, or equivalently, by dimension. Then the resulting partial flag can be
extended to an isotropic flag. By condition (GA1) of the definition of an admissible
sequence, we have that nj 6= ri + 1 for any i, j. Hence, the symplectic restric-
tion variety defined with respect to (L•, Q•) is the Schubert variety Σλ•;µ• , where
λj = nj , for 1 ≤ j ≤ s, and µi = rk−i+1, for s < i ≤ k. �

Remark 7.18. By Lemma 7.17, the saturated symplectic diagrams in perfect order
represent Schubert varieties.

Next, we show that the intersection of a general Schubert variety Σ with the
symplectic Grassmannian SG(k, n) (when non-empty) is a restriction variety.

Lemma 7.19. Let Σ be the Schubert variety defined with respect to a general partial
flag Fa1 ⊂ · · · ⊂ Fak . Then Σ∩SG(k, n) 6= ∅ if and only if ai ≥ 2i−1 for 1 ≤ i ≤ k.

Proof. Suppose ai < 2i − 1 for some i. If [W ] ∈ Σ ∩ SG(k, n), then W ∩ Fai is
an isotropic subspace of Q ∩ Fai of dimension at least i. Since Fai is general, the
corank of Q ∩ Fai is 0 or 1 and equal to ai modulo 2. By the linear space bound,
the largest dimensional isotropic subspace of Q ∩ Fai has dimension less than or
equal to i− 1. Therefore, W cannot exist and Σ ∩ SG(k, n) = ∅.
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Conversely, let ai = 2i − 1 for every i. Then G1 = F1 is isotropic, G2 = F⊥1 in
F3 is the unique two-dimensional isotropic subspace of Q ∩ F3 containing G1. By
induction, we see that Gi = G⊥i−1 is the unique subspace of dimension i isotropic
with respect to Q∩ F2i−1 that contains Gi−1. Continuing this way, we construct a
unique isotropic subspace W of dimension k contained in Σ∩SG(k, n). If ai ≥ 2i−1,
the vector space W just constructed is still contained in Σ ∩ SG(k, n), hence this
intersection is non-empty. �

Lemma 7.20. Let Σ be the Schubert variety defined with respect to a general partial
flag Fa1 ⊂ · · · ⊂ Fak such that ai ≥ 2i− 1. Then Σ ∩ SG(k, n) = V (D(a•)).

Proof. Let ai = 2i − 1, then since Fai is general, the restriction of Q to Fai has a
one-dimensional kernel Ki. By the linear space bound, any i-dimensional isotropic
subspace W contained in Fai contains Ki. For each j such that aj > 2j − 1,
recall that uj is the number of i < j such that ai = 2i − 1 and vj is the number
of i > j such that ai = 2i − 1. Let K be the span of one-dimensional kernels
Ki for each ai = 2i − 1. Then dim(K) = u and any k-dimensional subspace W
contained in Σ ∩ SG(k, n) contains K. For j such that aj > 2j − 1, let Gj+vj =

Span(Faj ,K) ∩ K⊥. The dimension of Gj+vj is aj − uj + vj . The corank of the
restriction of Q to Gj+vj is u + δ(aj), where δ(aj) = 0(1) if aj is even (odd).
Furthermore, any isotropic linear space contained in Σ∩ SG(k, n) intersects Gj+vj
in a subspace of dimension at least j+ vj . From this description and the definition
of V (D(a•)), it is now clear that Σ ∩ SG(k, n) = V (D(a•)). �

Proposition 7.21. Let (L•, Q•) be an admissible sequence. Then V (L•, Q•) is an
irreducible subvariety of SG(k, n) of dimension

dim(V (L•, Q•)) =

s∑
j=1

(nj − j) +

k−s∑
i=1

(di − 1− 2k + 2i+ xi). (2)

Proof. The proof is by induction on k. When k = 1, if the sequence consists of an
isotropic linear space Ln1

, then the corresponding symplectic restriction variety is
PLn1

hence it is irreducible of dimension n1 − 1. If the sequence consists of one
non-isotropic subspace Qr1d1 , then the corresponding symplectic restriction variety is
also projective space of dimension d1−1. In both cases, the varieties are irreducible
of the claimed dimension. This proves the base case of the induction.

If the sequence does not contain any skew-symmetric forms, then the corre-
sponding restriction variety is isomorphic to a Schubert variety in the ordinary
Grassmannian G(k, n). In that case, it is well known that Schubert varieties are

irreducible and have dimension
∑k
j=1(nj − j) [?].

Observe that omitting Qr1d1 from an admissible sequence (L•, Q•) for SG(k, n)

gives rise to an admissible sequence (L′•, Q
′
•) for SG(k − 1, n). There is a natural

surjective morphism f : V 0(L•, Q•)→ V 0(L′•, Q
′
•) that sends a vector space W to

W ∩ Qr2d2 (or W ∩ Lnk−1
if s = k − 1). By induction, V (L′•, Q

′
•) is irreducible of

dimension
∑s
j=1(nj − j) +

∑k−s
i=2 (di− 1− 2k+ 2i+xi). The fibers of the morphism

f over a point W ′ correspond to choices of isotropic k-planes W that contain W ′

and are contained in Qr1d1 . This is a Zariski dense open subset of projective space

of dimension d1 − 2(k − 1)− 1 + x1. Hence, by the Theorem on the Dimension of
Fibers [S, I.6.7], V (L•, Q•) is irreducible of the claimed dimension. This concludes
the proof of the proposition. �
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8. The geometric explanation of the combinatorial game

In this section, we will prove the combinatorial rule by interpreting it geomet-
rically. The transformation from an admissible diagram D to Da records a one-
parameter specialization of the restriction variety V (D). The algorithm describes
the flat limit of this specialization.

The specialization. We now explain the specialization. There are several cases
depending on whether D is in order and whether l(κ) < ρ(κ, κ − 1) − 1 or not.
In the previous section, given an admissible quadric diagram D, we associated an
admissible sequence by defining each of the vector spaces (L•, Q•) as a union of
basis elements that diagonalize the skew-symmetric form Q. All our specializations
will replace exactly one of the basis elements v = eu or v = fu for some 1 ≤ u ≤ m
with a vector v(t) = eu(t) or v(t) = fu(t) varying in a one-parameter family. For
t 6= 0, the resulting set of vectors will be a new basis for V , but when t = 0 two of
the basis elements will become equal. Since each linear space in (L•, Q•) is a union
of basis elements, we get a one-parameter family of vector spaces (L•(t), Q•(t)) by
replacing every occurrence of the vector v with v(t) for t 6= 0. Correspondingly,
we have a one-parameter family of restriction varieties V (L•(t), Q•(t)). Since these
varieties are projectively equivalent as long as t 6= 0, we obtain a flat one-parameter
family. Our task is to describe the limit when t = 0.

In case (1)(i), D is not in order, η is the unique integer violating the order, and
ν is the leftmost integer equal to η+1. Suppose that under the translation between
symplectic diagrams and sequences of vector spaces, eu is the vector associated to
η and ev is the vector associated to ν. Then consider the one-parameter family
obtained by changing ev to ev(t) = tev + (1− t)eu and keeping every other vector
fixed. When the set of basis elements spanning a vector space Lnj or Qridi contains

ev, Lnj (t) or Qridi(t) is the span of the same basis elements except that ev is replaced

with ev(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

In case (1)(ii), D is not in order, η is the unique integer violating the order,
i > η does not occur in the sequence to the left of η and ν is the leftmost integer
equal to i + 1. Let eu be the vector associated to η and let ev be the vector
associated to ν. Consider the one-parameter family obtained by changing fv to
fv(t) = tfv +(1− t)eu. When the set of basis elements spanning a vector space Lnj
or Qridi contains fv, Lnj (t) or Qridi(t) is the span of the same basis elements except

that fv is replaced with fv(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

In case (2)(i), D is in order and l(κ) < ρ(κ, κ − 1) − 1. Suppose that ev is the
vector associated to ν, the leftmost κ+ 1. Let eu and fu be two vectors associated
to zeros between }κ and }κ−1. These exist since l(κ) < ρ(κ, κ−1)−1. Consider the
one-parameter specialization replacing fv with fv(t) = tfv+(1−t)eu. When the set
of basis elements spanning a vector space Lnj or Qridi contains fv, Lnj (t) or Qridi(t)

is obtained by replacing fv with fv(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

In case (2)(ii)(a), D is in order and l(κ) = ρ(κ, κ− 1)− 1. Let ν be the leftmost
integer equal to κ and suppose that ev is the vector associated to ν. Let eu be
the vector associated to the κ − 1 following }κ. Then let ev(t) = tev + (1 − t)eu.
When the set of basis elements spanning a vector space Lnj or Qridi contains ev,

Lnj (t) or Qridi(t) is obtained by replacing ev with ev(t). Otherwise, Lnj (t) = Lnj or

Qridi(t) = Qridi .
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Finally, in case (2)(ii)(b), D is in order, l(κ) = ρ(κ, κ − 1) − 1 and there does
not exist an integer equal to κ to the left of κ. Let ev be the vector associated to
ν, the leftmost integer equal to κ + 1 and let eu be the vector associated to κ − 1
to the right of }κ. Then let fv(t) = tfv + (1− t)eu. When the set of basis elements
spanning a vector space Lnj or Qridi contains fv, Lnj (t) or Qridi(t) is obtained by

replacing fv with fv(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

The flat limits of the vector spaces are easy to describe. If Lnj or Qridi does not

contain the vector v, then Lnj (t) = Lnj and Qridi(t) = Qridi for all t 6= 0. Hence, the

flat limit Lnj (0) = Lnj and Qridi(0) = Qridi . Similarly, if Lnj or Qridi contains both of

the basis elements spanning v(t), then Lnj (t) = Lnj and Qridi(t) = Qridi for all t 6= 0.

Then in the limit Lnj (0) = Lnj and Qridi(0) = Qridi . A vector space changes under
the specialization only when it contains the vector with coefficient t and does not
contain the vector with coefficient (1 − t). In this case, in the limit t = 0, the flat
limit Lnj (0) or Qridi(0) is obtained by replacing in Lnj or Qdi the basis element with

coefficient t with the basis element with coefficient (1− t).
Notice that in each of these cases, the set of limiting vector spaces is depicted

by the symplectic diagram Da. In case (1)(i), if η is between }a and }a−1 and ν
is between ]b and ]b+1 (respectively, between ]s and }k−s), the vector spaces Lnj
for j ≤ b (respectively, j ≤ s) and Qridi for i < a are unaffected. In all the other
vector spaces, ev is replaced by eu. The effect on symplectic diagrams is to switch
η and ν as in the definition of Da. In case (1)(ii), assume that η is between }i and
}i−1. The linear spaces other than Qridi remain unchanged under the degeneration.
In Qridi the vector fv is replaced by eu. Note that this increases the corank of

the restriction of Q to Qridi(0) by two since now both vectors eu and ev in the

kernel. This has the effect of changing ν to i and a zero between }i+1 and }i to
η as in the definition of Da. In case (2)(i), all the vector spaces but Qrκdκ remain
unchanged. The degeneration replaces fv in Qrκdκ by eu. This increases the corank

of the restriction of Q to Qrκdκ(0) by two since both eu and ev are now contained in
the kernel of the restriction. The corresponding symplectic diagram is obtained by
changing ν and a zero between }κ+1 and }κ to κ as in the definition of Da. The
cases (2)(ii)(a) and (b) are analogous to the cases (1)(i) and (1)(ii), respectively.

For the rest of the paper, we use the specialization just described.

Example 8.1. For concreteness, consider the restriction variety associated to
200}000}00 in SG(2, 8) parameterizing isotropic subspaces that intersect A =
Span(e1, e2, f2) and are contained in B = Span(ei, fi), 1 ≤ i ≤ 3. The first special-
ization is given by tf2 + (1 − t)e3. In the limit, A1 = A(0) = Span(e1, e2, e3) and
B(0) = B. This changes the diagram to 000]000}00. The corresponding restric-
tion variety parameterizes linear spaces that intersect A(0) and are contained in B.
The next specialization is given by tf1 + (1 − t)e4. In the limit, A1(0) = A1 and
B1 = B(0) = Span(e1, e2, e3, e4, f2, f3). This changes the diagram to 100]100}00.
The corresponding restriction variety parameterizes linear spaces that intersect A1

and are contained in B1. The final specialization is given by te2 + (1− t)e4. In the
limit, A2 = A1(0) = Span(e1, e4, e3) and B1(0) = B1. This changes the diagram
to 110]000}00. The flat limit of the restriction varieties has two components. The
linear spaces may intersect Span(e1, e4), in which case we get the restriction variety
associated to the diagram 11]0000}00. Otherwise, by the kernel bound, the linear
spaces have to be contained in A⊥2 . In this case, we get the restriction variety
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associated to the diagram 111]00}000. The reader should convince themselves that
this is precisely the outcome of Algorithm 3.39.

We are now ready to state and prove the main geometric theorem.

Theorem 8.2. (The Geometric Branching Rule) The flat limit of the specialization
of V (D) is supported along

⋃
V (Di), where V (Di) is a symplectic restriction variety

associated to a diagram Di obtained by running Algorithm 3.39 on D. Furthermore,
the flat limit is generically reduced along each V (Di). In particular, the equality

[V (D)] =
∑

[V (Di)]

holds between the cohomology classes of symplectic restriction varieties.

proof of theorem 3.43 assuming theorem 8.2. By Proposition 3.49, Algorithm 3.39
replaces each admissible symplectic diagram by one or two admissible symplectic
diagrams. Hence, the algorithm can be repeated. By Proposition 3.50, after finitely
many steps, the algorithm terminates leading to a collection of saturated admissible
symplectic diagrams in perfect order. By Lemma 7.17, each of these diagrams
represent a Schubert variety. Therefore, Theorem 3.43 is an immediate corollary of
Theorem 8.2. �

Proof of Theorem 8.2. The proof of Theorem 8.2 has two steps. First, we interpret
the algorithm as the specialization described in the beginning of this section. Let
V (D) denote the initial symplectic restriction variety. Let V (D(t)) denote the
one-parameter family of restriction varieties described in the specialization and let
V (D(0)) be the flat limit at t = 0. We show that V (D(0)) is supported along
the union of restriction varieties V (Di), where Di are the admissible symplectic
diagrams derived from D via Algorithm 3.39. In the second step, we verify that
the support of the flat limit contains each V (Di) and the flat limit is generically
reduced along each V (Di). This suffices to prove the theorem.

We now analyze the specialization to conclude that the support of V (D(0)) is
the union of symplectic restriction varieties V (Di). The proof is by a dimension
count. In order to restrict the possible irreducible components of V (D(0)), we find
conditions that the linear spaces parameterized by V (D(0)) have to satisfy. We
then observe that these conditions already cut out the symplectic varieties V (Di)
and that each V (Di) has the same dimension as V (D). The following observation
puts strong restrictions on the support of the flat limit.

Observation 8.3. The linear spaces parameterized by V (D(t)) intersect the linear
spaces Lnj (t) (respectively, Qridi(t)) in a subspace of dimension at least j (respec-

tively, k− i+1). Similarly, they intersect Ker(Qridi(t)) in a linear space of dimension
at least xi. Since intersecting a proper variety in at least a given dimension is a
closed condition, the linear spaces parameterized by V (D(0)) have to intersect the
linear spaces Lnj (0) (respectively, Qridi(0)) in a subspace of dimension at least j

(respectively, k − i+ 1). Furthermore, they intersect Ker(Qridi(0)) in a subspace of
dimension at least xi.

Let Y be an irreducible component of V (D(0)). We can construct a sequence of
vector spaces Fu1

⊂ · · · ⊂ Fuk such that the locus Z parameterizing linear spaces
with dim(W ∩ Fuj ) ≥ j contains Y . We have already seen that the linear spaces
Lnj (0) and Qridi(0) are the linear spaces recorded by the symplectic diagram Da.
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Let z1, . . . , zn be the ordered basis of V obtained by listing the basis elements
associated to Da from left to right. Let Fu be the linear space spanned by the
basis elements z1, · · · , zu. Let Fu1 ⊂ · · · ⊂ Fuk be the jumping linear spaces for Y ,
that is the linear spaces of the form Fu such that dim(W ∩ Fu) > dim(W ∩ Fu−1)
for the general isotropic space W parameterized by Y . Observation 8.3 translates
to the inequalities uj ≤ nj for j ≤ s and ui ≤ dk−i+1 for s < i ≤ k. Hence,
we can obtain a sequence depicting the linear spaces Fu1

, . . . , Fuk by moving the
braces and brackets in the diagram Da to the left one at a time. By the proof of
Proposition 7.21, Equation (2) gives an upper bound on the dimension of the locus
Z (note that we used the fact that the sequence is admissible in the proof only to
deduce the equality).

We now estimate the dimension of Z. Let (La•, Q
a
•) denote the linear spaces

depicted by the diagram Da. We obtain the sequence defining Z by replacing
linear spaces in (La•, Q

a
•) by smaller dimensional ones.

• If we replace a linear space Lani of dimension ni in (La•, Q
a
•) with a linear

space Fui not contained in (La•, Q
a
•) but containing Lani−1

, then according

to Equation (2) the dimension changes as follows. Let yai be the index of
the smallest index linear space Qrldl such that Lani ⊂ Kl. Similarly, let yui be

the smallest l such that Fui ⊂ Kl. The left sum in Equation (2) changes by
ui−nai . The quantities xl increase by one for yui ≤ l < yai . Hence, the sum
on the right increases by yai − yui . Hence, the total change in dimension is
ui−nai +yai −yui . By condition (S4) of Definition 3.24 for Da and condition
(A1) for D, in Da, there is at most one missing integer among the positive
integers to the left of the brackets and the two integers preceding all brackets
but possibly ]xν−1+1 are equal. We conclude that if we move any bracket to
the left except for ]xν−1+1, we strictly decrease the dimension. Furthermore,
if we move ]xν−1+1 to the left, we strictly decrease the dimension unless in
D we have the equality p(]xν−1+1) − π(ν) − 1 = yxν−1+1 − ν, so that the
decrease in the position resulting by shifting the bracket in Da is equal
to the increase in the number of linear spaces Qrldl containing Fui in their
kernel.

• If we replace the linear space Qri,adi
of dimension dai in (La•, Q

a
•) with a non-

isotropic linear space Fuk−i+1
of dimension dui containing Q

ri−1,a
di−1

, then, by

Equation (2), the dimension changes as follows. Let xui be the number
of linear spaces that are contained in the kernel of the restriction of Q to
Fuk−i+1

. Then the dimension changes by dui − dai − xai + xui . We have that
dui − dai − xai + xui ≤ 0 with strict inequality unless the number of linear
spaces contained in the kernel of Fuk−i+1

increases by an amount equal to
dai − dui . The latter can only happen if condition (A1) is violated for the
diagram so that increasing the dimension of the kernel by one can increase
the number of linear spaces contained in the kernel.

• Finally, if we replace the linear space Q
rk−s,a
dk−s

of dimension dak−s in (La•, Q
a
•)

with an isotropic linear space Fus+1 containing Lns , then the first sum
in Equation (2) changes by us+1 − s − 1. The second sum changes by
−dak−s + yus+1 − xak−s + (2s + 1), where yus+1 denotes the number of non-
isotropic subspaces containing Fus+1

in the kernel of the restriction of Q.
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Hence, the total change is

−dak−s + us+1 − xak−s + yus+1 + s.

If xak−s = s − j < s, then yus+1 = 0. Since by the linear space bound
us+1 + j + 1 ≤ dk−s, we conclude that the dimension strictly decreases.
If xk−s = s, then the change is strictly negative unless rk−s = dk−s and
dk−s = us+1.

The dimension count shows that V (D) and V (Da) have the same dimension.
When p(]xν−1+1)− π(ν)− 1 = yxν−1+1 − ν in D, V (Db) and V (Da) have the same
dimension. Furthermore, Step 2 of Algorithm 3.35 and Algorithm 3.36 preserve
the dimension of the variety. By Equation (2), Step 1 of Algorithm 3.35 also
preserves the dimension. If condition (A2) is violated for Da for the index i, then
by Proposition 3.49, we have that 2xi = 2k − 2i − di + ri. On the other hand,
the operation in Step 1 of Algorithm 3.35 changes the left sum in Equation (2) by
ri+(s−xi)−s−1 = ri−xi−1, since it adds a new bracket of size ri and increases
the positions of the brackets with index xi + 1, . . . , s. It changes the left sum by
−di + 1− xi + 2k − 2(k − s) + 2(k − s− i) since it removes the brace with index i
and increases the positions and xl for the braces with indices l = i + 1, . . . , k − s.
We conclude that the change in dimension is ri − 2xi − di + 2k − 2i = 0. We
conclude that every variety V (Di) associated to V (D) by Algorithm 3.39 has the
same dimension as V (D).

We can now determine the support of the flat limit of the specialization. Since in
flat families the dimension of the fibers are preserved, Y has the same dimension as
V (D). Hence, our dimension calculation puts very strong restrictions on Z. First,
suppose that either xν−1 = s or p(}xν−1+1) − π(ν) − 1 > yxν−1+1 − ν in D. If Da

is admissible, then by our dimension counts, replacing an isotropic or non-isotropic
linear space in (La•, Q

a
•) with a smaller dimensional linear space produces a strictly

smaller dimensional locus. We conclude that the general linear space parameter-
ized by Y satisfies exactly the rank conditions imposed by (La•, Q

a
•). Hence, Y is

contained in V (Da). Since both are irreducible varieties of the same dimension, we
conclude that Y = V (Da). If Da is not admissible, then it either violates condition
(A1) or (A2). If Da fails condition (A2), then xi < k − i + 1 − di−ri

2 for some i.
Since the linear spaces parameterized by Y have to intersect Qridi in a subspace of
dimension k− i+1, by the linear space bound, we conclude that these linear spaces
have to intersect Ki in a subspace of dimension at least xi + 1. In Da, there is only
one integer i that is not in the beginning non-decreasing part of the sequence of in-
tegers. Geometrically, the linear spaces Lanj or Q

rj ,a
dj

either contain or are contained

in Ki or intersect Ki in a codimension one linear space. Let Fa1 ⊂ Fa2 ⊂ · · · ⊂ Fal
be a partial flag such that Fah intersects M in a codimension one subspace of M .
Let M = Ga0+1 ⊂ Ga1+1 ⊂ · · · ⊂ Gal+1 be the partial flag where Gah+1 is the
span of Fah and M for h ≥ 1. The locus of linear spaces of dimension xi + l + 1
that intersect Fah in a subspace of dimension at least xi + h and intersect M in
a subspace of dimension at least xi + 1 is equivalent to the locus of linear spaces
that intersect the vector spaces Gah+1 in subspaces of dimension at least xi+1+h.
Notice that the diagram Dc formed in Step 1 of the Algorithm 3.35 depicts the
linear spaces

Ln1
, . . . , Lnxi ,Ki,Span(Ki, Lnxi+1

), · · · ,Span(Ki, Q
ri+1

di+1
), Q

ri−1

di−1
, · · · , Qr1d1 .
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Hence, by the linear space bound Y must be contained in V (Dc). By Proposition
3.49, Dc is an admissible symplectic diagram. Hence, V (Dc) is an irreducible
variety that has the same dimension as Y . We conclude that Y = V (Dc). On the
other hand, if Da satisfies condition (A2) but fails condition (A1), then it fails it for
the bracket with index xν−1 + 1 and the index ν. By the kernel bound, any linear
space that intersects Lnxν−1+1

in a subspace away from the kernel of Q restricted

to Q
rν−1

dν−1
has to be contained in L⊥nxν−1+1

. The latter vector space is depicted in a

symplectic diagram by changing ν to ν − 1 and shifting }ν−1 one unit to the right
as in Step 2 of Algorithm 3.35. This argument applies as long as condition (A1)
fails for the resulting sequence. We conclude that Y has to be contained in V (Dc).
Since Y and V (Dc) are irreducible varieties of the same dimension, we conclude
that Y = V (Dc).

Now suppose that xν−1 < s and p(}xν−1+1) − π(ν) − 1 = yxν−1+1 − ν in D.
Then, by our dimension count, replacing the linear space Lnxν−1+1

by a linear

space Fuxν−1+1
corresponding to a bracket of the form

· · · a a+ 1 . . . ν − 1 ν ν + 2 . . . ν + l − 1 ν + l ν + l] · · · →

· · · a]a+ 1 . . . ν − 1 ν ν + 2 . . . ν + l − 1 ν + l ν + l · · ·

produces a locus Z that has the same dimension as Y . Replacing any other
linear space results in a smaller dimensional locus. However, unless Fuxν−1+1 =

Ker(Qrνdν ) ∩ Lnxν−1+1
not all linear spaces parameterized by Z can be in the flat

limit. Observe that W⊥(t) intersects Lnxν−1+1
∩Ker(Qrada) in a subspace of dimen-

sion at least π(a) + 1 for every W (t) ∈ V (D(t)). By upper semi-continuity, the
same has to hold of the flat limit at t = 0. Hence, unless a = ν, we obtain a
smaller dimensional variety. We conclude that Y ⊂ V (Db). If Db is admissible,
then both varieties are irreducible of the same dimension and we conclude that
Y = V (Db). If Db is not admissible, then by Proposition 3.49, Db satisfies con-
dition (A2) but fails condition (A1). Furthermore, it fails condition (A1) only for
the bracket · · · a ν] · · · . By the kernel bound, the linear spaces parameterized of
dimensions k − a, k − a + 1, . . . , k − ν + 2 contained in Q

ra+1

da+1
, . . . , Q

rν−1

dν−1
, respec-

tively, are contained in (Lnxν−1+1
∩ Ker(Qrada))⊥ in Q

ra+1

da+1
, . . . , Q

rν−1

dν−1
. Algorithm

3.36 replaces the linear spaces Q
ra+1

da+1
, . . . , Q

rν−1

dν−1
with (Lnxν−1+1 ∩ Ker(Qrada))⊥ in

Q
ra+1

da+1
, . . . , Q

rν−1

dν−1
, respectively. Hence, Y is contained in V (Dc). Finally, if during

the process two braces occupy the same position, then the resulting locus Z has
strictly smaller dimension by our dimension counts so does not lead to a locus Z
containing Y . Since in all other cases Y and V (Dc) are irreducible varieties of the
same dimension, we conclude that Y = V (Dc). This completes the proof that the
support of the flat limit of the specialization is contained in the union of V (Di),
where Di are the admissible symplectic diagrams associated to D by Algorithm
3.39.

Finally, there remains to check that each of the irreducible components occur
with multiplicity one. This is an easy local calculation. The point here is that
taking the option Da at each stage of the algorithm leads to a Schubert variety.
Similarly, taking the option Db at all allowed places in the algorithm leads to a
Schubert variety. The classes of these two Schubert varieties occur in the class of
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V (D) with multiplicity one. Therefore, by intersecting V (D) with the dual of these
Schubert varieties, we can tell the multiplicity of V (Da) and V (Db).

First, in each of the five cases we can assume that η = 1. Let U be the Zariski
open set of our family of restriction varieties parameterizing linear spaces W (t) such

that dim(W (t) ∩Qrη(t)dη
(t)) = k − η + 1. Let Z be the family of symplectic restric-

tion varieties obtained by applying the specialization to the admissible sequence
(L′•, Q

′
•) (represented by D′) obtained from (L•, Q•) by omitting the linear spaces

Qr1d1 , . . . , Q
rη−1

dη−1
. Then there exists a natural morphism f : U → Z sending W (t)

to W (t) ∩Qrη(t)dη
(t), which is smooth at the generic point of each of the irreducible

components of the fiber of Z at t = 0. The fibers f over W ′ ∈ Z is the linear spaces
of dimension k that contain W ′ and satisfy the appropriate rank conditions with
respect to the linear spaces Qr1d1 , . . . , Q

rη−1

dη−1
. Notice that running Algorithm 3.39

on D′ results in the same outcome as running in D and removing the braces with
indices i < η. Hence, we can do the multiplicity calculation for the family Z. We
may, therefore, assume that η = 1.

In all the cases, the argument is almost identical with very minor variations. We
will give it in the hardest case, case (2)(i), and leave the minor modifications in
the other cases to the reader. In case (2)(i), by a similar argument, we may further
assume that κ = 1, dκ + rκ = n − 2, xκ = 0 and s ≤ 1. The most interesting
case is when s = 1 and 2dk−s ≥ n. Let y1 be the minimal index l such that Ln1

is contained in Ker(Qrldl). We will check that the multiplicities are one by finding a

cycle that intersects V (D) in one point and exactly one of the limits in one point.
If Da is admissible, then consider the Schubert variety Σ defined with respect to a
general isotropic flag with the following invariants

λi = n− di + 2 for κ = 1 ≤ i ≤ l − 1, λi = n− di + 1 for l ≤ i ≤ k − 1,

and µk = n− n1 + 1.

If Da satisfies condition (A2) but not (A1), change the definition of λ1 so that
λ1 = n− d1 + 2. If Da fails condition (A2), change the definition of Σ so that

λi = n− di+1 + 1 for 1 ≤ i ≤ l − 2, λi = n− di+1 for l − 1 ≤ i ≤ k − 2,

and µk−1 = n− n1, µk = n− rκ + 1.

By Kleiman’s Transversality Theorem [Kl1], it is immediate that both Σ ∩ V (D)
and Σ∩V (Da) consist of a single reduced point, whereas Σ∩V (Db) is empty. Since
Σ requires the k-plane to be contained in a linear space of dimension n − n1 + 1
and V (Db) requires the linear space to intersect a linear space of dimension less
than n1, these conditions cannot be simultaneously satisfied for general choices of
linear spaces. Hence, Σ ∩ V (Db) is empty. On the other hand, the intersection
Ln1
∩ F⊥µk consists of a one-dimensional vector space W1 and Qridi ∩ Fλi consist

of one-dimensional linear spaces contained in W⊥1 when l ≤ i ≤ k − 1 and two-
dimensional linear spaces not contained in W⊥1 when 1 ≤ i ≤ l − 1. Since any
linear space contained in V (D) ∩ Σ or V (Da) ∩ Σ must intersect all these linear
spaces in one-dimensional subspaces, we conclude that the k-dimensional linear
space satisfying conditions imposed by V (D) and Σ or V (Da) and Σ are uniquely
determined. It follows that the multiplicity of V (Da) is one.

Similarly, if p(]1) − π(2) − 1 = y1 − 2, then Db is admissible. Let Ω be the
Schubert variety defined with respect to a general isotropic flag with the following
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invariants:

λi = n− di + 1 for 1 ≤ i ≤ k − 1, µk = r1.

By Kleiman’s Transversality Theorem [Kl1], it is immediate that both Ω ∩ V (D)
and Ω ∩ V (Db) consist of a single reduced point, whereas Ω ∩ V (Da) is empty.
The conditions imposed by Ω and V (Da) cannot be simultaneously satisfied, hence
Ω ∩ V (Da) is empty. On the other hand, Fλi ∩ Q

ri
di

by construction are one-

dimensional subspaces that need to be contained in any W contained in Ω ∩ V (D)
or Ω ∩ V (Db). These determine (k − 1)-dimensional subspace W ′ of W . Lbn1

∩ F⊥µ1

is also a one-dimensinonal subspace Λ that needs to be contained in W . Since
Λ ⊂ (W ′)⊥, this uniquely constructs W ∈ Ω ∩ V (Db). Similarly, Ln1 ∩ F⊥µ1

is
a y1-dimensional linear space. However, the intersection of this linear space with
(W ′)⊥ is one-dimensional and must be contained in W . This uniquely constructs
W in V (D) ∩ Ω. We leave the minor modifications necessary in the other cases to
the reader (see [C3] for more details in the orthogonal case). This concludes the
proof of the theorem. �
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