
RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES

IZZET COSKUN AND JASON STARR

Abstract. We prove that the space of rational curves of a fixed degree on any smooth cubic hypersurface of

dimension at least four is irreducible and of the expected dimension. Our methods also show that the space of
rational curves of a fixed degree on a general hypersurface in Pn of degree 2d ≤ min(n+4, 2n−2) and dimension

at least three is irreducible and of the expected dimension.
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1. Introduction

The arithmetic and geometric properties of a variety (e.g., existence of sections in families, weak approxima-
tion, unirationality) are closely tied to the geometry of the space of rational curves on that variety. Unfortunately,
even for hypersurfaces, some of the basic properties of the space of rational curves, such as the dimension and
the number of irreducible components, are not known. The purpose of this paper is to prove the irreducibility
and calculate the dimension of the space of rational curves for all smooth cubic hypersurfaces and general Fano
hypersurfaces of low degree. We also formulate some conjectures about the dimension and the irreducibility of
the space of rational curves on general Fano hypersurfaces.

Let X be a smooth hypersurface in Pn over the field of complex numbers C. The Kontsevich moduli space
M0,m(X, e) parameterizes maps (C, p1, . . . , pm, f) such that

(1) The domain C of the map f is a proper, connected, at-worst-nodal curve of arithmetic genus zero;
(2) p1, . . . , pm are m distinct, smooth points on C called marked points;
(3) f : C → X is a stable map (i.e., every irreducible component of C mapped to a point by f has at least

three nodes or marked points) such that f∗OX(1) has degree e.

The Kontsevich moduli space provides a very useful “compactification” of the space of rational curves of degree
e on X. The following is the main theorem of this note.

Theorem 1.1. Let X be a smooth cubic hypersurface in Pn for n > 4. Then M0,0(X, e) is irreducible of the
expected dimension

dim(M0,0(X, e)) = e(n− 2) + n− 4
for every e ≥ 1.

In his thesis, the second author analyzed the Kontsevich moduli spaces of rational curves when the target is a
smooth cubic threefold.

Theorem 1.2 (Theorem 62 [S]). Let X ⊂ P4 be a smooth cubic threefold. Then M0,0(X, e) has two irreducible
components Re and Ne each of the expected dimension 2e. A general point of Re parameterizes a smooth rational
curve of degree e on X. A general point of Ne parameterizes a degree e cover of a line on X.
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The proof of Theorem 1.1 is by induction on the degree e. The space of lines on a cubic hypersurface of dimension
at least three is smooth, irreducible and of the expected dimension. Moreover, the evaluation morphism

ev1 :M0,1(X, 1)→ X

from pointed lines to X is flat in the complement of finitely many points. When ev1 is not flat, its fiber
dimension increases by at most one. By Mori’s bend-and-break argument, every component of the space of
rational curves of degree e contains reducible elements. Inductively, it follows that

eve :M0,1(X, e)→ X

is flat in the complement of finitely many points. By a dimension count, we conclude that any irreducible
component ofM0,0(X, e) contains the locus of maps with reducible domains as a divisor. We thus compute the
dimension ofM0,0(X, e) inductively. Finally, we show that every irreducible component ofM0,0(X, e) contains
the locus of maps from a chain of e rational curves to a chain of e lines and that the space is smooth at a general
such chain. It follows that M0,0(X, e) is irreducible.

Theorem 1.1 is interesting because the statement holds for every smooth cubic hypersurface. In [HRS], the
authors prove that if X is a general hypersurface of degree d < (n+ 1)/2, then M0,0(X, e) is irreducible of the
expected dimension dim(M0,0(X, e)) = e(n + 1 − d) + n − 4. However, there are many smooth hypersurfaces
in this range for which M0,0(X, e) is reducible with components of larger than the expected dimension. For
example, let d ≥ 4, e ≥ 3 and X be a smooth hypersurface with a conical hyperplane section (such as the
Fermat hypersurface

∑n
i=0 x

d
i = 0). Then M0,0(X, e) has components containing maps from a domain curve

with e + 1 components consisting of e-rational curves Ei attached at e points to a single rational curve C
mapping the curves Ei to e-lines passing through the vertex of the conical hyperplane section and contracting
C to the vertex. The dimension of the locus of such maps is e(n − 3) + e − 3. Note that this is larger than
max(e(n + 1 − d) + n − 4, 0) if e is large enough. Hence, the Kontsevich moduli space may be reducible with
components that have larger than the expected dimension.

Our argument will use the assumption that X has degree three in two ways. We need the degree of the
hypersurface to be small enough so that for every point p ∈ X, every component of the space of degree e
rational curves passing through p has reducible elements. Mori’s bend-and-break argument guarantees this for
rational curves of degree e on a hypersurface of degree d < n+ 1 if

e− 1
e

(n+ 1) > d.

We also need the degree to be three to argue that the evaluation morphism is flat

ev1 :M0,1(X, 1)→ X

in the complement of finitely many points and that where the map is not flat the fiber dimension increases
exactly by one. The rest of the argument is formal and was developed in the second author’s thesis [S]. While
the irreducibility and the dimension estimates do not hold for every smooth hypersurface of higher degree,
one may expect it to hold for a general Fano hypersurface. Here we state three conjectures that arose in
conversations with Joe Harris with the hope of making them more widely known.

Conjecture 1.3. Let X ⊂ Pn be a general Fano hypersurface of dimension at least three. Let Re(X) denote
the closure of the locus in the Hilbert scheme parameterizing smooth rational curves of degree e on X. Then
Re(X) is irreducible of dimension e(n+ 1− d) + n− 4.

[HRS] proves Conjecture 1.3 when d < (n+ 1)/2 and shows that when d ≤ n− 1, Conjecture 1.3 is implied
by the following conjecture.

Conjecture 1.4. Let X ⊂ Pn be a general hypersurface of dimension at least three and degree d ≤ n− 1. Then
the evaluation morphism

eve :M0,1(X, e)→ X

is flat for e ≥ 1.



RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES 3

Theorem 2.1 in [HRS] proves that Conjecture 1.4 is true for e = 1. Let e0 be the minimal integer such that
d < e0

e0+1 (n + 1). By Corollary 5.6 of [HRS], Conjecture 1.4 is true for hypersurfaces of degree d in Pn if and
only if it is true for 1 ≤ e ≤ e0. Moreover, by §4 of [HRS], Conjecture 1.4 is implied by the following conjecture.

Conjecture 1.5. Let X ⊂ Pn be a general hypersurface of degree d ≤ n− 1. Let e ≥ 2. Let p be any point on
X. Let Fe(p) = ev−1

e (p) ⊂ M0,1(X, e) be the fiber of the evaluation morphism over p. Then every irreducible
component of Fe(p) contains a map from a reducible curve into X.

The argument in this note extends the results of [HRS] to include the following cases.

Theorem 1.6. Let X ⊂ Pn be a general hypersurface of degree d of dimension at least three.

(1) If 2d ≤ min(n+ 4, 2n− 2), then Conjecture 1.3 holds.
(2) If 2d ≤ min(n+ 3, 2n− 3), then Conjecture 1.4 holds.

Acknowledgements: It is a pleasure to thank Joe Harris and Johan de Jong for many conversations about
rational curves on hypersurfaces. We also thank Matt DeLand for encouraging us to write this note and for his
excellent suggestions on an earlier draft.

2. The proof of Theorem 1.1

In this section we carry out the strategy outlined in the introduction to prove Theorem 1.1.

Lemma 2.1. Let X be a smooth cubic hypersurface of dimension at least 3. If the evaluation morphism
ev1 :M0,1(X, 1) → X from pointed lines to X fails to be flat at a point p ∈ X, then the hyperplane section of
X tangent at p is an irreducible cone with vertex p. Furthermore, the fiber of ev1 over p has dimension n− 3.

Proof. The fiber of ev1 at p ∈ X is the space of lines on X containing the point p. We can realize the space
of lines passing through p as follows. Choose coordinates for p such that p = [0 : · · · : 0 : 1] and the tangent
hyperplane to X at p is given by x0 = 0. Expand the equation of X around p in affine coordinates

x0 + f2(x0, . . . , xn−1) + f3(x0, . . . , xn−1).

We can write the equation of a line passing through p as [a0t, a1t, · · · , an−1t]. The line is contained in X if and
only if a0 = 0 and f2(0, a1, . . . , an−1) = f3(0, a1, . . . , an−1) = 0. Hence, the space of lines contained in X and
passing through p can be viewed as the intersection of a quadratic and cubic form in the projectivized tangent
space at p. Therefore, the morphism ev1 fails to be flat at p if and only if f2(0, x1, . . . , xn−1) and f3(0, x1, . . . , xn)
fail to intersect in a variety of dimension n − 4. This in turn can happen if and only if either at least one of
f2(0, x1, . . . , xn−1) or f3(0, x1, . . . , xn−1) is identically zero or f2(0, x1, . . . , xn−1) and f3(0, x1, . . . , xn−1) have
a common component. If f2(0, x1, . . . , xn−1) is identically zero, then the hyperplane section x0 = 0 is a cone
with vertex at p. If f3(0, x1, . . . , xn−1) is identically zero, then X contains the (n − 2)-dimensional quadric
x0 = f2(x0, . . . , xn−1) = 0. Similarly, if f2(0, x1, . . . , xn−1) and f3(0, x1, . . . , xn−1) have a common component,
then X contains an (n − 2)-dimensional subvariety of Pn of degree at most two. The Lefschetz hyperplane
theorem (see, for example, Theorem 3.1.17 in [L]) asserts that if X is a smooth, effective ample divisor in a
smooth n-dimensional projective variety Y , then the restriction

Hi(Y,Z)→ Hi(X,Z)

is an isomorphism provided i ≤ n − 2. In particular, applying the theorem with Y = Pn and X the smooth
cubic hypersurface, we conclude that the degree of any subvariety of X whose codimension is less than (n−1)/2
is divisible by three. Since X is smooth and its dimension is at least three, we conclude that X cannot contain
an n− 2 dimensional variety of degree one or two. Therefore, the morphism ev1 fails to be flat at p if and only
if the hyperplane section of X is an irreducible cone with vertex at p. Note that in that case the dimension of
the space of lines contained in X and containing p is n− 3. The tangent hyperplane to X at p contains every
line contained in X and containing p. Since the space of lines in Pn−1 containing a fixed point is irreducible of
dimension n− 2, if the dimension were any larger then the whole tangent plane would be contained in the span
of these lines. Hence, X would be reducible. This concludes the proof of the lemma. �
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Corollary 2.2. Let X be a smooth cubic hypersurface of dimension at least three. Then the evaluation morphism

ev1 :M0,1(X, 1)→ X

is flat in the complement of finitely many points.

Proof. By the previous lemma, ev1 fails to be flat at p if and only if the tangent hyperplane at p is a cone. To
prove the corollary, it suffices to show that a smooth hypersurface of degree at least three can have at most
finitely many conical hyperplane sections. Suppose there were a one-parameter family C of conical hyperplane
sections of X. If the degree of X is at least three, then at a point with a conical hyperplane section the second
fundamental form vanishes. The second fundamental form is the differential of the Gauss map (which assigns
to a point p in X the projective tangent space to X at p) (see 1.62 in [GH]). Consequently, the Gauss map is
constant along C. This contradicts the fact that the Gauss map of a smooth hypersurface in Pn of degree at
least two is finite (see Corollary 3.4.18 in [L]). We conclude that a smooth hypersurface of degree at least three
has at most finitely many conical hyperplane sections. This concludes the proof of the corollary. �

Definition 2.3. Let S = {p1, . . . , pm} denote the finite (possibly empty) set of points pi where the tangent
hyperplane section of the smooth cubic hypersurface X at pi is a cone with vertex at pi. In the classical
literature these points are called Eckardt points.

Proposition 2.4. Let X be a smooth cubic hypersurface of dimension at least 4. Let e ≥ 1 denote an integer.
The fiber dimension of the evaluation morphism eve : M0,1(X, e) → X is constant, equal to e(n − 2) − 2, in
the complement of the points p ∈ S. The fiber dimension of eve over a point p ∈ S is at most e(n − 2) − 1.
Moreover, if p 6∈ S, then the general point of every irreducible component of ev−1

e (p) parameterizes a map with
irreducible domain.

Proof. We will prove this proposition by induction on e. Lemma 2.1 proves the base case of the induction. The
rest of the argument follows from Mori’s bend-and-break lemma and formal properties of the Kontsevich moduli
spaces. For applications we state this more generally in Proposition 2.5. Proposition 2.4 follows by taking d = 3
in Proposition 2.5 and noting that ẽ = 1. �

Proposition 2.5. Let X be a smooth hypersurface of degree d < n−1 in Pn. Let ẽ be the minimal integer such
that

d ≤ ẽ(n+ 1)
ẽ+ 1

.

Assume that there exists a finite set S ⊂ X such that for 1 ≤ e ≤ ẽ,
dim(ev−1

e (p)) = e(n− d+ 1)− 2 for p ∈ X − S and dim(ev−1
e (p)) ≤ e(n− d+ 1)− 1 for p ∈ S.

Then for every e ≥ 1,

dim(ev−1
e (p)) = e(n− d+ 1)− 2 for p ∈ X − S and dim(ev−1

e (p)) ≤ e(n− d+ 1)− 1 for p ∈ S.
Furthermore, if p ∈ X − S, then the general map in ev−1

e (p) has irreducible domain.

Proof. The proof is by induction on e. The proposition holds for e ≤ ẽ by assumption. By basic deformation
theory (see Lemma 4.2 in [HRS]), the dimension of every irreducible component of M0,m(X, e) is at least
e(n− d+ 1) + n+m− 4. Consider the evaluation morphism eve × eve :M0,2(X, e)→ X ×X. By the theorem
on the dimension of fibers, every irreducible component of a fiber of this morphism has dimension at least

dim(M0,2(X, e))− dim(X ×X) ≥ (e− 1)(n+ 1)− ed+ 1.

If n ≥ d and e > ẽ, this dimension is at least one. By Mori’s bend-and-break lemma (Lemma 1.9 in [KM]),
every complete curve in a fiber of eve × eve contains maps from a reducible domain or a multiple cover of a
smaller degree curve.

Let p 6∈ S. Suppose by induction that for e < e0, the dimension of every irreducible component of ev−1
e (p) ⊂

M0,1(X, e) is e(n− d+ 1)− 2. We check that multiple covers of an irreducible curve containing p cannot form
an irreducible component of ev−1

e0
(p). By the induction hypothesis, we may assume that the dimension of every

irreducible component of the space of curves of degree e′ containing p is e′(n − d + 1) − 2. The dimension of



RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES 5

the space of e0/e′-sheeted covers of such curves is e′(n − d + 1) − 2 + 2(e1/e′) − 2. Consider the difference in
dimensions

e0(n− d+ 1)− 2− [e′(n− d+ 1)− 2 + 2(e0/e′)− 2] = (e0 − e′)(n− d+ 1− 2
e′

) > 0.

Since n > d+ 1, this difference is strictly positive. Hence, multiple covers cannot form a component of ev−1
e0

(p).
Moreover, multiple covers of irreducible curves have codimension at least two in the fibers except when n = d+2,
e0 = 2 and e′ = 1. Similarly, if p ∈ S, then the dimension of the locus of multiple covers in ev−1

e0
(p) is at most

e′(n− d+ 1)− 1 + 2(e0/e′)− 2. Note that this is still bounded above by e0(n− d+ 1)− 2 when n > d+ 1.

Next we show that the locus of maps with reducible domains do not form an irreducible component of ev−1
e (p)

when p 6∈ S. Let p 6∈ S. Let R(p) be a locus of maps in ev−1
e (p) consisting of maps with reducible domains. We

would like to give an upper bound on the dimension of R(p). Suppose we know the Proposition for all degrees
e < e0. Let C be the domain of a map parameterized by R(p). There are three possibilities.

(1) A node of C may map to the point p. Let D be a maximal connected subset of C contracted to the point
p by the stable map. Let C1, . . . , Cu be the closures of the connected components of C −D. Suppose
the map has degree ei on Ci for 1 ≤ i ≤ u. Then by the induction hypothesis the dimension of R(p) is
bounded above by

u∑
i=1

(ei(n− d+ 1)− 2) + u− 2,

where the term u − 2 accounts for the dimension of the moduli of the marked point and the points of
attachment of D with C1, . . . , Cu. Since

∑
ei = e0, we see that

e0(n− d+ 1)− u− 2 ≥ dim(R(p)).

Since u ≥ 2 by assumption, we see that such a locus has codimension at least two in ev−1
e0

(p). We may
now assume that the nodes of C do not map to p.

(2) A node of C may map to a point pi contained in the set S. Let D be a maximal connected subset
of C contracted to the point pi by the stable map. Let C1, . . . , Cu be the closures of the connected
components of C −D. Suppose that the map has degree ei on Ci for 1 ≤ i ≤ u. Let the inverse image
of p be contained in C1. Then by the induction hypothesis the dimension of R(p) is bounded above by

e1(n− d+ 1)− 2 +
u∑

i=2

(ei(n− d+ 1)− 1) + max(0, u− 3),

where the term max(0, u− 3) accounts for the dimension of the moduli of the points of attachment of
D with C1, . . . , Cu. If u = 2, then we obtain the inequality

e0(n− d+ 1)− 3 ≥ dim(R(p)).

If u > 2, then the inequality becomes

e0(n− d+ 1)− u− 1 + u− 3 = e0(n− d+ 1)− 4 ≥ dim(R(p)).

We see that such loci have codimension at least one in ev−1
e0

(p). We may now assume that the nodes of
C do not map to points in {p} ∪ S.

(3) A node of C may map to a point q 6∈ {p}∪S. Let D be a maximal connected subset of C contracted to
the point q by the stable map. Let C1, . . . , Cu be the closures of the connected components of C −D.
Suppose that the map has degree ei on Ci for 1 ≤ i ≤ u. Let the inverse image of p be contained in C1.
Then by the induction hypothesis, the dimension of R(p) is bounded by

u∑
i=1

(ei(n− d+ 1)− 2) + max(0, u− 3) + 1,

where the term max(0, u− 3) + 1 accounts for the dimension of the moduli of the points of attachment
of D with C1, . . . , Cu. When u = 2, we see that

e0(n− d+ 1)− 3 ≥ dim(R(p)).

When u > 2, then
e0(n− d+ 1)− u− 2 ≥ dim(R(p)).
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We see that such loci have codimension at least one in ev−1
e0

(p).

We conclude that maps consisting of multiple covers of smaller degree curves and maps with reducible domains
cannot form a component of ev−1

e (p) when p 6∈ S since the dimension of such loci is strictly less than the lower
bound on the dimension of the irreducible components of ev−1

e (p). Since by Mori’s bend-and-break lemma,
every irreducible component of ev−1

e (p) contains maps with reducible domains or maps multiple to their image
in codimension one, we conclude that the dimension of every irreducible component of ev−1

e (p) for p 6∈ S is
e(n− d+ 1)− 2.

Next, we repeat the analysis assuming that p ∈ S. As in the previous case, there are three possibilities. The
point p may be the image of a node. If the point p is not the image of a node, another point in S may be the
image of a node. Finally, the images of the nodes of the domain curve may be disjoint from S.

(1) A node of C may map to a point p. Let D be a maximal connected subset of C contracted to p by the
stable map. Let C1, . . . , Cu be the closures of the connected components of C −D. Suppose that the
map has degree ei on Ci for 1 ≤ i ≤ u. Then by the induction hypothesis, the dimension of R(p) is
bounded above by

u∑
i=1

(ei(n− d+ 1)− 1) + u− 2,

where the term u − 2 accounts for the dimension of the moduli of the points of attachment of D with
C1, . . . , Cu and the marked point mapping to p. We obtain the inequality

e0(n− d+ 1)− 2 ≥ dim(R(p)).

We may now assume that the nodes of C do not map to the point p.
(2) A node of C may map to a point pi in S − {p}. Let D be a maximal connected subset of C contracted

to pi by the stable map. Let C1, . . . , Cu be the closures of the connected components of C−D. Suppose
that the map has degree ei on Ci for 1 ≤ i ≤ u and that p is contained in the image of C1. Then by
the induction hypothesis, the dimension of R(p) is bounded above by

e1(n− d+ 1)− 1 +
u∑

i=2

(ei(n− d+ 1)− 1) + max(0, u− 3),

where the term max(0, u − 3) accounts for the moduli of the points of attachments of C1, . . . , Cu and
D. We thus get the bound

e0(n− d+ 1)− 2 ≥ dim(R(p)).

We may now assume that the nodes of C do not map to points of S.
(3) If a node of C maps to a point q 6∈ S, let D be a maximal connected subset of C contracted to q by

the stable map. Let C1, . . . , Cu be the closures of the connected components of C −D. Suppose that
the map has degree ei on Ci for 1 ≤ i ≤ u and that p is contained in the image of C1. Then by the
induction hypothesis, the dimension of R(p) is bounded above by

e1(n− d+ 1)− 1 +
u∑

i=2

(ei(n− d+ 1)− 2) + max(0, u− 3) + 1.

Hence
e0(n− d+ 1)− 2 ≥ dim(R(p)).

By Mori’s bend-and-break lemma, ev−1
e0

(p) either consists entirely of maps with reducible domains or contains
the union of multiple covers and maps with reducible domains as a codimension one subset. Since we bounded
the dimension of the latter from above by e0(n−d+ 1)− 2, we conclude that the dimension of every irreducible
component of ev−1

e0
(p) for p ∈ S is at most e0(n− d+ 1)− 1. �

Corollary 2.6. Let X be a smooth hypersurface of degree d < n − 1 in Pn. Suppose that X satisfies the
hypotheses of Proposition 2.5. Then the dimension of every irreducible component of M0,0(X, e) is equal to

dim(M0,0(X, e)) = e(n− d+ 1) + n− 4.
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Furthermore, the restriction of the evaluation morphism to each irreducible component of M0,1(X, e) is domi-
nant.

Proof. By the theorem on the dimension of fibers and Proposition 2.5, the dimension of every irreducible
component of M0,1(X, e) is at most e(n− d+ 1) + n− 3. Since the dimension is at least e(n− d+ 1) + n− 3,
we conclude that equality must hold and that the restriction of the evaluation morphism to each irreducible
component must be dominant. Consider the forgetful morphism

π :M0,1(X, e)→M0,0(X, e).

Since the dimension of the fibers of π is equal to one, we conclude that

dim(M0,0(X, e)) = e(n− d+ 1) + n− 4.

�

In particular, setting d = 3, we obtain the following corollary.

Corollary 2.7. Let X be a smooth cubic hypersurface of dimension at least 4. Then the dimension of every
irreducible component of M0,0(X, e) is equal to

dim(M0,0(X, e)) = e(n− 2) + n− 4.

Furthermore, the restriction of the evaluation morphism to each irreducible component of M0,1(X, e) is domi-
nant.

We are now ready to prove Theorems 1.1 and 1.6.

Proof of Theorem 1.1. Let X be a smooth cubic hypersurface in Pn of dimension at least 4. In Corollary 2.7,
we showed that

dim(M0,0(X, e)) = e(n− 2) + n− 4.
To prove Theorem 1.1 there remains to check that M0,0(X, e) is irreducible. The argument mimics the one
given in [S] or [HRS]. For the convenience of the reader we recall the argument.

It is well-known that M0,0(X, 1) is smooth and irreducible. The Kontsevich moduli space M0,0(X, 1) is
isomorphic to the Fano variety of lines on X. The Zariski tangent space to the Fano variety at a point L is
given by H0(L,NL/X). Considering the exact sequence

0→ NL/X → NL/Pn → OPn(3)|X → 0,

we conclude that NL/X is a vector bundle of rank n− 2 and degree n− 4 on P1 that admits an injective map
to OP1(1)⊕n−1. Therefore, the only possible splitting types of NL/X are

OP1 ⊕OP1 ⊕OP1(1)⊕n−4 or OP1(−1)⊕OP1(1)⊕n−3.

In either case, h0(L,NL/X) = 2n−6. Since the dimension of the Zariski tangent space is equal to the dimension
of M0,0(X, 1) at every point, we conclude that M0,0(X, 1) is smooth. M0,1(X, 1) is connected because the
evaluation morphism maps it to X with connected fibers. Hence, M0,0(X, 1) is irreducible. Furthermore, since
lines cover X, the normal bundle of a line containing a general point in X has the form

NL/X
∼= OP1 ⊕OP1 ⊕OP1(1)⊕n−4

by Theorem 3.11 (or Exercise 4.4.2) of [K]. In particular, the space of lines on X containing a fixed general
point p is smooth. The rest of the argument is formal, so we carry it out in greater generality.

Let X be a smooth hypersurface of degree d satisfying the hypotheses of Proposition 2.5. By Corollary 2.6,
the map

eve :M0,1(X, e)→ X

restricted to every irreducible component of M0,1(X, e) is dominant. Therefore, if the general fiber of eve is
irreducible, then M0,1(X, e) and consequently M0,0(X, e) is irreducible. Suppose that for e ≤ ẽ, the general
fiber of the evaluation morphism is irreducible. By the discussion in the previous paragraph, this assumption
holds for every smooth cubic hypersurface of dimension at least four. We will prove the irreducibility of the
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general fiber of eve by induction on e. Assume that the general fiber of eve is irreducible for e < e0. It follows
that at a general point p ∈ X the intersection of the fiber of the evaluation morphism with the boundary divisor
∆(e,{1}),(e0−e,∅) is irreducible. The boundary divisor is the image of the gluing morphism

M0,2(X, e)×X M0,1(X, e0 − e)→ ∆(e,{1}),(e0−e,∅).

By Proposition 2.5, the general map in ev−1
e (p) has irreducible domain. Consequently, by the induction hy-

pothesis, the inverse image via the forgetful morphism π of the fiber of the evaluation morphism, π−1(ev−1
e (p)),

is irreducible in M0,2(X, e). By induction, the general fiber of the first projection

π1 :M0,2(X, e)×X M0,1(X, e0 − e)→M0,2(X, e)

is irreducible. Using the dimension estimates in Proposition 2.5, we conclude the irreducibility of the intersection
of ev−1

e0
(p) with the boundary divisor ∆(e,{1}),(e0−e,∅). Note that for every 1 ≤ e < e0, this boundary divisor

contains all the maps whose domain is a chain of e0 rational curves C1 ∪ · · · ∪Ce0 and whose image is a chain of
e0 lines where the image of the first curve in the chain contains p. We will refer to such maps as linear chains
starting at p. We are now ready to conclude the proof.

Let M be an irreducible component of ev−1
e0

(p) ⊂M0,1(X, e0) for a general point p ∈ X. The general member
of M is a map from an irreducible domain. By Mori’s bend-and-break lemma, M contains maps from reducible
curves in codimension one. Hence, M must contain the entire intersection of at least one of the boundary
components with ev−1

e0
(p). In particular, every irreducible component M of ev−1

e0
(p) contains all the linear

chains starting at p. Let C be a general linear chain starting at p. Since H1(C,NC/X(−p)) = 0, we conclude
that the fiber of ev−1

e0
(p) is smooth at such a point. It follows that the fiber of ev−1

e0
(p) is irreducible. Hence,

M0,0(X, e0) is irreducible. This concludes the proof of the theorem. �

Proof of Theorem 1.6. Let X be a general hypersurface in Pn of dimension at least three and degree d ≤ n− 1.
Then by Theorem V.4.3 of [K], we may assume thatM0,0(X, 1) is irreducible of dimension 2n−3−d. Moreover,
by Theorem 2.1 of [HRS], we may also assume that the evaluation morphism ev1 : M0,0(X, 1) → X is flat.
First, suppose 2d ≤ min(n + 3, 2n − 3). Then the threshold value ẽ in Proposition 2.5 is less than or equal to
two. Since the hypotheses of Proposition 2.5 are satisfied for e = 1, we only need to check them for e = 2.
Suppose there exists a component of the fiber of the evaluation morphism ev−1

2 (p) of dimension larger than
2(n − d + 1) − 2 ≥ n − 4. Since double covers of lines and reducible conics have the expected dimension,
we may assume that the general point represents an irreducible conic. Note that the maps parameterized by
this component cannot cover X. Otherwise, by Theorem 3.11 of [K], the general member in this family would
be free. Since H1(C,NC/X(−p)) = 0 for free curves, the dimension of ev−1

2 (p) would be 2(n − d + 1) − 2
contradicting that they form a larger dimensional component. Hence, the images of these maps cover at most
a subvariety of dimension n − 2. If 2d ≤ n + 3, then 2(n − d + 1) − 2 ≥ n − 3. Hence, any component of
ev−1

2 (p) with larger than expected dimension would have dimension at least n − 2. By Mori’s bend-and-break
lemma, reducible conics or double covers of lines would form a divisor in that irreducible component. Since
the evaluation morphism for lines is flat, by the calculations in the proof of Proposition 2.5, the dimension of
either loci is 2(n − d + 1) − 3. This is a contradiction since this locus would have codimension at least two.
We conclude that when 2d ≤ min(n + 3, 2n − 3), if the evaluation morphism is flat in degree one, then it is
also flat in degree two. Note that by Theorem 23.1 in [M] the flatness of the evaluation morphism is equivalent
to the fibers all having the same dimension. Proposition 2.5 then implies that the evaluation morphism eve is
flat for all degrees e. This concludes the proof of Theorem 1.6 (2). If 2d = n + 4, then suppose there exists a
point p such that ev−1

2 (p) has a component of dimension at least n−2 or a one-parameter-family of points with
dim(ev−1

2 (p)) ≥ n− 3. Then by Mori’s bend-and-break lemma, that component must contain reducible conics
or double covers of lines in codimension one. However, since the evaluation morphism is flat in degree one, we
again obtain a contradiction. We conclude that the hypotheses of Proposition 2.5 are satisfied. By Corollary
2.6 the evaluation morphism is dominant on each component for e = 2. It follows by Theorem 3.11 in [K] that
the general fiber of the evaluation morphism is smooth. It is easy to see that the fiber is connected, hence it
is irreducible. The irreducibility of M0,0(X, e) follows by induction on the degree e by the argument given in
the proof of Theorem 1.1. Since the locus of smooth rational curves of degree e in the Hilbert scheme may be
embedded in M0,0(X, e) as a dense open subset, we conclude that Re is irreducible. This concludes the proof
of Theorem 1.6 except in the three cases (d, n) = (3, 4), (4, 5), (5, 6) when 2d ≤ n+ 4 and d = n− 1.
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When (d, n) = (3, 4), (4, 5), (5, 6), the Kontsevich moduli spaceM0,0(X, e) is reducible. We will show that it
has two irreducible components. The locus Ne of degree e covers of lines (for e > 1) forms a second component
also of dimension 2e+n−4. Ne is irreducible (since it maps to the Fano variety of lines which is irreducible and
the fibers are all isomorphic to M0,0(P1, e)). Moreover, the normal bundle of a cover of a free line is globally
generated, hence the Kontsevich moduli space is smooth of dimension 2e+ n− 4 at a general point of Ne. We
conclude that it forms a separate component. When applying Mori’s bend-and-break argument to the locus of
irreducible conics in ev−1

2 (p), we may assume that the conics become reducible by choosing the second point not
to lie on one of the finitely many lines containing p. Hence, the argument given in the previous paragraph still
shows that the evaluation morphism ev2 has constant fiber dimension when (d, n) = (3, 4) or (4, 5). Similarly,
when (d, n) = (5, 6), the evaluation morphism ev2 has constant fiber dimension in the complement of a finite set
S and the fiber dimension increases by at most one over the points in S. Hence, all the hypotheses of Proposition
2.5 with the exception of the requirement that d < n − 1 are satisfied. The only place where the assumption
d < n− 1 is used in the proof of Proposition 2.5 is in bounding the dimension of multiple covers of irreducible
curves. Suppose by induction that for e < e0, dim(ev−1

e (p)) = 2e − 2 if p 6∈ S and dim(ev−1
e (p)) = 2e − 1 if

p ∈ S. If p 6∈ S, then the quantity

(e0 − e′)(2−
2
e′

)

occurring in the proof of Proposition 2.5 is zero if and only if e′ = 1. Furthermore, this quantity is at least two
if e′ > 1. If p ∈ S and e′ > 1, then

(e0 − e′)(2−
2
e′

)− 1

is at least one. We conclude that the locus of degree e0/e′ covers of irreducible curves of degree e′ > 1 has
codimension one or more in ev−1

e0
(p). For e0 > 2, Mori’s bend-and-break argument applies for maps with

irreducible domains. Furthermore, since there are finitely many lines on X containing p, we may assume that
the limiting map is not a degree e0 cover of a line by requiring our second point not to lie on a line in X
containing p. The argument in Proposition 2.5 is then valid without any change. We conclude that for every
degree e, the fibers of eve have constant dimension 2e − 2 over p 6∈ S and dimension at most 2e − 1 over
points p ∈ S. It follows that every irreducible component of M0,0(X, e) has dimension 2e+ n− 4 and that the
evaluation morphism restricted to each irreducible component ofM0,1(X, e) is dominant. It is well-known that
the locus of smooth rational curves embeds as a non-empty Zariski open set inM0,0(X, e). To conclude that Re

is irreducible, it suffices to show that M0,0(X, e) has two irreducible components. Since Ne does not intersect
the locus of smooth rational curves of degree e, it follows that the locus of smooth rational curves must be a
Zariski open set in the other irreducible component. Therefore, Re is irreducible. Let p be a general point on X.
By running the bend-and-break argument in the proof of Theorem 1.1 with two points p, q ∈ X such that there
are no lines in X containing p and q and where the finitely many lines through p and q are free, we can assume
that every irreducible component of ev−1

e (p) with e ≥ 2 not contained in Ne contains generically one-to-one
maps to X with reducible domain. Hence, by induction every irreducible component of ev−1

e (p) not contained
in Ne contains the chains of lines starting at p. Since ev−1

e (p) is smooth at a general chain of lines starting at
p, we conclude that the Kontsevich moduli space M0,0(X, e) for (d, n) = (3, 4), (4, 5), (5, 6) and e ≥ 2 has two
irreducible components. Therefore, Re is irreducible. This concludes the proof of Theorem 1.6. �
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