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Abstract. We give conditions on a curve class that guarantee the vanishing of the structure constants
of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that

many of the structure constants of the quantum cohomology of flag varieties can be computed from the

image of the evaluation morphism. In fact, we show that a certain class of these structure constants
are equal to the ordinary intersection of Schubert cycles in a related flag variety. As a corollary to

the main theorem in [C3], we obtain a Littlewood-Richardson rule for these invariants. Our study also

reveals a remarkable periodicity property of the ordinary Littlewood-Richardson coefficients of partial
flag varieties.
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1. Introduction

1.1. Motivating questions. Let X be a homogeneous variety. A fundamental problem in algebraic ge-
ometry, combinatorics and representation theory is to describe the structure constants of the cohomology
or, more generally, the quantum cohomology of X with respect to its Schubert basis. In this paper we
study conditions that guarantee the vanishing and non-vanishing of the structure constants of the small
quantum cohomology ring of partial flag varieties.

Notation 1.1. Let 0 < k1 < k2 < · · · < kr < n be a sequence of strictly increasing positive integers. Let
F (k1, . . . , kr;n) denote the partial flag variety parameterizing r-tuples

V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ V
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of linear subspaces of a fixed vector space V of dimension n, where Vi has dimension ki. For notational
convenience we set k0 = 0 and kr+1 = n. The class of a curve C in F (k1, . . . , kr;n) is determined by r non-
negative integers d1, d2, . . . , dr, where di is the Plücker degree of the projection of C to the Grassmannian
G(ki, n). Given any finite increasing sequence of non-negative integers a1, . . . , ar, we denote the sequence
by a•. We denote the number of terms equal to i by li and express the sequence also as 0l0 , 1l1 , . . . , alarr .

Definition 1.2. We call a pair of sequences (k•, d•) of the same length a flag pair if 0 < k1 < · · · < kr
are strictly increasing positive integers and d1, . . . , dr are non-negative integers.

The first problem we address is the following.

Problem 1.3. Determine the flag pairs (k•, d•) for which there exists a non-zero, three-pointed, genus-
zero Gromov-Witten invariant of F (k•;n) of degree d• for some n. More generally, determine the
triples (k•, d•, n) for which there exists a non-zero, three-pointed, genus-zero Gromov-Witten invariant
of F (k•;n) of degree d•.

By Lemmas 3.3 and 3.5, if there exists a non-zero, three-pointed, genus-zero Gromov-Witten invariant
of F (k•, n0) of degree d• for some n0, then there exists a non-zero, three-pointed genus-zero Gromov-
Witten invariant of F (k•;n) of degree d• for every n ≥ min(n0, kr + dr). Hence, to study the first part
of the problem we can take n = kr + dr. The second part of the problem is more subtle.

In the case of Grassmannians G(k, n) there exists a non-zero, three-pointed Gromov-Witten invariant
if and only if d ≤ min(k, n− k) (see [BKT] or [Yo]). As a special case, our main vanishing theorem gives
a similar vanishing criterion for two-step flag varieties.

Theorem 1.4. If there exists a non-zero, three-pointed Gromov-Witten invariant of the two-step flag
variety F (k1, k2;n) of degree (d1, d2), then the following inequalities hold.

(1) d1k2 + d2(n− k1) ≤ 2k1(k2 − k1) + 2k2(n− k2).
(2) If 0 ≤ d1 ≤ k1, then d1 ≤ min(n− k1, d2 + k2 − k1). If k1 < d1, then d1 ≤ min(n− k1, 2k1, d2).
(3) If 0 ≤ d2 ≤ n−k2, then d2 ≤ min(k2, d1+k2−k1). If n−k2 < d2, then d2 ≤ min(k2, 2(n−k2), d1).

Note this set of inequalities is invariant under the transformation taking (k1, k2) to (n − k2, n − k1)
and interchanging d1 and d2. This transformation reflects the isomorphism between F (k1, k2;n) and
F (n− k2, n− k1;n). We also remark that the inequalities in Theorem 1.4 are sharp. We will see below
that if n ≥ k2 + d2, then the inequalities of the theorem precisely determine the range where there exists
non-zero invariants.

Example 1.5. As a first non-trivial example, Theorem 1.12 asserts that there are no non-zero, three-
pointed, genus-zero invariants of degree (0, 2) of F (1, 2; 4). The dimension of the corresponding Kont-
sevich moduli space M0,3(F (1, 2; 4), (0, 2)) is 11. Since the dimension of F (1, 2; 4) is 5, there are many
combinations of Schubert classes whose codimensions add up to 11. None the less, all the invariants
vanish. This can be explained geometrically by the fact that the image of the evaluation morphism has
dimension only 9. In fact, even the four-pointed invariants of F (1, 2; 4) of degree (0, 2) vanish.

Notation 1.6. Let M0,3(F (k•;n), d•) denote the Kontsevich moduli space of three-pointed, genus-zero
stable maps of degree d• to F (k•;n). M0,3(F (k•;n), d•) is equipped with three evaluation morphisms to
F (k•;n). Denote by e the morphism

e = ev1 × ev2 × ev3 :M0,3(F (k•;n), d•)→ F (k•;n)× F (k•;n)× F (k•;n).

Let IF (k•;n),d• (λ, µ, ν) denote the Gromov-Witten invariant of F (k•;n) of degree d• associated to three
Schubert classes σλ, σµ and σν .
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Once we know the range of non-zero invariants, we can concentrate on computing them. While there
are many algorithms for computing the structure constants of the small quantum cohomology ring of
partial flag varieties (see, for instance, [Ci], [Bu]), there are no known positive algorithms except in the
case of Grassmannians ([C4]). In [BKT], Buch, Kresch and Tamvakis provide a beautiful analysis of the
case of Grassmannians G(k, n). When d ≤ k, the evaluation morphism is birational onto its image. The
image can be characterized as the closure Ω of the subvariety

Ω0 = { (X,Y, Z) ∈ G(k, n)×G(k, n)×G(k, n) | dim(X ∩ Y ∩ Z) = k − d, dim(XY Z) = k + d }.

The Poincaré dual of the class of Ω is expressed in terms of the Künneth components as∑
|λ|+|µ|+|ν|=k(n−k)+dn

IG(k,n),d (λ, µ, ν) σλ∗ ⊗ σµ∗ ⊗ σν∗ ,

where λ∗ denotes the dual Schubert cycle to λ. Hence computing the small quantum cohomology of
G(k, n) in degree d reduces to computing the (ordinary) cohomology class of Ω. The variety Ω admits a
rational map to the two-step flag variety F (k − d, k + d;n) by sending (X,Y, Z) to (X ∩ Y ∩ Z,XY Z).
Buch, Kresch, Tamvakis show that the intersection of Ω with the pull-back of a Schubert cycle from
each factor is equal to the intersection of three Schubert varieties in the two-step flag variety under the
correspondence given by this rational map. Consequently, the structure constants of the small quantum
cohomology are equal to certain structure constants of the ordinary cohomology of two-step flag varieties.
Using this result, in [C4] we obtained a Littlewood-Richardson rule for the small quantum cohomology
of Grassmannians.

The quest for a positive algorithm motivates the second problem that we address.

Problem 1.7. Determine the triples (k•, d•, n) consisting of flag pairs (k•, d•) and n for which the
morphism

e :M0,3(F (k•;n), d•)→ F (k•;n)× F (k•;n)× F (k•;n)

is birational onto its image. In case e is birational onto its image, provide a Littlewood-Richardson rule
for computing the cohomology class of the image.

The following example, also due to Buch, Kresch and Tamvakis, shows that we cannot expect the
evaluation morphism to be always birational onto its image.

Example 1.8 (The example of Buch, Kresch and Tamvakis ([BKT])). The Gromov-Witten invariant

IF (1,2,3,4;5),(2,3,3,2)(pt, pt, pt) = 2.

In particular, the map

e :M0,3(F (1, 2, 3, 4; 5), (2, 3, 3, 2))→ F (1, 2, 3, 4; 5)× F (1, 2, 3, 4; 5)× F (1, 2, 3, 4; 5)

is not birational, but generically two-to-one. Consequently, the Gromov-Witten invariants cannot be
computed by calculating the class of the image of e in general. One also needs the degree of e.

This example discouraged efforts to combinatorialize the small quantum cohomology of partial flag
varieties in a fashion similar to Grassmannians. The purpose of this paper is to show that under mild
assumptions on the triple (k•, d•, n) the map e is birational onto its image. Our theorems on birationality
and non-vanishing of Gromov-Witten invariants specialize to the following for the two-step flag varieties.

Theorem 1.9. Let k1, k2, d1, d2 and n satisfy the inequalities in Theorem 1.4. If d1 > k1, suppose that
k2 + d2 ≤ n. Then there exists a non-zero, three-pointed Gromov-Witten invariant of F (k1, k2;n) of
degree (d1, d2). Furthermore, under the same hypotheses the evaluation morphism is birational onto its
image.
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It is natural to ask for a positive, geometric-combinatorial rule for computing the class of the image
of e in case e is birational onto its image. Unfortunately, this is a very difficult problem in general. In
this paper we solve it under further assumptions on the triple (k•, d•, n). We show that in a large subset
of the cases when the evaluation morphism is birational onto its image, the invariants may be computed
as the intersection of three Schubert varieties in other partial flag varieties. [C3] provides a Littlewood-
Richardson rule for these invariants. More importantly, this correspondence leads to fascinating identities
among the ordinary Littlewood-Richardson coefficients of flag varieties.

1.2. The statement of results. We now state the main results of this paper. Our results are best
phrased in terms of the splitting types of the pull-backs of the tautological bundles to the domain curves.
We adapt standard terminology from the theory of vector bundles to our case.

Definition 1.10. Let (k•, d•) be a flag pair. A (k•, d•)-admissible set of sequences is a set

A• = {(a1,j)k1j=1, (a2,j)k2j=1, . . . , (ar,j)
kr
j=1}

of r sequences of non-negative integers of lengths k1, . . . , kr, respectively, such that

(1) 0 ≤ ai,j ≤ ai,j+1 for every i and every 1 ≤ j ≤ ki − 1;

(2) ai+1,j ≤ ai,j for every 1 ≤ i ≤ r − 1 and j ≤ ki;

(3)
∑ki
j=1 ai,j = di.

We denote by li,α = #{ ai,j | ai,j = α } the number of integers in the sequence ai,• that are equal to α.

Definition 1.11. A (k•, d•)-admissible set of sequences A• is balanced if A• minimizes the function
r∑
i=1

∑
1≤l<m≤ki

(ai,m − ai,l)

among the (k•, d•)-admissible sets of sequences.

Observe that given a flag pair (k•, d•), there exists a unique, balanced (k•, d•)-admissible set of se-
quences (see Lemma 2.1). We denote this set of sequences by B•(k•, d•).

We also observe that a flag variety F (k1, . . . , kr;n) is isomorphic to the dual flag variety F (n− kr, n−
kr−1, . . . , n−k1;n). Under this isomorphism the curve class (d1, . . . , dr) is transformed to the curve class
(dr, . . . , d1). Consequently, if the Gromov-Witten invariants of F (k1, . . . , kr;n) for degree d• vanish, then
the corresponding Gromov-Witten invariants for the dual flag variety must also vanish. We can now state
our vanishing theorem for arbitrary partial flag varieties.

Theorem 1.12 (Vanishing). Let B•(k•, d•) = {(ai,j)kij=1|i = 1, . . . , r} be the set of balanced, admissible
sequences associated to the flag pair (k•, d•). For simplicity, set αi = ai,ki . Suppose that there exists a
non-zero, three-pointed, genus-zero Gromov-Witten invariant of F (k•;n) of degree d•. Then the following
inequalities have to be satisfied

(1)
∑r
i=1 di(ki+1 − ki−1) ≤ 2

∑r
i=1 ki(ki+1 − ki);

(2) αr ≤ 2;
(3) αi−1 ≤ αi + 2, for every 2 ≤ i ≤ r;
(4) li−1,κ = li,κ for all 0 ≤ κ ≤ αi − 2. If, in addition,

∑αi−2−αi−1
j=0 2j li−2,αi−1+j < li−1,αi−1 , then

• αi−1 ≤ αi + 1;
• 2li−1,αi+1 ≤ max(0, li,αi − li−1,αi);
• 2li−1,αi ≤ max(0, 2li,αi + li,αi−1 − li−1,αi−1).

Furthermore, the same inequalities must hold for the dual flag variety and the dual flag pair.

For most of the triples (k•, d•, n) determined by Theorem 1.12 the evaluation morphism is actually
birational onto its image.
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Theorem 1.13. Let (k•, d•) be a flag pair whose associated set of balanced, admissible sequences B•(k•, d•) =
{(ai,j)kij=1|i = 1, . . . , r} satisfy the following inequalities:

(1) αr ≤ 1;
(2) αi−1 ≤ αi + 1, for every 2 ≤ i ≤ r;
(3) For every 2 ≤ i ≤ r,

• 2li−1,αi+1 ≤ max(0, li,αi − li−1,αi) and
• 2li−1,αi ≤ max(0, 2li,αi + li,αi−1 − li−1,αi−1)

Let n ≥ kr + dr. Then the evaluation morphism

e :M0,3(F (k•;n), d•)→ F (k•;n)× F (k•;n)× F (k•;n)

is birational onto its image. In particular, there exists a non-zero, three-pointed, genus-zero Gromov-
Witten invariant of F (k•;n) of degree d•.

We call a Gromov-Witten invariant of a flag variety F (k•;n) for the class d• classical if the correspond-
ing evaluation morphism e is birational onto its image. Let πi : F (k•;n)×F (k•;n)×F (k•;n)→ F (k•;n)
denote the i-th projection morphism. Let Σλ,Σµ and Σν be general Schubert varieties whose codimensions
sum to the dimension of the image of e. We call a Gromov-Witten invariant of a flag variety very classical
if it is classical and there exists a rational map φ from the image of e to a (possibly different) flag variety
F (k′•, n) such that φ gives a bijection between the intersection π−1

1 (Σλ) ∩ π−1
2 (Σµ) ∩ π−1

3 (Σν) ∩ Im(e)
and the intersection of three Schubert varieties in F (k′•, n). As in [BKT], one can conclude that a large
subclass of Gromov-Witten invariants are very classical.

Corollary 1.14 (Very classical Gromov-Witten invariants). Let n ≥ kr + dr.

(1) Let 0 ≤ α ≤ k1. Then the invariants of F (k•;n) of degree di = ki − α are very classical.
(2) Let a be a positive integer. Let ki = 2i−1a for 1 ≤ i ≤ r. Set di = (r − i + 1)ki. Then the

invariants of F (k•;n) of degree d• are very classical.

An interesting consequence of Corollary 1.14 is a beautiful periodicity property of the ordinary
Littlewood-Richardson coefficients of flag varieties. We will give a geometric interpretation of the peri-
odicity property in §6. Here we give the combinatorial description. The Schubert varieties in F (k•;n)
can be indexed by sequences of integers from 1 to r + 1, where ki − ki−1 of the digits are i. Let
0 ≤ a ≤ k1 be a non-negative integer. Given a Schubert cycle σλ′ with λ1 ≤ n− a in G(a, 2n− a) define
a periodicity map πλ′ from Schubert cycles in F (k1 − a, k2 − a, . . . , kr − a;n − a) to Schubert cycles in
F (a, 2k1 − a, 2k2 − a, . . . , 2kr − a; 2n− a) as follows. First, replace the sequence λ = λ1, . . . , λn−a by the
sequence whose digits are one more than the digits of λ; i.e. λ[1] = λ1 +1, . . . , λn−a+1. Next replace the
sequence corresponding to λ′ by λ′[2 7→ r + 2]|n−a+1 obtained by replacing every occurrence of 2 in the
sequence corresponding to λ′ by r + 2 and taking the last n digits. Form the sequence q(λ, λ′) obtained
by concatenating the two sequences λ[1] and λ′[2 7→ r + 2]|n−a+1. Finally, replace the last kr − a digits
of q(λ, λ′) that are equal to r + 2 by the sequence

r + 1, . . . , r + 1, r, . . . , r, . . . , 3, . . . , 3, 2, . . . , 2,

where the last k1− a digits are 2, the next to last k2− k1 digits are 3 and ki+1− ki of the digits are i+ 1
for 2 ≤ i ≤ r. Let πλ′(λ) denote the resulting sequence.

For example, let λ = 3, 1, 2, 1, 2, 3 be the sequence corresponding to a Schubert cycle in F (2, 4; 6). Let

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2

be the sequence in F (1; 13) corresponding to λ′. Then

λ[1] = 4, 2, 3, 2, 3, 4.

λ′[2 7→ 4]|7 = 4, 4, 4, 4, 4, 1, 4

q(λ, λ′) = 4, 2, 3, 2, 3, 4, 4, 4, 4, 4, 4, 1, 4.
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Finally, the sequence
πλ′(λ) = 4, 2, 3, 2, 3, 4, 4, 4, 3, 3, 2, 1, 2

is a sequence corresponding to a Schubert cycle in F (1, 5, 9; 13).

Theorem 1.15 (Periodicity of structure coefficients). Let 0 ≤ a ≤ k1 be a non-negative integer. Let
σλ′ , σµ′ , σν′ in G(a, 2n− a) be three Schubert cycles whose codimensions sum to a(2n− 2a). Suppose in
the partitions defining λ′, µ′ and ν′, the first part is at most n − a. Let σλ, σµ and σν be three Schubert
cycles in F (k1− a, . . . , kr − a;n− a) whose codimensions sum to the dimension of the flag variety. Then

cπλ′ (λ),πµ′ (µ),πν′ (ν)
= cλ,µ,ν · cλ′,µ′,ν′ ,

where ci,j,k denotes the product of the three Schubert cycles σi · σj · σk in their respective flag varieties.

Given a sequence λ corresponding to a Schubert variety in F (k1, . . . , kr;n), denote by λt the sequence
obtained by adding the trivial tail

r + 1, . . . , r + 1, r, . . . , r, . . . , 1, . . . , 1,

where ki − ki−1 of the digits are i. Setting a = 0 in Theorem 1.15 we obtain the following corollary.

Corollary 1.16. Let σλ, σµ and σν be three Schubert cycles in F (k1, . . . , kr;n) whose codimensions sum to
the dimension of the flag variety. Let σλt, σµt and σνt be the corresponding cycles in F (2k1, . . . , 2kr; 2n).
Then

cλ,µ,ν = cλt,µt,νt.

Example 1.17. The first non-trivial example is the equality of σ1 · σ1 · σ2 in G(2, 4) and σ3,2 · σ3,2 · σ4,2

in G(4, 8). This equality holds because both of these products are equal to the Gromov-Witten invariant

IF (2,4;8),(2,4)(σ2,1,2,1,3,3,3,3, σ2,1,2,1,3,3,3,3, σ1,2,2,1,3,3,3,3).

Remark 1.18. Theorem 1.12 can be generalized from three-pointed invariants to m-pointed invariants
by replacing the occurrences of three in the estimates by m. This was already noted for Grassmannians
in [C2], where it is proved that assuming n ≥ k+d, then all m-pointed Gromov-Witten invariants vanish
unless

d+
m− 3
d
≤ (m− 2)k.

We will leave it to the reader to make the necessary modifications to extend Theorem 1.12 to m-pointed
invariants.

Remark 1.19. One can ask given a flag pair (k•, d•) satisfying the conclusions of Theorem 1.12 for
which triples of Schubert cycles is the invariant IF (k•;n),d•(σλ, σµ, σν) non-zero. Even for the ordinary
cohomology of flag varieties this seems to be a difficult question. While it is possible to give many
conditions that guarantee that the invariants vanish and many conditions that guarantee that they do
not, the author is unaware of a satisfactory complete characterization of the null-locus of the invariants.

Remark 1.20. It is tempting to ask for other formulae similar to the ones in Theorem 1.15. Given
a transformation that takes three Schubert cycles in a flag variety whose intersection is in the top
cohomology to three other such Schubert cycles in a different flag variety, we can ask for a relation
between the intersection numbers of these cycles. Especially when the procedure involves the embedding
of a product of flag varieties into another flag variety, one can expect formulae similar to those in
Theorem 1.15 (see Bergeron and Sottile [BS] for related work). Richmond in his thesis has worked out
similar formulae for the projection of flag varieties to sub-flag varieties (see [Ri]).
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Remark 1.21. It would be interesting to extend the results of this paper to other varieties (See the work
of Buch, Kresch, Tamvakis for isotropic Grassmannians and Chaput, Manivel, Perrin [CMP] for (co)-
miniscule homogeneous spaces). Similar vanishing and non-vanishing theorems for other homogeneous
varieties such as isotropic flag varieties can be obtained by modifying the proofs in this paper. It is also
very interesting to study the vanishing and non-vanishing of genus-zero Gromov-Witten invariants for
arbitrary rationally connected varieties. It follows from the celebrated work of Kollár, Miyaoka and Mori
[KMM] that if X is a uniruled variety, then there exists a non-zero, genus-zero Gromov-Witten invariant
(not necessarily three-pointed) where one of the insertions is a point class. Kollár asks if X is a rationally
connected variety, whether there exists a non-zero, genus-zero Gromov-Witten invariant where two of the
insertions are point classes. A positive answer to this question would have important applications—for
instance, it would imply that rational connectivity is a symplectic invariant.

We now describe the organization of the paper. In Section 2 we will provide the necessary background
for the cohomology and quantum cohomology of flag varieties and rational scrolls. In Section 3 we will
prove a few reduction lemmas. In Section 4 we will prove Theorem 1.12. Section 5 will be devoted to the
proof of Theorem 1.13. In Section 6 we will discuss the periodicity property of the structure constants of
the cohomology of flag varieties.

1.3. Acknowledgments: I am grateful to Joe Harris, Fumei Lam and Frank Sottile for fruitful conver-
sations. It is a pleasure to thank Anders Buch, Andrew Kresch and Harry Tamvakis for explaining their
beautiful work which forms the starting point of this paper.

2. Preliminaries

In this section we collect the basic facts that we need about the cohomology of flag varieties, the
quantum cohomology of flag varieties and the geometry of rational scrolls.

2.1. The cohomology of flag varieties. Let k• = 0 < k1 < · · · < kr < n be r strictly increasing
integers. Recall our convention that k0 = 0 and kr+1 = n. The homology of the flag variety F (k•;n) has
a Z-basis generated by the classes of Schubert varieties. There are many different notations for Schubert
varieties. Here we recall the three commonly used ones for the convenience of the reader.

Schubert classes in F (k•;n) are parametrized by sequences λ of length n consisting of the integers
1, 2, . . . , r + 1, where ki − ki−1 of the digits are i. Denote by λs the s-th place in the sequence λ. Given
a fixed complete flag F•, the Schubert variety Σλ(F•) is defined by

Σλ(F•) = {(V1, . . . , Vr) | dim(Vi ∩ Fj) ≥ #{s | λs ≤ i for s ≤ j}.

Alternatively, one can parametrize the same data by a pair of sequences λ, δ of lengths kr, where
λ1 ≥ · · · ≥ λkr is the sequence such that the digit in the (n− kr + i− λi)-th position is less than r + 1.
The digit δi records the digit in the (n − kr + i − λi)-th place. This notation is often more economical
than the first notation. In this paper, to keep the notation to a minimum, we will use this notation only
for Grassmannians. For Grassmannians δi = 1 for all i, so the sequence δ is commonly omitted. This
notation is the usual notation for Grassmannians in the literature.

It is also common to parametrize Schubert varieties in F (k1, . . . , kr;n) by permutations ω in Sn satis-
fying ω(i) < ω(i+1) unless i ∈ {k1, . . . , kr}. We include this notation only for the reader’s convenience. In
the future we will avoid using it. The correspondence between these parametrizations is straightforward.
Given a permutation if ki < j ≤ ki+1 place the digit i+ 1 in the spot ω(j).

For example, the sequence 1, 3, 3, 2, 3, 3, 1, 3, 2 in F (2, 4; 9) corresponds to σ1,2,1,2
5,3,1,0 in the sequence-pair

notation and to the permutation (2, 7, 5)(3, 4, 9, 8, 6) in S9
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2.2. The quantum cohomology of flag varieties. Let X be a smooth, projective variety. Let β
denote the homology class of a curve in X. The Kontsevich moduli space M0,m(X,β) of genus-zero
stable maps paramterizes isomorphism classes of maps

f : (C, p1, . . . , pm)→ X

such that

(1) C is a connected, reduced, at-worst-nodal curve of arithmetic genus zero,
(2) p1, . . . , pm are smooth distinct points on C,
(3) f∗[C] = β and f is stable (i.e., if f is constant on any irreducible component Cj of C, then the

total number of nodes and marked points pi on Cj is at least three).

The Kontsevich space M0,m(X,β) comes equipped with m evaluation morphisms

evi :M0,m(X,β)→ X

given by evi((C, p1, . . . , pm, f)) = f(pi). Given m cohomology classes of pure dimension γ1, . . . , γm on
X, one defines the Gromov-Witten invariant

IX,β(γ1, . . . , γm) =
∫

[M0,m(X,β)]virt
ev∗1(γ1) ∪ · · · ∪ ev∗m(γm).

When X is a homogeneous variety G/P , the Kontsevich moduli space M0,m(X,β) is a smooth, irre-
ducible, Deligne-Mumford stack of the expected dimension

c1(X) · β + dim(X) +m− 3.

Furthermore, the Gromov-Witten invariants are enumerative. By Lemma 14 of [FP] they are equal to the
number of maps f from an m-pointed P1 to X such that f(pi) ∈ Γi where Γi is a general representative of
the Poincaré dual of γi. When m = 3 and the γi are the Schubert basis, the three-pointed Gromov-Witten
invariants form the structure constants of the small quantum cohomology ring of X.

If we specialize this discussion to X = F (k1, . . . , kr;n) and β = (d1, . . . , dr), we see that the Kontsevich
moduli space M0,3(F (k•;n), d•) is irreducible of dimension

r∑
i=1

ki(ki+1 − ki) +
r∑
i=1

di(ki+1 − ki−1).

The structure constants of the small quantum cohomology count irreducible rational curves that intersect
general Schubert varieties. We would like to formalize the numerics of the geometry of rational curves in
partial flag varieties. Let f : P1 → F (k1, . . . , kr;n) be a morphism such that f∗[P1] = (d1, . . . , dr). The
partial flag variety F (k1, . . . , kr;n) comes equipped with r tautological bundles S1 ⊂ S2 · · · ⊂ Sr. By
Grothendieck’s theorem, the pull-back of Si by f is (non-canonically) isomophic to a direct sum of line
bundles f∗Si ∼= OP1(−ai,1) ⊕ · · · ⊕ OP1(−ai,ki). The minus signs are included so that the integers we
consider are always non-negative.

Suppose that the integers ai,j are ordered in increasing order. Note that the total degree of f∗Si is
−di. Moreover, ai+1,j ≤ ai,j since f∗Si+1 is a sub-bundle of f∗Si. Consequently, the set of sequences
(ai,j) form an admissible set of sequences for the flag pair (k•, d•) in the sense of Definition 1.10. Among
admissible sets of sequences there is a unique balanced one in the sense of Definition 1.11. This balanced
admissible set of sequences will play an essential role.

Lemma 2.1. The set of (k•, d•)-admissible sets of sequences contains a unique balanced member.

Proof. It is easy to give an algorithm for constructing the balanced member among the (k•, d•)-admissible
sets of sequences. Let d1 = k1q1 + r1, where 0 ≤ r1 < k1 is the remainder. Set

a1,1 = · · · = a1,k1−r1 = q1, a1,k1−r1+1 = · · · = a1,k1 = q1 + 1.
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Let d2 = k2q2 + r2, where 0 ≤ r2 < k2. If q2 < q1 or if q2 = q1 and k1 − r1 ≤ k2 − r2, then set

a2,1 = · · · = a2,k2−r2 = q2, a2,k2−r2+1 = · · · = a2,k2 = q2 + 1.

If q2 > q1 or if q1 = q2 and k1 − r1 > k2 − r2, let d2 − d1 = (k2 − k1)q′2 + r′2, where 0 ≤ r′2 ≤ k2 − k1. Set

a2,1 = · · · = a2,k1−r1 = q1, a2,k1−r1+1 = · · · = a2,k1 = q1 + 1,

a2,k1+1 = · · · = a2,k2−r′2 = q′2, a2,k2−r′2+1 = · · · = a2,k2 = q′2 + 1.

Suppose we have constructed the sequences up to ai−1,•. We can inductively construct ai,•. Let di =
kiqi+ri. If all ai−1,j > qi, set ai,j = qi for j ≤ ki−ri and ai,j = qi+1 for ki−ri < j ≤ ki. Otherwise, let
ai−1,j0 be the integer with the largest index in ai−1,• which is less than or equal to qi. Set ai,j = ai−1,j

for j ≤ j0. Let di −
∑j0
j=1 ai−1,j = q′i(ki − j0) + r′i. If all ai−1,j > q′i for j > j0, then set ai,j = q′i for

j0 < j ≤ ki − r′i and ai,j = q′i + 1 for j > ki − r′i. Otherwise, let ai−1,j1 be the integer with largest index
which is less than or equal to q′i. Set ai,j = ai−1,j for j ≤ j1. Set di−

∑j1
j=1 ai−1,j = q′′i (ki− j1) + r′′i and

repeat the process replacing j0, q
′
i and r′i with j1, q

′′
i and r′′i , respectively. It is clear that the sequence

thus constructed is the unique balanced (k•, d•)-admissible set of sequences. �

Example 2.2. For instance, the balanced set of sequences for k• = 2, 4, 6, 8 and d• = 1, 2, 7, 12 is

(0, 1), (0, 0, 1, 1), (0, 0, 1, 1, 2, 3), (0, 0, 1, 1, 2, 2, 3, 3).

The importance of balanced, admissible set of sequences stems from the fact that the pull-back of the
tautological bundles to a rational curve in class d• contributing to a Gromov-Witten invariant for the
flag-variety leads to a balanced, admissible set of sequences.

Proposition 2.3. Let F 1
• , . . . , F

m
• be m general flags. Let Σλ1(F 1

• ), · · · ,Σλm(Fm• ) be m Schubert varieties
in F (k1, . . . , kr;n) whose codimensions sum to

r∑
i=1

ki(ki+1 − ki) +
r∑
i=1

di(ki+1 − ki−1) +m− 3.

Let f : (C, p1, . . . , pm)→ F (k1, . . . , kr;n) be a stable map of degree d• = (d1, . . . , dr) from an m-pointed,
connected curve of arithmetic genus zero such that f(pi) ∈ Σλi(F

i
•). Then C ∼= P1 and the set of

sequences determined by the isomorphism classes of the duals of the pull-backs of the tautological bundles
is the unique balanced admissible set of sequences for the flag pair (k•, d•).

Proof. By Lemma 14 of [FP], the Gromov-Witten invariant is equal to

#(ev−1
1 (Γ1) ∩ · · · ∩ ev−1

m (Γm)).

Furthermore, this intersection is reduced and occurs inM0,m(F (k•;n), d•). By [KP],M0,m(F (k•;n), d•)
is irreducible. The pull-back of the tautological bundles to the domain P1 by the stable map leads to a
sequence of vector bundles f∗Si, where f∗Si−1 is a subbundle of f∗Si. Consequently, the sequence of
integers determining the isomorphism classes of these bundles form an admissible sequence. By the upper-
semi-continuity of cohomology, the locus of stable maps inM0,m(F (k•;n), d•) for which the pull-back of
the tautological bundles is not balanced forms a proper subvariety. The locus where the pull-back of the
tautological bundles are balanced is Zariski open and non-empty. By Kleiman’s Transversality theorem
it follows that if the flags F 1

• , . . . , F
m
• are general, then the intersection of ev−1

1 (Γ1) ∩ · · · ∩ ev−1
m (Γm)

with the locus of maps in M0,m(F (k•;n), d•) for which the pull-back of the tautological bundles is not
balanced is empty by dimension considerations. Since the map f in the proposition corresponds to a
point in this intersection, the proposition follows. �
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2.3. Rational scrolls. In this subsection we recall the basic facts about rational scrolls. The reader can
consult [C1], [H] or [EH] for more details.

The scrolls Sa1,··· ,ak . Let a1 ≤ · · · ≤ ak be a sequence of non-negative integers not all equal to zero. We
will reserve the letter d for the sum d =

∑k
i=1 ai. We denote the k-dimensional scroll of type a1, . . . , ak

in Pr+k−1 by Sa1,··· ,ak . We allow some ai to be zero. In that case we obtain cones over scrolls of smaller
dimension. We say a scroll is balanced if |ai − aj | ≤ 1 for all i, j. We say a scroll is perfectly balanced if
ai = aj for every i and j.

Construction 2.4. To construct Sa1,··· ,ak fix rational normal curves of degree ai in general linear spaces
Pai . Choose an isomorphism between each of the rational curves with an abstract P1. The scroll Sa1,··· ,ak
is the union of the (k − 1)-planes spanned by the points corresponding under the isomorphisms.

Construction 2.5. One other construction will be useful. A balanced scroll of dimension k and degree
d ≤ k can be constructed from three of its fibers f1, f2, f3. To construct S0,...,0,1,...,1 ∈ Pd+k−1 take
three general linear spaces Pk−1 (which will serve as f1, f2 and f3) intersecting in a fixed linear space
v = Pk−d−1. Such a scroll is a cone over a perfectly balanced scroll of dimension d with vertex v. Intersect
the fibers with a P2d−1 complementary to v. The scroll has to intersect this P2d−1 in a perfectly balanced
scroll of dimension d. Constructing this scroll and taking its join with v constructs the scroll of degree d
and dimension k. In the perfectly balanced scroll in P2d−1 there has to be a line through each point p of
the fiber f1 that intersects the other two fibers f2 and f3. This line is uniquely determined as pf2 ∩ pf3.
We thus uniquely construct the scroll.

Abstractly a scroll is the projectivization of a vector bundle of rank k on P1. Hence, we can express
the variety as X = PE = P(OP1(−a1)⊕· · ·⊕OP1(−ak)). If π : X → P1 is the projection morphism, then
the Chow ring of X is generated by the pull-back of the point class F from P1 and the class H = OPE(1)
which restricts to the hyperplane class on every fiber of π. The following proposition elucidates the
relation between scrolls and projectivization of vector bundles over P1 (see [EH]).

Proposition 2.6. The scroll Sa1,··· ,ak is the image of P(OP1(−a1) ⊕ · · · ⊕ OP1(−ak)) under the linear
series |H|.

More generally, we will consider projections of Sa1,··· ,ak along centers disjoint from the scroll. Abusing
notation we will denote these projections also by Sa1,··· ,ak . Note that any rational scroll in projective
space is a projection of some Sa1,··· ,ak .

Subscrolls of Sa1,··· ,ak . A subscroll of Sa1,··· ,ak of dimension s is a scroll Sb1,··· ,bs ⊂ Sa1,··· ,ak dominating
the base of Sa1,··· ,ak . A subscroll of dimension s has class Hk−s + mHk−s−1F for some integer m.
The dimension of the space of subscrolls of Sa1,··· ,ak may be computed using Riemann-Roch. A one-
dimensional subscroll corresponds to a section of the vector bundle. Hence, the dimension of the space
of curves of degree b in the class Hk−1 + (b− d)Hk−2F is given by

k∑
i=1

(max(−1, b− ai) + 1) − 1.

The dimension of the space of subscrolls of Sa1,··· ,ak of type Sb1,...,bs (assuming that bj ≥ aj and s < k)
can now be computed inductively.

Lemma 2.7. Let bj ≥ aj and s < k be non-negative integers. The dimension of the space of subscrolls
of type Sb1,...,bs contained in Sa1,...,ak is given by

(1)
s∑
j=1

k∑
i=1

(max(−1, bj − ai) + 1)−
s∑
j=1

s∑
h=1

(max(−1, bj − bh) + 1).

In particular, if aj < aj+1, the scroll Sa1,...,ak has a unique subscroll of dimension j and degree
∑j
i=1 ai.
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Remark 2.8 (Parallel transport in scrolls). A perfectly balanced scroll of dimension n is isomorphic to
P1 × Pn−1. Hence, a point determines a unique section of P1 whose projection to Pn−1 is constant. We
refer to translating a point along this section as parallel transport. In case the scroll is embedded as
S1,...,1, Construction 2.5 shows how to determine this section given the point and two auxiliary fibers. A
similar construction also works for balanced scrolls. A linear space containing the fiber of the minimal
subscroll of a balanced scroll can also be uniquely translated to other fibers as linear spaces of the same
dimension and containing the corresponding fiber of the minimal scroll.

Remark 2.9 (Balanced subscrolls of balanced scrolls). Let S1 = Sa+1,...,a+1 be a perfectly balanced
subscroll of dimension n1 of a scroll S2 = Sa,...,a of dimension n2. There exists a unique perfectly
balanced subscroll of S2 of dimension min(2n1, n2) and degree min(2n1, n2)a containing S1. We may
assume that the dimension of S1 is less than n2/2. Otherwise S2 is the scroll we want. Take two fibers of
S1. Parallel transporting these fibers to the same fiber and take their span. Then let S3 be the subscroll
of S2 of dimension 2n1 and degree 2n1 determined by parallel transporting this span. We claim that S3

contains S1 and is the desired scroll. Re-embed S2 in P2n2−1 as S1,...,1. S1 is re-embedded as S2,...,2.
Since S1 is covered by conics, it suffices to check the containment when S1 is a conic. Fix two points on
a conic and consider the quadric surface generated by the procedure. We claim that the quadric surface
contains the conic. Otherwise, taking a third point on the conic and applying the parallel transport
construction would generate S1,1,1 containing the conic. (S1,1,1 must contain the conic because its span
contains the plane of the conic and since S2 is minimal the intersection of this span with the span of
S1,1,1 has to equal S1,1,1.) The hyperplane section of S1,1,1 spanned by the conic and the quadric surface
has to consist of the quadric surface and a fiber. If the conic were not contained in the quadric surface,
it would be contained in the fiber. This is a contradiction.

Remark 2.10 (The correspondence between scrolls and rational curves in the flag variety). Note that
there is a one-to-one correspondence between rational curves i : P1 → F (k•;n) in the flag variety with
i∗Sj = OP1(−aj,1)⊕ · · · ⊕ OP1(−aj,kj ) and nested sequences of scrolls

Sa1,1,...,a1,k1
⊂ · · · ⊂ Sar,1,...,ar,kr

in Pn−1 (here by scroll we mean not just the variety, but also the fibration over P1). Given a rational
curve in the flag variety the projectivization of the pull-backs of the tautological bundles give rise to
a nested sequence of scrolls that naturally map to Pn−1. Conversely, by the universal property of flag
varieties, a nested sequence of scrolls in Pn−1 induces a rational curve in the flag variety with the desired
properties. In the future we will often use this correspondence without further comment.

3. Basic lemmas

In this section we will prove some basic lemmas required for the proof of Theorem 1.12.

Definition 3.1. We say that a flag pair (k•, d•) is GW-null for n and write I3(k•, d•, n) = 0 if there
does not exist any non-zero, three-pointed, genus-zero Gromov-Witten invariants of F (k•;n) of degree
(d1, . . . , dr).

It is possible to phrase the condition of being GW-null geometrically in terms of the evaluation mor-
phism.

Lemma 3.2. I3(k•, d•, n) = 0 if and only if the fibers of the evaluation map

e :M0,3(F (k•;n), d•)→ F (k•;n)× F (k•;n)× F (k•;n)

are positive dimensional.
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Proof. Let Ω be the image of the evaluation morphism e. If e is generically finite, then Ω is a projective
scheme of dimension

D =
r∑
i=1

ki(ki+1 − ki) +
r∑
i=1

di(ki+1 − ki−1).

By the Künneth decomposition, the Poincaré dual ω of the class of Ω can be expressed as

ω =
∑

|λ|+|µ|+|ν|=D

cλ,µ,νσλ∗ ⊗ σµ∗ ⊗ σν∗ ,

where | · | denotes the codimension of the class and λ∗ is the dual of λ. Since Ω is projective at least one
of the coefficients cλ,µ,ν is positive. It follows that if e is generically s-to-one, then

IF (k1,...,kr;n),d•(λ, µ, ν) = s · cλ,µ,ν > 0.

Conversely, if e has positive dimensinonal fibers (say with generic fiber dimension δ), then Ω has dimension
D− δ. Then ω∪σλ∗ ⊗σµ∗ ⊗σν∗ = 0 for any λ, µ, ν whose codimensions add up to D. A general choice of
representatives for the Poincaré duals of σλ, σµ, σν is disjoint from Ω. Hence, the three-pointed Gromov-
Witten invariants all vanish. �

Lemma 3.3. If I3(k•, d•, n) = 0, then I3(k•, d•, n− 1) = 0.

Proof. It is convenient to use the translation between rational curves in flag varieties and rational scrolls in
projective space to prove this lemma. If I3(k•, d•, n) = 0, then by Lemma 3.2 the fibers of the evaluation
morphism e are positive dimensional. In other words, given a triple of flags in the image of e, there is
a positive dimensional family of rational scrolls containing those flags as fibers. Every rational scroll in
Pn−2 is the projection of a rational normal scroll. In particular, it is the projection of a rational scroll
from Pn−1. If there exists a positive dimensional family of scrolls containing a general point in the image
of the evaluation morphism e, then the same will be true for the projection from a general point. The
projection of the total space of the one-parameter family from a point p has the same dimension unless
the total space is a cone with vertex at p. Since the projection is general, we conclude that the fibers
of the evaluation morphism are positive dimensional for n − 1 as well. By Lemma 3.2 it follows that
I3(k•, d•, n− 1) = 0. �

Remark 3.4. Unfortunately, the converse of Lemma 3.3 is false. For example, there is a unique map
of degree 2 to G(2, 4) taking three prescribed points on P1 to three general points. However, there is a
two-parameter family of degree 2 maps to G(2, 3) taking three prescribed points to three general points.
Hence, although IG(2,3),2(2; 3) = 0, IG(2,4),2(σ2,2, σ2,2, σ2,2) = 1. However, if we assume that n is large
enough, then the converse becomes true as well.

Lemma 3.5. If I3(k•, d•, n0) = 0 for some n0 ≥ kr + dr, then I3(k•, d•, n) = 0 for all n.

Proof. It is again convenient to interpret the rational curves in F (k•;n) as a nested sequence of rational
scrolls in Pn−1. A degree dr variety of dimension kr can span at most a linear space Pkr+dr−1 of projective
dimension kr + dr − 1. Since all the other scrolls are contained in the scroll of degree dr and dimension
kr, they have to be contained in the same span. Consequently, the image of any rational curve of degree
d• in F (k1, . . . , kr;n) has to be contained in a sub-flag variety of the form F (k1, . . . , kr; kr + dr). If
I3(k•, d•, n0) = 0 for some n0 ≥ kr + dr, then by Lemma 3.2 there is a positive dimensional family of
scrolls containing any three linear spaces corresponding to a point in the image of the evaluation map e.
This will be true for any n ≥ kr + dr since the scrolls in Pn−1 must be contained in Pkr+dr−1 and it is
true in the latter. Hence I3(k•, d•, n) = 0 if n ≥ kr + dr. Hence by Lemma 3.3, I3(k•, d•, n) = 0 for all
n. �
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In particular, in order to prove the vanishing of all three-pointed Gromov-Witten invariants for a given
flag pair (k•, d•), we can take n ≥ kr + dr.

Remark 3.6. We observe that the previous three Lemmas hold for m-pointed Gromov-Witten invariants
if we replace 3 by m and e by ev1 × · · · × evm.

4. Vanishing theorems

In this section we prove Theorem 1.12. Lemma 3.2 allows us to turn the problem to a dimension count.

Proof of Theorem 1.12. By Lemma 2.1 there exists a unique, balanced, admissible set of sequences B• =
{(a1,j)k1j=1, . . . , (ar,j)

kr
j=1} associated to any flag pair (k•, d•). Theorem 1.12 asserts that if I3(k•, d•, n) 6= 0,

then the balanced, admissible set of sequences associated to (k•, d•) have to satisfy various inequalities.
The strategy of the proof is as follows. By Lemma 3.2, I3(k•, d•, n) = 0 if and only if the evaluation
morphism

e :M0,3(F (k•;n), d•)→ F (k•;n)× F (k•;n)× F (k•;n)
has positive dimensional fibers. We will show that the fibers of e are positive dimensional if the inequalities
in Theorem 1.12 are violated. By Proposition 2.3 any morphism f : C → F (k•;n) contributing to a
Gromov-Witten invariant for a general choice of Schubert subvarieties of F (k•;n) has that C = P1 and
the decomposition of the pull-back of the tautological bundles is given by a balanced sequence. We
will use the correspondence between rational curves in F (k•;n) and scrolls to construct one-parameter
families of scrolls containing a given triple of linear spaces corresponding to a point in the image of e.

If dim(F (k•;n) × F (k•;n) × F (k•;n)) < dim(M0,3(F (k•;n), d•)), then the fibers of e have to be
positive dimensional. We conclude that

3
r∑
i=1

ki(ki+1 − ki) ≥
r∑
i=1

ki(ki+1 − ki) +
r∑
i=1

di(ki+1 − ki−1);

or equivalently

2
r∑
i=1

ki(ki+1 − ki) ≥
r∑
i=1

di(ki+1 − ki−1).

This gives the first inequality in Theorem 1.12.

Recall our convention that αi = ai,ki . Observe that since the set of sequences is admissible ai+1,j ≤ ai,j
for all 1 ≤ j ≤ ki. Consequently,

∑κ0
κ=0 li,κ ≤

∑κ0
κ=0 li+1,κ. Let κ0 be the smallest κ ≤ αi+1 − 2 such

that li,κ < li+1,κ. We can modify the sequence (ai+1,j) by replacing the smallest index term equal to
αi+1 by αi+1 − 1 and the largest index term equal to κ0 by κ0 + 1. The resulting set of sequences is still
admissible for (k•, d•) and has lower value for the function

r∑
i=1

∑
1≤l<m≤ki

(ai,k − ai,l).

Since the set of sequences is balanced, we conclude that li,κ = li+1,κ for all 0 ≤ κ ≤ αi+1 − 2.

Below we will use the following observation: Let d• and d′• be two curve classes in F (k•;n) such that
d′i ≤ di for 1 ≤ i ≤ r. Let (X•, Y•, Z•) be a triple of flags in the image of the evaluation morphism for
the curve class d′•. Then (X•, Y•, Z•) is also in the image of the evaluation morphism for the curve class
d•. Furthermore, if d′i < di for at least one i, then the fiber of the evaluation morphism for the class d•
over (X•, Y•, Z•) is positive dimensional. Given a rational curve C in the class d′• passing through the
three points corresponding to X•, Y• and Z•, we can attach curves of degree given by the unit vector
ei at any point of C. If we apply this procedure di − d′i times for every i, we obtain a tree of rational
curves passing through X•, Y• and Z•. Moreover, since we can vary the attachment point, we see that
the evaluation morphism is positive dimensional over (X•, Y•, Z•).
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We next show that αr ≤ 2. Suppose αr > 2. Let u be the largest index, if one exists, such that
αu < αr. Else let u = 0 and set Su to be the empty set. Fix a general point (X•, Y•, Z•) in the image of
the evaluation morphism. Let S1, . . . , Sr be a sequence of balanced scrolls that have these flags as their
fibers. We know that li,αr−2 = lr,αr−2 for i ≥ u. It follows that ai,j ≥ 2 for i > u and j >

∑αr−2
s=0 li,s since

αr−2 ≥ 1. Choose ordered bases of the linear spaces Xr, Yr, Zr such that the first ki basis elements span
Xi, Yi and Zi, respectively. Fix the scroll Su and construct scrolls Su+1, . . . , Sr using Construction 2.4 as
follows. Pick the points corresponding to the basis elements of the same index i > ku. Pick general conics
containing the three points. Form the scrolls generated by the conics and Su. We obtain a new sequence
of scrolls containing the same fibers but of strictly smaller degree. By the observation in the previous
paragraph, we conclude that the fibers of the evaluation morphism have to be positive dimensional. By
Lemma 3.2 we conclude that unless αr ≤ 2, the invariants must vanish.

Now we show that αi ≤ αi+1 + 2. The argument is almost identical. Let t be the smallest index such
that αt > αt+1 + 2. Let u < t be the smallest index, if there exists one, such that αu < αt. Then for
u ≤ i ≤ t we have that li,κ = lt,κ for every κ ≤ αt − 2. Furthermore, lu,αt−1 ≤ li,αt−1 for t > i > u.
Pick a point (X•, Y•, Z•) in the image of the evaluation morphism. Suppose that S1 ⊂ · · · ⊂ Sr are a
sequence of scrolls of degrees d1, . . . , dr, respectively that have the flags X•, Y• and Z• as fibers. Fix the
scrolls St+1 ⊂ · · · ⊂ Sr. Note that for u+ 1 ≤ i ≤ t the minimal subscrolls of Si of dimension

∑αt−1
κ=0 li,κ

and degree
∑αt−1
κ=0 κli,κ all contain Su. Pick bases of Xr, Yr and Zr such that the first ki basis elements

span Xi, Yi and Zi, respectively. On the scroll St+1 there exists a rational section of degree d ≥ αt+1 + 2
passing through three specified points on distinct fibers. By Lemma 2.7 the dimension of the space of
such curves is

αt+1∑
i=0

(αt + 3− i)lt+1,i − 1.

This is strictly larger than 3(kt+1 − 1). Furthermore, using the action of the automorphism group of
the scroll it is clear that there will be a positive dimensional family of such curves passing through three
points in distinct fibers. Using Construction 2.4 construct scrolls spanned by Su and rational curves of
degree αt − 1 passing through the points corresponding to the chosen bases of Xt, Yt and Zt. We thus
construct a collection of scrolls

S1 ⊂ · · · ⊂ Su ⊂ S′u ⊂ · · ·S′t ⊂ St+1 ⊂ · · · ⊂ Sr

having the flags X•, Y• and Z• as fibers. Note that by construction d′i < di for u < i ≤ t. The
observation two paragraphs ago now implies that the fibers of the evaluation morphism have to be
positive dimensional. Lemma 3.2 then implies that the Gromov-Witten invariants of degree d• vanish
unless αt ≤ αt+1 + 2.

Now assume that
∑αt−1−αt
s=0 2slt−1,αt+s < lt,αt Fix a scroll of type St+1 and three of its fibers. We

would like to calculate the dimension of the space of a sequence of scrolls S1 ⊂ · · · ⊂ St contained in St+1

and compare it to the dimension of the space of flags they give rise to in the three chosen fibers. In any
of these cases fix the scroll St−1 and a scroll S′t of type

at,1, . . . , at,kt−lt,αt , (αt)
(lt−1,αt+2lt−1,αt+1+4lt−1,αt+2)

contained in St+1 and containing St−1. Note that given a scroll St−1 ⊂ St, it has to be contained in a
scroll of type S′t contained in St by repeated applications of the construction in Remark 2.9. We can
now calculate the dimension of the space of scrolls of type St contained in St+1 and containing S′t. To
further simplify notation, set αt+1 = α, l = lt−1,αt + 2lt−1,αt+1 + 4lt−1,αt+2 and αt = α + p with p ≥ 0.
By Lemma 2.7 the dimension of the space of such scrolls is given by

(lt,α+p − l)
kt+1∑
j=1

(α+ p+ 1− at+1,j)− (lt,α+p − l)
kt∑
j=1

(α+ p+ 1− at,j).
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This dimension has to be less than or equal to the dimension of the space of three kt-planes in the
designated fibers of St+1 that contain the fibers of S′t. The latter dimension is at most

3(lt,α+p − l)(kt+1 − kt).
We thus obtain the inequality

(lt,α+p − l)
kt+1∑
j=1

(α+ p+ 1− at+1,j)− (lt,α+p − l)
kt∑
j=1

(α+ p+ 1− at,j) ≤ 3(lt,α+p − l)(kt+1 − kt).

Since by our simplifying assumption lt,α+p− l > 0, we can cancel it from both sides of the inequality. We
are left with the inequality
kt+1∑
j=1

(α+ p− 2− at+1,j)−
kt∑
j=1

(α+ p− 2− at,j) =
kt∑
j=1

(at,j − at+1,j) +
kt+1∑

j=kt+1

(α+ p− 2− at+1,j) ≤ 0.

If p ≥ 2, then the second sum to the right of the equal sign is non-negative since α ≥ at+1,j . On the
other hand, the first sum to the right of the equal sign is strictly positive since at,j ≥ at+1,j for j < kt
and at,kt ≥ at+1,kt + p. We thus conclude that the fibers of the evaluation morphism have to be positive
dimensional in case p ≥ 2. If p = 1, recalling that lt,α−j = lt+1,α−j for j > 1, the same inequality
translates to

2lt,α+1 ≤ lt+1,α − lt,α.
Finally, if p = 0, then we obtain the inequality

2lt,α ≤ 2t+1,α + lt+1,α−1 − lt,α−1.

These are the inequalities claimed in the theorem.

Finally, set k′i = n − kr+1−i and set d′i = dr+1−i. Since F (k•;n) is isomorphic to F (k′•;n) and under
this isomorphism the curve class d• is interchanged with d′•, the same inequalities have to hold for the
balanced sequence associated with the flag pair (k′•, d

′
•). This concludes the proof of the theorem. �

As observed in the introduction, in the case of two-step flag varieties Theorem 1.12 can be improved.

Proof of Theorem 1.4. We now specialize the calculations in Theorem 1.12 to r = 2. By Lemma 3.5 we
may assume that n = k2 + d2. Note that if t = 1, the hypotheses of (4) in Theorem 1.12 are vacuously
satisfied. We conclude that α1 ≤ α2+1. If α1 = α2, then 2l1,α1 +l1,α1−1 ≤ 2l2,α1 +l2,α1−1. If α1 = α2+1,
then 2l1,α1 ≤ l2,α2 − l1,α2 .

Now we show that α2 ≤ 1. Suppose α2 = 2. If α1 < 2, then we can fix the minimal subscroll S′2
of S2 of dimension l2,1 and degree l2,1 (which contains S1) and three general fibers of S2. There is a
positive dimensional family of such scrolls S2 by Construction 2.4. There is a two-dimensional family of
conics containing three non-collinear points in projective space. Fix a minimal set of ordered points in
each of the fibers that span linear spaces complementary to the fibers of S′2. We can construct a positive
dimensional family of scrolls by taking different conics passing through these points in the fibers. In
case α1 = 2 the argument is similar. Fix the minimal subscroll S′2 of S2 and the intersection of S1 with
it. Note that for a general choice of flags S1 intersects S′2 in a scroll S′1 of type 1lα1,1 , 2max(0,lα1,2−lα2,2 ).
Fix three general flags of projective dimensions k1 − 1 and k2 − 1 containing three fibers of S′1 and S′2,
respectively. Fix compatible bases of the complementary linear spaces. We can then construct a positive
dimensional family of scrolls containing this configuration by Construction 2.4 as in the previous case.
Finally it is clear that we cannot have α1 = 3. Consider the inequality

d1k2 + d2(d2 + k2 − k1) ≤ 2k1(k2 − k1) + 2k2d2.

We can write d1 = 2k1 + (d1 − 2k1), where d1 − 2k1 > 0. Similarly, we can write d2 = k2 + (d2 − k2),
where d2 − k2 > 0. Rearranging the inequality we obtain

2k2
1 + (d1 − k1)k2 + (d2 − k1 − k2)d2 ≤ 0.
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But since l1,2 + 2l1,3 ≤ l2,2, we have that k1 + (d1 − 2k1) ≤ d2 − k2. Hence d2 − k2 − k1 > 0 leading to a
contradiction. We conclude that α2 ≤ 1.

We can then summarize the inequalities as follows. α2 ≤ 1, so d2 ≤ k2. α1 ≤ 2. Either α1 ≤ 1, so that
d1 ≤ k1. In this case the number of zeros in the first sequence has to be less than or equal to the number
of zeros in the second sequence. Hence, k1 − d1 ≤ k2 − d2. We also have the inequality on the number of
ones in the sequence that translates to d1 + k1 ≤ d2 + k2. If α1 = 2, then d1 ≤ 2k1. We also have the
inequality on the length of two’s in the sequence given by d1 ≤ d2. Finally, the same inequalities have to
hold for the dual flag variety. These inequalities are summarized in Theorem 1.4. �

5. The proof of Theorem 1.13

In this section we prove Theorem 1.13. Under the numerical assumptions, we will show that given a
general point in the image of the evaluation morphism e there is a unique nested sequence of scrolls con-
taining the given linear spaces as fibers. This will show that e is birational onto its image. Consequently
there are non-zero, three-pointed Gromov-Witten invariants for the triple (k•, d•, n).

Proof of Theorem 1.13. Let (k•, d•) be a flag pair whose associated balanced, admissible set of sequences
satisfy the inequalities in the hypotheses of the theorem. Suppose n ≥ kr + dr. By Lemma 3.5, it suffices
to assume that n = kr + dr. We will prove the theorem by constructing a sequence of scrolls inductively.
The scroll of degree dr and dimension kr is easy to construct. Given three linear spaces fr,1, fr,2 and fr,3
of dimension kr that intersect in a linear space vr of dimension kr − dr and that span a linear space of
dimension kr + dr, Construction 2.5 constructs a unique scroll containing their projectivization as fibers.
On the other hand, if f1,r, f2,r and f3,r are the kr-dimensional subspaces of the three flags at a general
point of the image of the evaluation morphism, then they span a (kr + dr)-dimensional vector space
and intersect in a (kr − dr)-dimensional vector space. This follows easily from Proposition 2.3 and the
description of the corresponding scrolls. Hence the largest scroll can be uniquely constructed by knowing
the kr-dimensional subspaces of the three flags in the image of e.

Next we would like to construct the scroll Sr−1. Since this is our basic construction we explain it in
detail. Pick a linear space vr−1 of dimension lr−1,0 in vr. Next pick general linear spaces wi of dimension
lr−1,0 + lr−1,1 in fi containing vr−1 and spanning a linear space of dimension lr−1,0 + 2lr−1,1. Note
that there is a unique scroll S′r−1 of type 0, . . . , 0, 1, . . . , 1 with lr−1,0 zeros and lr−1,1 ones contained
in Sr. By Construction 2.5 there is a unique such scroll containing wi as fibers. But since this scroll
is covered by lines that intersect Sr in three points, it must be contained in Sr. (Note that since
Sr is a non-degenerate variety of minimal degree, any line containing three collinear points on Sr is
automatically contained in Sr.) Furthermore, any subscroll of Sr that has the same type as Sr−1 has a
unique subscroll of the same type as S′r−1. Hence the three linear spaces of dimension kr−1 occurring
in the image of the evaluation morphism must have subspaces of the form wi. Next pick three linear
spaces yi of dimension lr,0 + lr−1,1 + 2lr−1,2 in fr,i containing wi and vr such that they span a linear
space of dimension lr,0 + 2lr−1,1 + 4lr−1,2. Note that we are able to choose such linear spaces because
lr−1,1 + 2lr−1,2 ≤ lr,1 by assumption. There is a unique scroll S̃r−1 of type 0, . . . , 0, 1, . . . , 1 where there
are lr,0 zeroes and lr−1,1 + 2lr−1,2 ones contained in Sr and containing the three linear spaces yi. Now
let fr−1,i be three general linear spaces in yi containing wi of dimension kr−1. Then the scroll Sr−1 is
the linear section of S̃r−1 contained in the span of fr−1,i. Conversely, by Remarks 2.8 and 2.9 the three
linear spaces fr−1,i determine the scroll S̃r−1. Hence given linear spaces in the image of the evaluation
morphism e, we have uniquely constructed a pair of scrolls Sr−1 ⊂ Sr.

Continue by descending induction on i to construct the scrolls. Suppose that we have constructed
the scroll Si+1. We would like to discuss how to construct the scroll Si. The construction is essentially
the same as the last step. Suppose the type of Si+1 is ai+1,1, . . . , ai+1,ki+1 . To simplify notation set
ai+1,ki+1 = α. Since the sequence is balanced, if ai,ki ≤ α − 2, then Si has to coincide with the unique
minimal subscroll S′i+1 of type ai+1,1, . . . , ai+1,ki+1−li+1,α−1−li+1,α . In particular, in this case the linear
spaces Vi have to coincide with the fibers of the subscroll S′i+1 of this type in the three fibers. In this
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case Si is automatically constructed. It is equal to S′i+1 and there is nothing further to do. Even when
ai,ki > α − 2, then the subscroll S′i+1 has to be the minimal subscroll of both Si and Si+1 of dimension
and degree equal to the dimension and degree of S′i+1. In Si+1 fix a scroll S′′i+1 of type α−1, . . . , α, where
li+1,α−1 of the digits are α− 1 and li+1,α of the digits are α, complementary to S′i+1. Then the scroll Si
we would like to construct has to intersect S′′i+1 in a scroll S̃i of type ai,ki+1−li+1,α−1−li+1,α+1 , . . . , ai,ki .
Conversely, given any such scroll in S′′i+1, we can uniquely construct Si by taking the fiber-wise joins
of the scrolls S′i+1 and S̃i. Now we are reduced to the case of the previous paragraph. S′′i+1 admits a
morphism to Pli+1,α−1+2li+1,α−1 with image S0,...,0,1,...,1 with li+1,α−1 zeros and li+1,α ones. The image
of S̃i is a scroll of type 0, . . . , 0, 1 . . . , 1, 2, . . . , 2, where li,α−1, li,α and li,α+1 of the digits are zero, one
and two, respectively. The previous paragraph determines the conditions that the fibers of such a scroll
has to satisfy. Furthermore, it uniquely constructs the scroll from three of its fibers given that the fibers
satisfy these conditions. This concludes the inductive construction and the proof of the theorem. �

One can relax the assumptions of Theorem 1.13 slightly as in the following Corollary. Theorem 1.9 is
also a special case of the Corollary.

Corollary 5.1. Let (k•, d•) be a flag pair whose associated balanced set of admissible sequences satisfy
the assumptions of Theorem 1.13. Suppose n ≥ ki + di. Further assume that aj,kj ≤ 1 for every j ≥ i
and that lj,1 ≤ lj−1,1 for i < j ≤ r. Then the evaluation morphism e is birational onto its image.

Proof. The proof of Theorem 1.13 already constructs uniquely the scrolls of dimension less than or equal
to ki given a point in the image of the evaluation morphism. Note that the scrolls of dimension larger than
ki are also uniquely determined by the image of the evaluation morphism. They are cones over perfectly
balanced scrolls. The vertex is determined by the intersection of the linear spaces. Note that they are
cones over perfectly balanced subscrolls of the ki-dimensional scroll complementary to the vertex. Hence,
they are uniquely determined by their fibers. �

Note that the proof of Theorem 1.13 explicitly computes many three-pointed Gromov-Witten invariants
of partial flag varieties. Assuming the hypotheses of Theorem 1.13, any time we can determine uniquely a
point in the image of the evaluation morphism, we can conclude that the corresponding Gromov-Witten
invariant is one. We state the following important cases. Note that these calculations are generalizations
of well-known classical facts. For example, the fact that given three pairwise skew lines in space there
exists a unique hyperboloid containing them was most likely known as far back as Antiquity. Corollary
5.2.4 gives a vast generalization of this fact.

Corollary 5.2. Theorem 1.13 computes the following Gromov-Witten invariants.

(1) Let 0 ≤ α ≤ k1. Let di = ki − α. Let σλ denote the cycle corresponding to the sequence

1k1−α, 2k2−k1 , . . . , (r − 1)kr−1−kr−2 , rkr−kr−1 , 1α, (r + 1)dr .

Let σµ denote the pull back of the point class from G(kr, kr + dr) by the natural projection.
Finally, let σν denote the pull-back of the class corresponding to the sequence 1kr−α, 2dr , 1α from
G(kr, kr + dr). Then IF (k1,...,kr;kr+dr),d•(λ, µ, ν) = 1.

(2) More generally, let 0 ≤ α ≤ k1 and set di = ki − α. Let λi for i = 1, 2 denote the cycles

1si,1 , 2si,2 , . . . , (r − 1)si,r−1 , rkr−kr−1 , (r − 1)kr−1−kr−2−si,r−1 , . . . , 1k1−si,1 , (r + 1)dr ,

where s1,j + s2,j = kj − kj−1 if j > 1 and s1,1 + s2,1 = k1 − α. Let σν denote the same cycle as
above. Then IF (k1,...,kr;kr+dr),d•(λ1, λ2, ν) = 1.

(3) Suppose 2k1 ≥ kr. Set di = kr for all i. Let σλi be the Schubert cycle in F (k1, . . . , kr; 2kr)
corresponding to the sequence

1si,1 , 2si,2 , . . . , (r − 1)si,r−1 , rkr−kr−1 , (r − 1)kr−1−kr−2−si,r−1 , . . . , 1k1−si,1 , (r + 1)kr .
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Suppose that λ1, λ2, λ3 are three Schubert cycles with
∑

1≤i≤3,j≤t si,j = kr + kt for every 1 ≤ t ≤
r − 1. Then IF (k1,...,kr;kr+dr),d•(λ1, λ2, λ3) = 1.

(4) Let 0 < a be a positive integer. Set ki = 2i−1a and di = (r + 1− i)2i−1a. Then

IF (k•;2r+1a),d•(pt, pt, pt) = 1,

where pt denotes the Poincaré dual of the point class.

6. Very classical Gromov-Witten invariants

In the previous section we saw that a large class of the three-pointed Gromov-Witten invariants of
F (k•;n) of degree d• are classical. In particular, if n ≥ 2k2, then every three-pointed Gromov-Witten
invariant of F (k1, k2;n) is classical. In this section we turn our attention to determining which among
these are very classical; i.e., can be computed as ordinary Littlewood-Richardson coefficients of flag
varieties in a natural way.

Let σλ be a Schubert cycle in F (k1, . . . , kr;n) associated to the sequence λ. Given an integer 0 ≤ α ≤
k1, set di = ki − α. Define the quantum cycle qα(λ) associated to λ and α to be the Schubert cycle of
F (α, k1 + d1, . . . , kr + dr;n) associated to the sequence obtained by λ as follows. First, replace λ by λ[1]
obtained by adding one to each digit of λ. Then replace the last α twos by one. Finally, replace the last
k1 − α digits that are equal to r+ 2 in the resulting sequence by 2, the next k2 − k1 digits that are r+ 2
by 3, the next k3 − k2 digits that are r + 2 by 4, etc. The resulting sequence is qα(λ). For example,
suppose 1, 3, 2, 1, 3, 3, 2, 2, 3, 3 be a sequence in F (2, 5; 10). Let α = 1. The corresponding sequence q1(λ)
in F (1, 3, 9; 10) is given by 2, 4, 3, 1, 3, 3, 3, 3, 3, 2.

The following is a more precise statement of the first part of Corollary 1.14.

Theorem 6.1. Let 0 ≤ α ≤ k1 be an integer. Set di = ki − α. Let n ≥ kr + dr. The three-pointed
Gromov-Witten invariant IF (k1,...,kr;n),d•(λ, µ, ν) of F (k1, . . . , kr;n) is equal to qα(λ) · qα(µ) · qα(ν) in
F (α, k1 + d1, . . . , kr + dr;n).

Proof. Set D equal to the dimension of the Kontsevich moduli space M0,3(F (k•;n), d•). By Theorem
1.13 the evaluation morphism e gives a birational map from the Kontsevich space to the subvariety of
F (k•;n)× F (k•;n)× F (k•;n) defined as the closure of the following variety:

Ω = {(X•, Y•, Z•) ∈ F (k•;n)× F (k•;n)× F (k•;n)|dim(Xi ∩ Yi ∩ Zi) = α,dim(XiYiZi) = 2ki − α}.
Consequently the class of this variety is given by

[Ω] =
∑

|λ|+|µ|+|ν|=D

IF (k•;n),d•(λ, µ, ν)σλ∗ ⊗ σµ∗ ⊗ σν∗ .

Given three general representatives of Σλ(F•), Σµ(G•) and Σν(H•) in F (k•;n), their inverse images by
the three projections will intersect Ω in IF (k•;n),d•(λ, µ, ν) points. Given one of these points (X•, Y•, Z•)
of intersection, we obtain a point in Σqα(λ)(F•)∩Σqα(µ)(G•)∩Σqα(ν)(H•) in F (α, 2k1−α, . . . , 2kr−α;n)
by sending the point (X•, Y•, Z•) to the sequence of flags

(X1 ∩ Y1 ∩ Z1, X1Y1Z1, X2Y2Z2, . . . , XrYrZr).

It is clear by construction that this point is in the desired intersection. Conversely, given a point in the
intersection Σqα(λ)(F•)∩Σqα(µ)(G•)∩Σqα(ν)(H•) in F (α, 2k1−α, . . . , 2kr−α;n), take the intersection of
Vi, i > 1, with the flag element Fs, where s is the minimal place in qα(λ) for which the number of digits
less than or equal to i but larger than 1 in positions less than or equal to s is ki − α. Let X• be defined
by setting Xi−1 = V1Vi. Since the flags are general Xi has dimension ki. Define Y• and Z• similarly. It is
clear that this procedure produces a point of intersection of Ω with the inverse images of Σλ(F•), Σµ(G•)
and Σν(H•) by the natural projection. Furthermore, these operations give a one-to-one correspondence
between the two intersections. Suppose that the point in Ω constructed from

(X1 ∩ Y1 ∩ Z1, X1Y1Z1, X2Y2Z2, . . . , XrYrZr)
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differs from (X•, Y•, Z•). Then we can assume that there are two flags X• and X ′• that lie in Σλ(F•).
Let Fs be the smallest index where the intersections of Fs with X• and X ′• are different. There is a
one-parameter family of flags varying this intersection and keeping the spans and the intersections the
same (as these are already determined by Y•, Z• and Y ′• , Z

′
•, respectively). This contradicts the finiteness

of the intersection of Ω with the inverse images of the three Schubert varieties. The theorem follows. �

This theorem can be used to prove relations among structure constants of different partial flag va-
rieties. We begin by proving Corollary 1.16 to clarify the geometric idea. Given a Schubert cycle σλ
in F (k1, . . . , kr;n), let σλt be the Schubert cycle in F (2k1, 2k2, . . . , 2kr; 2n) obtained by adding to the
sequence λ the trivial tail

r + 1, . . . , r + 1, r, . . . , r, . . . , 1, . . . , 1,
where there are ki − ki−1 digits i. Let σλ, σµ and σν be three Schubert cycles in F (k1, . . . , kr;n) whose
codimensions sum to the dimension of F (k1, . . . , kr;n). Recall that Corollary 1.16 asserts that

cλ,µ,ν = cλt,µt,νt.

Proof of Corollary 1.16. Consider the partial flag variety F (k1, k2, . . . , kr, n; 2n). Given the Schubert
cycle σλ, let σλq be the Schubert cycle obtained by adding a tail of n r+2’s. For example, if λ = 1, 2, 1, 3,
then λq = 1, 2, 1, 3, 4, 4, 4, 4. Consider the Gromov-Witten invariant

IF (k1,...,kr;n),(k1,k2,...,kr,n)(σλq, σµq, σνq).

By Theorem 6.1 this Gromov-Witten invariant is equal to cλt,µt,νt in F (2k1, . . . , 2kr; 2n). On the other
hand, the Gromov-Witten invariant counts the number of scrolls of degrees k1, k2, . . . , kr, n. Since we
require the scroll of degree n to contain three linear spaces of projective dimension n− 1 in P2n−1, that
scroll is uniquely determined by Construction 2.5. Notice that this scroll is perfectly balanced. In other
words, the scroll abstractly is the projectivization of a trivial bundle. By Remark 2.8, we can parallel
transport any linear space in one fiber to a linear space in another fiber uniquely. Note that the subscrolls
of this scroll counted by the Gromov-Witten invariant in question are also perfectly balanced. Hence they
are determined by a unique fiber by parallel transport. The fibers of the subscrolls have to satisfy the
conditions imposed by the parallel transport of the conditions imposed by the three Schubert cycles
σλ, σµ, σν . Hence, the Gromov-Witten invariant is also equal to cλ,µ,ν in F (k1, . . . , kr;n). We conclude
that cλ,µ,ν = cλt,µt,νt. �

Proof of Theorem 1.15. The proof of Theorem 1.15 is almost identical. Let λ′, µ′ and ν′ be three Schubert
cycles in the Grassmannian G(a, 2n − a). Let λ, µ and ν be three Schubert cycles in F (k1 − a, k2 −
a, . . . , kr − a, n − a). Consider the three-pointed Gromov-Witten invariant of F (k1, . . . , kr, n; 2n − a) of
degrees di = ki−a for 1 ≤ i ≤ r and dr+1 = n−a corresponding to the following cycles. Remove the first
(n− a) digits of λ′, µ′ and ν′. By our assumption that the first 1 occurs at position greater than n− a
means that this removes only the initial n − a twos in the sequences. Replace each of the two’s in the
truncated sequences by r+ 2. Label the resulting sequences by λ′′, µ′′ and ν′′, respectively. Concatenate
λ, λ′′, µ, µ′′ and ν, ν′′ to obtain q̃(λ, λ′), q̃(µ, µ′) and q̃(ν, ν′). Consider the Gromov-Witten invariant

IF (k1,...,kr,n;2n−a),(d1−a,d2−a,...,dr−a,n−a)(q̃(λ, λ
′), q̃(µ, µ′), q̃(ν, ν′)).

By Theorem 6.1 this Gromov-Witten invariant is equal to

πλ′(λ) · πµ′(µ) · πν′(ν)

in F (a, 2k1 − a, 2k2 − a, . . . , 2kr − a; 2n − a). On the other hand, the Gromov-Witten invariant counts
scrolls. The vertex of the scroll is determined by the cycles λ′, µ′, ν′ in G(a, 2n − a). There are cλ′,µ′,ν′
choices for the vertex. Once we fix the vertex, the scroll of dimension n is uniquely determined by
Construction 2.5. The vector bundle corresponding to this scroll is no longer trivial. Hence, we can only
transport linear conditions from one fiber to another up to the ambiguity introduced by the vertex. Since
the vertices of all the scrolls are equal, we can take a linear section of the scroll complementary to the
vertex. This linear section of the scroll is perfectly balanced. Constructing the sections of the scrolls
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uniquely constructs them. Now we are reduced to the previous case since we are trying to construct
a sequence of scrolls in a perfectly balanced scroll with three fibers satisfying the Schubert conditions
imposed by λ, µ, ν in F (k1 − a, k2 − a, . . . , kr − a, n− a). There are cλ,µ,ν such scrolls. Consequently,

cπλ′ (λ),πµ′ (µ),πν′ (ν)
= cλ,µ,ν · cλ′,µ′,ν′ .

�

Finally, the second part of Corollary 1.14 is easy. Any non-zero invariant of F (a, 2a, . . . , 2r−1a;n) of
degree d•, where di = (r − i + 1)ki and n ≥ 2ra, gives rise to a non-zero invariant of G(2r−1a;n). The
classes that lead to non-zero invariants must have as insertions classes corresponding to sequences λ,
where if we remove the digits equal to r + 1 from λ, we obtain the sequence 1k1 , 2k2−k1 , . . . , rkr−kr−1 .
Otherwise, by considering the dimension of the Kontsevich moduli space, we see that the codimension
imposed on the kr-planes would be larger than kr(n−kr) +krn. This is impossible. Now it is immediate
by[BKT] that these invariants may be computed as the ordinary intersection numbers of Schubert varieties
in G(2ra, n).

We conclude with some problems that remain to be studied.

Let α1 ≤ α2 ≤ · · · ≤ αr be a weakly increasing sequence of non-negative integers such that αi ≤ ki.
Similarly, let β1 ≤ β2 ≤ · · · ≤ βr be a collection of weakly increasing positive integers such that βi ≥ ki
and n ≥ βr. Define Σ(α•, β•) as the closure of the following locus in F (k•;n)× F (k•;n)× F (k•;n)

Σ(α•, β•)◦ = {(X•, Y•, Z•|dim(Xi ∩ Yi ∩ Zi) = αi, and dim(XiYiZi) = βi, 1 ≤ i ≤ r }.

Problem 6.2. Find a positive, geometric rule for computing the class of Σ(α•, β•).

In particular, when di = ki−αi and βi = 2ki−αi, the resulting variety is the image of the evaluation
morphism from M0,3(F (k•;n), d•). This problem is likely amenable to the techniques of [C3]. Note
that the variety Σ(α•, β•) admits a rational map to an incidence variety in a product of flag varieties
F (α•;n)×F (β•;n). The calculation can be carried out in the latter variety. Of course, one can ask more
generally for a positive rule for computing the class of the image of e. The proof of Theorem 1.13 gives
a description of this image.

Problem 6.3. When the evaluation morphism e is generically finite, determine its degree.

In particular, this degree divides the greatest common divisor g of the Gromov-Witten invariants of
degree d•. It would be interesting to know when the degree is equal to g.
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