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Abstract. Given a vector bundle E on a smooth projective variety X, we can define subschemes of
the Kontsevich moduli space of genus-zero stable maps M0,0(X, β) parameterizing maps f : P

1
→ X

such that the Grothendieck decomposition of f∗E has a specified splitting type. In this paper using a
“compactification” of this locus we define Gromov-Witten invariants of jumping curves associated to the
bundle E. We compute these invariants for the tautological bundle of Grassmannians and the Horrocks-
Mumford bundle on P

4. Our construction is a generalization of jumping lines for vector bundles on P
n.

Since for the tautological bundle of the Grassmannians the invariants are enumerative, we resolve the
classical problem of computing the characteristic numbers of unbalanced scrolls.
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1. Introduction

Given a vector bundle E of rank r on a smooth projective variety X we define analogues of Gromov-
Witten invariants for genus-zero jumping curves. We compute these invariants when X is a Grassman-
nian and E is its tautological bundle. Since these invariants are enumerative, we answer some classical
questions about the characteristic numbers of scrolls. We also compute the invariants for the Horrocks-
Mumford bundle.

A theorem of Grothendieck asserts that every vector bundle E of rank k on P1 decomposes as a direct
sum of line bundles E ∼= ⊕k

i=1OP1(ri). If we assume that the k integers r1, . . . , rk are in increasing order,
then the isomorphism class of E uniquely determines these integers ([GH] p. 516). We then say that E
has decomposition type (r1, . . . , rk).

Grothendieck’s theorem provides a tool for understanding vector bundles on rationally connected
varieties, especially on Pn (see [OSS]). If E is a vector bundle on Pn, by Grothendieck’s theorem the
restriction of E to every line decomposes as a direct sum of line bundles. The semicontinuity of the
dimension of cohomology groups implies that the decomposition type is constant on an open subset of
the Grassmannian of lines G(2, n + 1) = G(1, n). However, the decomposition type may change along
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subvarieties of G(2, n+1). Lines that have decomposition types that differ from the general decomposition
type are called jumping lines.

The subvarieties of jumping lines in G(2, n + 1) exhibit very interesting geometry and carry essential
information about the vector bundle E. For example, if E is the Horrocks-Mumford bundle on P4 [HM],
then the restriction of E to a general line decomposes as OP1(2) ⊕OP1(3). However, for lines contained
in a rational four-fold in G(2, 5) the splitting is OP1(1) ⊕ OP1(4). The singular locus of this four-fold
is a contraction of the Shioda modular surface S(5) with 25 singular points. The lines of splitting type
OP1 ⊕ OP1(5) are parameterized by the surface and the 25 singular points correspond to the lines with
splitting OP1(−1)⊕OP1(6) (see [Hu], [BHM]). Given the richness that jumping lines exhibit, it is natural
to study the loci of higher degree rational curves where the decomposition of the bundle changes.

Jumping curves. Let X be a smooth, projective variety. Let E be a rank k vector bundle on X . Let β
be a curve class on X . For any map f : P

1 → X in the Kontsevich space of m-pointed genus-zero maps
M0,m(X, β) we say that f has splitting type (r1, . . . , rk) for the vector bundle E if the Grothendieck
decomposition of f∗E on P1 has type (r1, . . . , rk). In analogy with the classical terminology, we will refer
to maps that do not have the typical splitting type as jumping curves.

Here we investigate the problem of compactifying the space of maps from P1 to X of a specified
splitting type for the vector bundle E. Our aim is to associate analogues of Gromov-Witten invariants
to maps that have a given splitting type with respect to E. Intuitively, we would like these invariants to
count the number of jumping rational curves of a fixed splitting type satisfying the appropriate number
of constraints. If the partial flag varieties of the dual of E over X are homogeneous, the invariants we
define will have this interpretation.

We remark that one can also make sense of higher genus jumping curves for a vector bundle E on
X . A smooth curve C of genus g on X can be considered a jumping curve if the restriction of E to C
has subbundles of unexpectedly high slope. Our approach allows us to define higher genus invariants of
jumping curves. However, it is harder to give a satisfactory enumerative interpretation of these invariants
in terms of the numbers of jumping curves.

A naive approach. The space M0,m(X, β) has a natural compactification given by the space of stable

maps M0,m(X, β). The existence of this compactification suggests a naive approach for defining the
invariants of jumping curves.

Given k integers r1, . . . , rk define UE,X,β(r1, . . . , rk) to be the closure of UE,X,β(r1, . . . , rk), the sub-

scheme of M0,m(X, β) parameterizing maps where f∗(E) has splitting type (r1, . . . , rk) in M0,m(X, β).

Let evi : M0,m(X, β) → X denote the i-th evaluation morphism. Suppose that UE,X,β(r1, . . . , rk) has a
virtual fundamental class supported in the expected dimension D. The expected dimension D may be
computed as follows. Set s1, . . . , sk be the non-decreasing partition of c1(E) · β subject to the condition
that |si − sj | ≤ 1 for all i, j. The splitting type s1, . . . , sk corresponds to the most balanced possible
splitting type and it is the expected generic splitting type. The expected codimension of curves with any
other splitting type is equal to the codimension of scrolls with that splitting type among all scrolls. Using
Lemma 2.4 the expected dimension D is given by

−KX · β + dim(X) + m − 3 +

k−1
∑

j=0

(k − 2j − 1)(sk−j − rk−j) −
∑

i<j

δrj
ri

+
∑

i<j

δsj
si

,

provided that this expression is at least m. Otherwise, the expected dimension is −1.

Given the classes α1, . . . , αm of m algebraic subvarieties of X whose codimensions add up to D, we
can define the r1, . . . , rk invariant of E with respect to the classes αi by the integral

∫

[UE,X,β(r1,...,rk)]virt
ev∗1α1 ∪ · · · ∪ ev∗mαm.

There are two problems with this approach. First, it is far from obvious that these invariants are
well-defined for arbitrary X and E. Second, it is not clear in general how to compute these invariants.
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One can try to express the locus UE,X,β(r1, . . . , rk) as a degeneracy locus of a map of vector bundles

on M0,m(X, β). This calculation, except when UE,X,β(r1, . . . , rk) is a divisor1 (see [Ran]), is difficult

to perform because it is hard to describe the intersection of UE,X,β(r1, . . . , rk) with the boundary of

M0,m(X, β). Reducible curves usually contribute higher-dimensional extraneous loci in the degeneracy
locus calculations. Given these inherent difficulties in the naive approach, we will follow a different
approach.

A classical enumerative geometry problem. Our method is inspired by a classical enumerative
problem posed by I. Vainsencher: “How many cones over twisted cubics are there in P4 that intersect
16 general lines?” Levcovitz, Vainsencher and Xavier computed that there are 279,596,220 such cones
using methods of classical algebraic geometry (see [VX] and [LVX]). He raised the question whether there
are other methods to verify this number. It would be especially desirable to answer such enumerative
geometry problems without constructing an explicit compactification for every type of scroll one wants
to count.

Since a cone over a twisted cubic is a one-parameter family of lines it induces a rational curve of
Plücker degree three in the Grassmannian G(2, 5) of lines in P4. Unfortunately, not every rational cubic
curve in the Grassmannian corresponds to a cone over a twisted cubic. The tautological bundle of the
Grassmannian has non-balanced splitting when restricted to rational cubic curves arising from cones over
twisted cubics (see [C1]). We can reformulate Vainsencher’s question as “How many cubic jumping curves
of the tautological bundle intersect 16 general Schubert cycles σ2?” where σ2 is the cycle of lines meeting
a line.

A cone over a twisted cubic induces a map not only to the Grassmannian G(2, 5), but also to the partial
flag variety F (1, 2; 5). On every fiber of the cone there is a distinguished point, namely the cone point.
We can thus compactify the space of cubic jumping curves as M 0,0(F (1, 2; 5), (0, 3)) where the curve class
(0, 3) denotes the Plücker degrees of the curves under the two projections πi : F (1, 2; 5) → G(i; 5) for
i = 1, 2. Note that a general cubic scroll also induces a curve in F (1, 2; 5). The point of intersection of the
exceptional curve with the fiber gives a distinguished point on each fiber. The class of the resulting curve
is (1, 3) as opposed to (0, 3). In the compactification given by M 0,0(F (1, 2; 5), (0, 3)) the Gromov-Witten
invariants are enumerative and they do provide an answer to the classical problem (see §4.1).

The previous example can be extended to arbitrary Grassmannians G(k, n). The jumping curves of
the tautological bundle of G(k, n) of a fixed splitting type have the expected dimension. In order to
have the splitting type given by non-negative integers, it is more convenient to consider the jumping
curves of the dual of the tautological bundle. Given Schubert cycles whose codimension sum to the
dimension given by Lemma 2.4, we can define the naive Gromov-Witten invariant of jumping curves of
type (r1, . . . , rk) for the dual of the tautological bundle to be the number of irreducible rational curves of
type (r1, . . . , rk) that meet general representatives of the Schubert cycles. Note that the Plücker degree

of such a curve is given by
∑k

i=1 ri. The main observation is that these invariants are equal to ordinary
Gromov-Witten invariants of certain partial flag varieties. This observation naturally leads to a definition
of Gromov-Witten invariants of jumping curves for all smooth varieties X and vector bundles E on X .

More precisely, let i1, . . . , ij be a sequence of non-negative integers with j ≤ k. Consider a splitting
type given by the sequence of integers

r1 = · · · = ra1
= i1, ra1+1 = · · · = ra1+a2

= i2, . . . , rk−aj+1 = · · · = rk = ij .

We will use the short hand ia1

1 , . . . , i
aj

j to denote this splitting sequence. Set bi =
∑i

h=1 ah. Note that

bj = k. Let F (b1, . . . , bj ; n) denote the flag variety that parameterizes nested sequences of vector spaces
V1 ⊂ · · · ⊂ Vj ⊂ V of dimensions bi of a fixed vector space V of dimension n. This flag variety admits a
projection

πh : F (b1, . . . , bj ; n) → G(bh; n)

1During the preparation of this note I was informed that Cristina Martinez made some progress in computing the
invariants for the Grassmannian G(2, 4) when the jumping curves form a divisor in the space of stable maps.
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by sending (V1, . . . , Vj) to Vh. The class of a curve in the flag variety is determined by the Plücker degrees
of its j projections. We will denote the curve classes by (d1, . . . , dj) where di is the Plücker degree of the
curve under the i-th projection.

Suppose γ1, . . . , γm are classes of Schubert cycles in G(k, n) whose codimensions sum to the dimension
of jumping curves of type ia1

1 , . . . , i
aj

j of the dual of the tautological bundle given by Lemma 2.4. Let π∗

j γi

denote the pull-back of the Schubert cycles to the flag variety by the projection πj . With this notation
we can phrase the main observation as follows.

Proposition 1.1. Let E be the dual of the tautological k-plane bundle on the Grassmannian G(k, n).
The naive Gromov-Witten invariant of splitting type (ia1

1 , . . . , i
aj

j ) for E associated to the Schubert

classes γ1, . . . , γm is equal to the Gromov-Witten invariant of F (b1, . . . , bj ; n) associated to the curve

class (a1i1, a1i1 + a2i2, . . . ,
∑

h ahih) and Schubert classes π∗

j γ1, . . . , π
∗

j γm.

This proposition can be interpreted as a generalization of A. Buch’s “kernel-span technique” (see
[BKT]). In fact Proposition 1 and its corollary in [BKT] immediately follow from Proposition 1.1 (see
[C2] for an exposition from this point of view). We recall that Buch defines the kernel of a curve as
the intersection of all the k-planes parameterized by the curve. Unfortunately, the kernel of a rational
curve C in the Grassmannian G(k, n) is almost always empty unless the curve has very small degree or is
very special. We can replace the kernel by a more natural invariant: the sequence of minimal subscrolls
associated to the curve. In case the minimal subscrolls are the vertices of a cone we recover Buch’s kernel.
The advantage of using minimal subscrolls is that every irreducible rational curve in the Grassmannian
has an associated sequence of minimal subscrolls.

We also remark that Proposition 1.1 explains the “unexpected” vanishing of a large collection of
Gromov-Witten invariants of partial flag varieties. In order for a Gromov-Witten invariant not to vanish
it is not enough for the codimensions of the classes γi to add up to the dimension of the Kontsevich
moduli space. The conditions must allow the existence of the appropriate collection of minimal subscrolls.
Proposition 1.1 and the dimension counts of §2 give refined vanishing results. For example, the m-pointed
degree d genus-zero invariants of G(k, n), assuming that m ≥ 3, 2k ≤ n and d + k ≤ n, vanish unless

d +
m − 3

d
≤ (m − 2)k.

This was observed for m = 3 in [BKT]. The subvariety parameterizing k+d-dimensional vector spaces that

contain a k-dimensional subspace satisfying the Schubert condition λi has codimension
∑

j max (λj
i − d, 0)

in G(k + d, n), where λj
i denotes the parts of the partition defining the Schubert condition λi. The sum

of the codimensions
∑

i,j max (λj
i − d, 0) cannot exceed the dimension of G(k + d, n) since a scroll of

dimension k and degree d can span at most a k + d − 1-dimensional projective linear space. We thus
obtain the more precise inequality

∑

i,j max (λj
i − d, 0) ≤ (k + d)(n − k − d). Since the sum of the

codimensions of λi,
∑

i,j λj
i , is equal to the dimension of the Kontsevich moduli space, the right hand

side is bounded below by k(n − k) + dn − mkd + m − 3. Rewriting this dimension estimate yields the
claimed inequality.

Once we transform the question of computing the invariants of jumping curves to a question of comput-
ing ordinary Gromov-Witten invariants, many techniques become available for computing these invariants.
At the end of the paper we include a list of invariants computed using the associativity relations in the
quantum cohomology ring following [DiFI]. We remark that, in order to facilitate these computations, it
would be useful to give an efficient Littlewood-Richardson rule for the big quantum-cohomology of partial
flag varieties using the structure of minimal subscrolls (see [C1]).

Proposition 1.1 provides a tool for computing the characteristic numbers of scrolls. Recall that the
characteristic numbers are the numbers of scrolls that are incident to the appropriate number of general
linear spaces. Since there is a one-to-one correspondence between rational scrolls Sr1,··· ,rk

in Pn and
irreducible rational curves in G(k, n + 1) on which the dual of the tautological bundle has splitting type
(r1, . . . , rk) (except when the scroll is a balanced scroll of degree 1 or 2), Proposition 1.1 has the following
corollary.
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Corollary 1.2. Let (r1, . . . , rk) be equal to the splitting type (ia1

1 , . . . , i
aj

j ). The characteristic numbers

of scrolls Sr1,··· ,rk
in Pn having m fibers satisfying the Schubert conditions γ1, . . . , γm are equal to the

Gromov-Witten invariants of F (b1, . . . , bj ; n + 1) for the curve class (i1a1, . . . ,
∑j

h=1 ihah) associated to

the cohomology classes π∗

j γ1, . . . , π
∗

j γm, except when the scroll is a balanced scroll of degree 1 or 2.

If X is a smooth projective variety and E is a vector bundle of rank k, then, inspired by the case
of the tautological bundle of the Grassmannian, we can define the invariants of jumping curves as the
genus-zero Gromov-Witten invariants of FX (b1, . . . , bj ; E

∗), the variety of partial flags of the dual of the
vector bundle E. These invariants by the virtue of being defined as Gromov-Witten invariants obey
all the axioms of Gromov-Witten theory. If FX(b1, . . . , bj ; E

∗) is homogeneous, then the invariants are
enumerative. They count the number of jumping curves of a fixed splitting type.

One can also consider the higher genus invariants of FX(b1, . . . , bj ; E
∗). The Kontsevich moduli space

of genus g maps to FX (b1, . . . , bj ; E
∗) may be interpreted as a “compactification” of genus g curves on

which the restriction of E has subbundles of given rank and degree. Unfortunately, the Kontsevich
moduli spaces of higher genus maps are not well-behaved. The author does not know a way of extracting
useful geometric information from these invariants. We will, therefore, restrict our attention to genus
zero curves.

Although there is a vast literature about the jumping lines of bundles on P
n, relatively little seems to

have been written about higher degree jumping curves of a fixed splitting type or invariants of jumping
curves for varieties other than Pn. Z. Ran has given a formula for the invariants of jumping curves for
bundles on Pn (satisfying suitable assumptions) provided that the jumping curves are of pure codimension
one in the space of rational curves of degree d [Ran]. However, the author could not find a convenient
reference for the invariants of higher degree jumping curves for even the Horrocks-Mumford bundle on
P4. We include these invariants at the end of the paper.

Questions: There are many open problems about the existence of vector bundles on Pn. Two of these
outstanding problems are the Hartshorne and Grauert conjectures.

• Are there any indecomposible rank 2 vector bundles on Pn for n ≥ 5? The non-existence of such
bundles is Hartshorne’s conjecture and is related to the question of whether there are any codimension
two smooth subvarieties that are not complete intersections in P

n for n ≥ 6 (see [Hu]).

• Are there any unstable bundles of rank 2 on Pn for n ≥ 4 other than direct sums of line bundles? The
non-existence of such bundles is also conjectured.

It would be interesting to study the implications of the geometry of jumping curves to these questions.
While jumping lines give some insight into the problems, they are too rigid to resolve them. Taking
higher degree or even higher genus curves may give the added flexibility to obtain better results.

The organization of the paper. In §2 we recall classical facts about the geometry of scrolls and
flag varieties. In §3 we define the invariants of jumping curves and prove their basic properties. In §4 we
compute the invariants of jumping curves for the dual of the tautological bundle of the Grassmannians
and the Horrocks-Mumford bundle.

Acknowledgments: It is a pleasure to thank T. Coates, J. de Jong, J. Harris, J. Starr and I. Vainsencher
for enlightening conversations during the preparation of this note. Suggestions of I. Ciocan-Fontanine
and the referee have greatly improved the style and the accuracy of this note. I am grateful to A. Kresch
for help with Farsta.

2. Preliminaries

2.1. The geometry of rational normal scrolls. In this subsection we recall the basic facts about
rational normal scrolls. The reader can consult [C1], [H] or [EH] for more details.

The scrolls Sr1,··· ,rk
. Let r1 ≤ · · · ≤ rk be a sequence of non-negative integers not all equal to zero. We

will reserve the letter r for the sum r =
∑

i ri. We denote the k-dimensional scroll of type r1, . . . , rk in

Pr+k−1 by Sr1,··· ,rk
. To construct Sr1,··· ,rk

fix rational normal curves of degree ri in general linear spaces
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Pri . Choose an isomorphism between each of the rational curves with an abstract P1. The scroll Sr1,··· ,rk

is the union of the k − 1-planes spanned by the points corresponding under the isomorphisms. We allow
some ri to be zero. In that case we obtain cones over scrolls of smaller dimension. We say a scroll is
balanced if |ri − rj | ≤ 1 for all i, j. We say a scroll is perfectly balanced if ri = rj for every i and j.

Abstractly a scroll is the projectivization of a vector bundle of rank k on P1. Hence, we can express
the variety as X = PE = P(OP1(−r1)⊕ · · · ⊕OP1(−rk)). If π : X → P

1 is the projection morphism, then
the Chow ring of X is generated by the pull-back of the point class F from P1 and the class H = OPE(1)
which restricts to the hyperplane class on every fiber of π. The following proposition elucidates the
relation between scrolls and projectivization of vector bundles over P1 (see [EH]).

Proposition 2.1. The scroll Sr1,··· ,rk
is the image of P(OP1(−r1) ⊕ · · · ⊕ OP1(−rk)) under the linear

series |H |.

More generally, we will consider projections of Sr1,··· ,rk
along centers disjoint from the scroll. Abusing

notation we will denote these projections also by Sr1,··· ,rk
.

Definition 2.2. An effective class of the form H + mF is called a section class.

A section class restricts to a hyperplane on a general fiber F ∼= Pk−1. In particular an irreducible
curve in the class (H + mF )k−1 is a section of the projective bundle π : X → P1. The dimension of the
space of global sections of a section class can be easily computed (see [EH]).

Lemma 2.3. On Sr1,··· ,rk
the dimension of the space of global sections of H + mF is given by

k
∑

i=1

(max(−1, m + ri) + 1).

Minimal subscrolls of Sr1,··· ,rk
. A subscroll of Sr1,··· ,rk

of dimension s is a scroll Sb1,··· ,bs
⊂ Sr1,··· ,rk

dominating the base of Sr1,··· ,rk
. A subscroll of dimension s has class Hk−s + mHk−s−1F for some

integer m. The scroll Sr1,··· ,rk
has minimal subscrolls of dimension s for every s < k. By Lemma 2.3,

H − rkF is the minimal effective section class since H − (rk + j)F is not effective for any j > 0. The
k − 1-dimensional minimal subscroll is Sr1,...,rk−1

. If rk > rk−1, it is unique. We can inductively define
the minimal subscroll of codimension s as a minimal subscroll of a minimal subscroll of codimension s−1.
If all the ri are distinct, the minimal subscrolls are unique. Although the minimal subscrolls have been
defined inductively, a minimal subscroll of dimension s is the smallest degree subscroll of dimension s
contained in Sr1,··· ,rk

.

The dimension of the space of subscrolls of Sr1,··· ,rk
may be computed using the dimensions of the space

of sections of Sr1,··· ,rk
. The dimension of the spaces of curves of degree d in the class Hk−1+(d−r)Hk−2F

is given by
k

∑

i=1

(max(−1, d − ri) + 1) − 1.

The dimension of the space of subscrolls of Sr1,··· ,rk
of type St1,...,ts

assuming that tj ≥ rj and s < k is
given by the following

(1)

s
∑

j=1

k
∑

i=1

(max(−1, tj − ri) + 1) −

s
∑

j=1

s
∑

h=1

(max(−1, tj − th) + 1).

In particular, if the splitting sequence is (ia1

1 , . . . , i
aj

j ), then the minimal subscrolls of dimensions

bi =
∑i

h=1 ah are unique. However, when there are repetitions, the minimal subscrolls need not be
unique. In fact, the dimension of the space of nested sequences of minimal subscrolls of every dimension
S1 ⊂ · · · ⊂ Sk = Sr1,··· ,rk

on Sr1,··· ,rk
is

∑

i<j δri
rj

, where δ denotes the Kronecker delta function.
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The dimension of the space of scrolls. The dimension a of the automorphism group of Sr1,··· ,rk
is :

a =

k−1
∑

j=0

(k − 2j − 1)rk−j +

(

k + 1

2

)

+ 2 +
∑

i<j

δrj
ri

(see Ch. 3 of [H]). Knowing the dimension of the automorphism group allows us to determine the
dimension of the locus in the Hilbert scheme parameterizing rational scrolls Sr1,··· ,rk

in any projective
space PN .

Lemma 2.4. The dimension of the locus of the Hilbert scheme parameterizing rational scrolls Sr1,··· ,rk

in PN is

(N + 1)(r + k) − 1 − a

Remark. Note that Lemma 2.4 also determines the dimension of the space of rational curves of splitting
type (r1, . . . , rk) for the dual of the tautological bundle of the Grassmannian. By the universal property
of Grassmannians, every scroll induces a rational curve in the Grassmannian. The type of the scroll
determines the splitting type of the dual of the tautological bundle.

Finally observe that the dimension of the space of scrolls Sr1,··· ,rk
with a choice of sequence of minimal

subscrolls is given by

(N + 1)(r + k) −

k−1
∑

j=0

(k − 2j − 1)rk−j −

(

k + 1

2

)

− 3.

In particular, the dimension is maximized when the scrolls are as balanced as possible. As the splitting
becomes more unbalanced the dimension strictly decreases.

2.2. Quantum cohomology of partial flag varieties. In this subsection we collect basic facts about
the quantum cohomology of partial flag varieties. The reader can consult [Ci] and [FP] for more details.

Let b1 < · · · < bj be a strictly increasing sequence of positive integers. Let F (b1, . . . , bj ; n) denote the

partial flag variety parameterizing nested sequences of subspaces V b1
1 ⊂ · · ·V

bj

j ⊂ V n of dimension bi of
a fixed vector space of dimension n. For convenience of notation we will set bj+1 = n and b0 = 0 in the
formulae below. We remind the reader that the dimension of F (b1, . . . , bj ; n) is

j
∑

i=1

bi(bi+1 − bi).

Given a complete flag F• = F0 ⊂ F1 ⊂ · · · ⊂ Fn and a permutation ω on n letters for which
ω(i) < ω(i + 1) except possibly when i = bh for some h between 1 and j, the Schubert variety Σω is
defined by

Σω(F•) = { V1 ⊂ · · · ⊂ Vj | dim(Vi ∩ Fh) ≥ #{α ≤ i : ω(α) > n − h} ∀i, h}.

The cohomology of F (b1, . . . , bj ; n) is generated by the Poincaré duals of the classes of Schubert cycles.

The flag variety F (b1, . . . , bj ; n) admits a projection morphism πi : F (b1, . . . , bj ; n) → G(bi, n) for every
i between 1 and j. The divisor class group of F (b1, . . . , bj ; n) is generated by the pull-backs π∗

i σ1 of the
generators of the divisor class group in G(ai, n) by these projections. Similarly the class β of a curve
C in F (b1, . . . , bj ; n) is determined by the Plücker degrees d1, . . . , dj of its projections πi(C). We will,
therefore, often give a curve class β by specifying the degrees of the projections.

A variety X is convex in the sense of Kontsevich if for every map f : P1 → X , the pull-back of
the tangent bundle TX of X to P1 is generated by global sections. Homogeneous spaces, in particular
F (b1, . . . , bj ; n), are convex varieties.

Given a curve class β ∈ H2(X, Z)/tors, we denote the Kontsevich moduli space of m-pointed, genus-
zero stable maps to X in the class β by M 0,m(X, β). It is equipped with m natural evaluation morphisms
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ev1, . . . , evm : M0,m(X, β) → X . When X is a convex variety, M 0,m(X, β) is the coarse moduli scheme

associated to a smooth, proper Deligne-Mumford stack M0,m(X, β) of dimension

−KX · β + dim X + m − 3.

The Kontsevich moduli space is smooth away from the locus of maps with automorphisms (see [FP]).

Specializing this discussion to the case of F (b1, . . . , bj ; n), if β = (d1, . . . , dj), then the dimension of

M0,m(F (b1, . . . , bj ; n), β) is equal to

j
∑

i=1

bi(bi+1 − bi) +

j
∑

i=1

di(bi+1 − bi−1) + m − 3.

Given a collection of Schubert cycles σω1
, . . . , σωm

whose codimensions add up to the dimension of
M0,m(F (b1, . . . , bj ; n), β), the Gromov-Witten invariant corresponding to these cycles is defined as

I(F (b1,...,bj ;n),β)(σω1
, . . . , σωm

) =

∫

M0,m(F (b1,...,bj ;n),β)

ev∗1(σω1
) ∪ · · · ∪ ev∗m(σωm

).

By Lemma 14 of [FP] the Gromov-Witten invariants are equal to the number of maps from an irre-
ducible P1 to F (b1, . . . , bj ; n) that intersect general representatives of the Schubert cycles σωi

.

More generally, we denote the variety of partial flag bundles of E over X of type b1, . . . , bj by

FX (b1, . . . , bj ; E). Recall that the latter variety parameterizes V b1
x ⊂ · · ·V

bj
x = Ex nested sequences

of bi-dimensional subspaces in the fibers Ex of the vector bundle E. The dimension of FX(b1, . . . , bj ; E)
is given by

dim X +

j−1
∑

i=1

bi(bi+1 − bi).

We denote the Grassmannian bundle of bi-planes in the fibers of E by GX (bi, E). The flag variety
FX (b1, . . . , bj ; E) admits the projection πX : FX (b1, . . . , bj ; E) → X and the projections

πi : FX (b1, . . . , bj ; E) → GX (bi, E).

Let β be a curve class in H2(X, Z). The class of a curve C in FX (b1, . . . , bj ; E) is determined by the
classes of the projections πi(C) in GX (bi; E) and the class of the projection of the curve β in X . We will
denote the class of a curve in FX (b1, . . . , bj ; E) by (β, e1, . . . , ej) where ei are the degrees of the curve
with respect to the first chern class of the universal quotient bundle over GX(bi; E). Note that the last
degree ej is given by ej = c1(E) · β.

3. Gromov-Witten invariants of jumping curves

In this section we define the Gromov-Witten invariants for jumping curves and prove that they are
enumerative for the tautological bundle of Grassmannians.

Let E be a rank k vector bundle on a smooth projective variety X . Let (ia1

1 , . . . , i
aj

j ) denote the
splitting type

r1 = · · · = ra1
= i1, . . . , rk−aj+1 = · · · = rk = ij

as in the introduction. Set bh =
∑h

i=1 ai and dh =
∑h

s=1 isas.

Given a splitting sequence (ia1

1 , . . . , i
aj

j ) and a curve class β ∈ H2(X, Z), there is an associated curve

class (β, d1, . . . , dj) in the partial flag bundle FX(b1, . . . , bj ; E
∗) of the dual bundle E∗ of the bundle E

over X . We will denote this curve class by β
i
a1

1
,...,i

aj
j

. The m-pointed genus-zero maps in the curve class

β
i
a1

1
,...,i

aj

j

have an expected dimension given by the formula

D = c1(TFX (b1,...,bj ;E∗)) · βi
a1

1
,...,i

aj
j

+ dim FX (b1, . . . , bj ; E
∗) + m − 3.

Let γ1, . . . , γm be the classes of m algebraic subvarieties of X whose codimensions add up to D.
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Definition 3.1 (Invariants of genus-zero jumping curves). We define the Gromov-Witten invariant as-

sociated to the curves in the class β ∈ H2(X, Z) of splitting type ia1

1 , . . . , i
aj

j for the vector bundle E and

classes γ1, . . . , γm by the following formula

I
β,i

a1

1
,...,i

aj
j

(γ1, . . . , γm) =

∫

[M0,m(FX (b1,...,bj ;E∗),β
i
a1
1

,...,i
aj
j

)]virt
ev∗1(π∗

Xγ1) ∪ · · · ∪ ev∗m(π∗

Xγm)

Remark. We note that I
β,i

a1

1
,...,i

aj
j

(γ1, . . . , γm) is well-defined because by assumption the sum of the

codimensions of π∗

Xγi add up to the expected dimension of M 0,m(FX (b1, . . . , bj ; E
∗), β

i
a1

1
,...,i

aj

j

) and the

corresponding Gromov-Witten invariant is well-defined.

We say that a map f : P1 → FX(b1, . . . , bj ; E
∗) in the class β

i
a1

1
,...,i

aj

j

is as balanced as possible if

f∗π∗

XE ∼= ⊕a1

h=1OP1(i1) ⊕⊕a2

h=1OP1(i2) ⊕ · · · ⊕ ⊕
aj

h=1OP1(ij).

Let M bal
0,m(FX (b1, . . . , bj ; E

∗), β
i
a1

1
,...,i

aj

j

) denote the subscheme of the Kontsevich moduli space of stable

maps M0,m(FX (b1, . . . , bj ; E
∗), β

i
a1

1
,...,i

aj
j

) parameterizing maps that are as balanced as possible. This is

an open (possibly empty) subscheme.

An easy computation shows that the expected dimension of M0,m(FX (b1, . . . , bj ; E
∗), β

i
a1

1
,...,i

aj

j

) equals

−KX · β + dim(X) + m − 3 +
k−1
∑

j=0

(k − 2j − 1)(sk−j − rk−j) −
∑

i<j

δrj
ri

+
∑

i<j

δsj
si

,

where s1, . . . , sk is the non-decreasing partition of c1(E) ·β subject to the condition that |si − sj | ≤ 1 for
all i, j. Note that this also the expected dimension of jumping curves of type (ia1

1 , . . . , i
aj

j ) given in the
introduction. Even for stable vector bundles on Pn and lines these expectations do not necessarily hold.

The theorem of Grauert and Mülich ensures that for a stable vector bundle on P
n, the splitting type

(r1, . . . , rk) on a general line satisfies ri+1 − ri ≤ 1 (see Chapter 2 §2 of [OSS]). However, there are stable
vector bundles E of rank 3 and c1(E) = 0 on P2 that have the splitting type (−1, 0, 1) on a general line
(see page 208 of [OSS] for an example).

There are analogues of the Grauert-Mülich Theorem determining the generic splitting types of stable
vector bundles on P2 when restricted to conics (see [Vit] and [Man]). However, in general, the actual
dimensions of curves of a given splitting type seem to be unknown. Even when the splitting types for lines
are as expected, the splitting types for other degree maps may have unexpectedly high dimension. For
example, for the Horrocks-Mumford bundle, the expected dimension of degree two maps of splitting type
(−2, 12) is −1. However, the double covers of the lines of splitting type (−1, 6) give positive dimensional
families of degree two maps of splitting type (−2, 12). Hence, in general the invariants we defined will
be virtual. However, there are conditions that guarantee that for every splitting type the dimension of
jumping curves equal the expected dimension.

Proposition 3.2. (1) There is a bijection between M bal
0,m(FX (b1, . . . , bj ; E

∗), β
i
a1

1
,...,i

aj
j

) and the locus

of jumping curves for E of type (ia1

1 , . . . , i
aj

j ) in M0,m(X, β).

(2) If the flag bundles FX(b1, . . . , bj ; E
∗) are homogeneous varieties, then for every jumping type

the locus of rational curves having that jumping type for the vector bundle E has the expected

dimension. Moreover, the subscheme M bal
0,m(FX (b1, . . . , bj ; E

∗), β
i
a1

1
,...,i

aj
j

) forms an open dense

subscheme of M0,m(FX (b1, . . . , bj ; E
∗), β

i
a1

1
,...,i

aj

j

), hence the latter gives a natural compactifica-

tion of the space of m-pointed genus-zero jumping curves for E of type (ia1

1 , . . . , i
aj

j ).

Proof: Given a map f : P1 → FX(b1, . . . , bj ; E
∗) we obtain a map fX : P1 → X by taking the

composition πX ◦ f of f with the projection πX . Consequently, the morphism πX induces a morphism
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ΠX : M0,m(FX(b1, . . . , bj ; E
∗), β

i
a1

1
,...,i

aj

j

) → M0,m(X, β). We first argue that if f is as balanced as

possible, then πX ◦ f is a jumping curve of type (ia1

1 , . . . , i
aj

j ) for the bundle E.

The pull-back of E by the composite map is given by (πX ◦ f)∗E = f∗π∗

XE. The relative flag variety
has j universal subbundles U1 ⊂ · · · ⊂ Uj . We have that Uj

∼= π∗

XE∗. Hence the f∗Ui give subbundles
of f∗π∗

XE∗ of rank bi and degree −di. Since the map f is as balanced as possible, the pull-backs of the
universal bundles decompose as

f∗Us
∼= ⊕a1

h=1OP1(−i1) ⊕⊕a2

h=1OP1(−i2) ⊕ · · · ⊕ ⊕as

h=1OP1(−is).

By the assumption that the map is as balanced as possible this is true when s = j. Since the subbundles
of rank bs and degree −ds in f∗π∗

XE∗ are unique, it follows for 1 ≤ s < j, as well. In particular, the
splitting type of πX ◦ f for E is (ia1

1 , . . . , i
aj

j ).

Conversely, let g : P1 → X be a morphism such that g∗E = ⊕k
i=1OP1(ri). Assume that the integers ri

are in increasing order. Let b1, . . . , bj = k be the collection of integers such that rbi
< rbi+1, where the

inequality is strict. Under these conditions g∗E∗ have unique subbundles Fbi
isomorphic to ⊕bi

i=1OP1(−ri).
By the universal property of FX(b1, . . . , bj ; E

∗) there is a unique map g̃ : P1 → FX (b1, . . . , bj ; E
∗) such

that πX ◦ g̃ = g and g̃∗Ui = Fbi
. Hence, g̃ is balanced. This gives the required bijection.

If FX(b1, . . . , bj ; E
∗) is convex in the sense of Kontsevich, then by Theorem 2 of [FP] the Kontsevich

moduli spaces are of pure and expected dimension. In fact, they are smooth as Deligne-Mumford stacks.
By [KP] the Kontsevich moduli spaces of stable maps to homogeneous varieties are connected, hence
irreducible. In the previous paragraph we showed that there is a bijection between stable maps in the
class β

i
a1

1
,...,i

aj
j

that are as balanced as possible and the jumping curves for E of splitting type (ia1

1 , . . . , i
aj

j ).

This locus has dimension equal to the dimension of the Kontsevich space. It forms a dense open subset
of it. 2

Proposition 3.3. Suppose the flag bundles FX(b1, . . . , bj ; E
∗) are homogeneous varieties. Then the

Gromov-Witten invariant I
β,i

a1

1
,...,i

aj
j

(γ1, . . . , γm) of jumping curves for E is equal to the number of jump-

ing curves of splitting type (ia1

1 , . . . , i
aj

j ) for E intersecting general varieties Γ1, . . . , Γm whose classes are

γ1, . . . , γm.

Proof: By Lemma 14 of [FP] the Gromov-Witten invariant I(FX (b1,...,bj ;E∗),β
i
a1

1
,...,i

aj
j

)(π
∗

Xγ1, . . . , π
∗

Xγm)

is equal to the number of maps f : P1 → FX (b1, . . . , bj ; E
∗) such that f(pi) ∈ π−1

X Γi where π−1
X Γi are

general representatives of the Poincaré duals of the classes π∗

Xγi.

By Proposition 3.2 there is a bijection between the jumping curves of type (ia1

1 , . . . , i
aj

j ) and the maps in

M0,m(FX (b1, . . . , bj ; E
∗), β

i
a1

1
,...,i

aj
j

) that are balanced. By the bijection given in the proof of Proposition

3.2 a curve that intersects general varieties Γ1, . . . , Γm corresponds to a curve that intersects the varieties
π−1

X Γ1, . . . , π
−1
X Γm and vice versa. If we assume that the non-balanced curves do not contribute to the

Gromov-Witten invariants, then by this bijection the proposition follows.

The dimension counts in §2.1 prove that the non-balanced maps do not contribute to the Gromov-
Witten invariants. The maps with irreducible domain in the class β

i
a1

1
,...,i

aj
j

that are not as balanced as

possible give rise to maps with different splitting types in different flag varieties. Since their dimensions
are strictly lower, by applying Lemma 14 of [FP] we see that the corresponding Gromov-Witten invariants
are zero. Hence, there cannot be maps with that splitting type that satisfy the constraints imposed by
the classes γi. This concludes the proof of the proposition. 2

Proposition 1.1 is now a corollary of Proposition 3.3. When X is the Grassmannian G(k, n) and E is
the dual of the tautological k-plane bundle, then FG(k,n)(b1, . . . , bj ; E

∗) is simply the j-step partial flag
variety F (b1, . . . , bj ; n). Since these varieties are homogeneous, Proposition 3.3 applies. We conclude that
the Gromov-Witten invariant I

β,i
a1

1
,...,i

aj
j

(γ1, . . . , γm) is equal to the number of jumping curves of class β

in G(k, n) and splitting type (ia1

1 , . . . , i
aj

j ) for the dual of the tautological bundle that intersect general
Schubert cycles Γ1, . . . , Γm. This is the content of Proposition 1.1 in the Introduction.



GROMOV-WITTEN INVARIANTS OF JUMPING CURVES 11

We now establish the connection between the characteristic numbers of scrolls and the Gromov-Witten
invariants of jumping curves for the dual of the tautological bundle of the Grassmannian. Let (r1, . . . , rk)
be the splitting type given by (ia1

1 , . . . , i
aj

j ).

Corollary 3.4. The number of scrolls Sr1,··· ,rk
in Pn−1 that have m fibers that satisfy the Schubert con-

ditions γ1, . . . , γm is equal to the Gromov-Witten invariant IF (b1,...,bj ;n),(d1,...,dj)(π
∗

j γ1, . . . , π
∗

j γm) except

when the scroll is a balanced scroll of degree 1 or 2.

Proof: Let f : P1 → G(k, n) be a map such that f∗[P
1] = dσn−k,...,n−k,n−k−1 where σn−k,...,n−k,n−k−1

is the generator of H2(G(k, n), Z). Let T denote the tautological bundle of G(k, n). Suppose that the
pull-back of the dual of the tautological bundle f ∗T ∗ has splitting type (ia1

1 , . . . , i
aj

j ). The projectivization

of the tautological bundle P(f∗T ) → P
1 naturally maps to P

n−1. Consider the incidence correspondence

{(x, [Λ]) : x ∈ Λ} ⊂ P
n−1 × G(k, n).

The second projection of the incidence correspondence gives the projectivization of the tautological bundle
over G(k, n). The first projection gives the desired map to Pn−1. The image variety in Pn−1 is either
a scroll Sr1,··· ,rk

(if the image spans an r + k − 1 dimensional linear space) or a projection of a scroll
Sr1,··· ,rk

.

Conversely, a scroll Sr1,··· ,rk
in Pn−1 induces a map P1 → G(k, n) by the universal property of Grass-

mannians. The splitting type of the dual of the tautological bundle on the induced curve is (r1, . . . , rk).
As long as the scroll is not balanced of degree 1 or 2, each scroll induces a unique map to the Grass-
mannian. If the scroll is balanced of degree 2, then the scroll has two rulings by linear spaces, hence
induces two distinct maps to the Grassmannian. Balanced scrolls of degree 1 admit many different scroll
structures depending on their vertices. The corollary now follows from Proposition 1.1 and the fact that
the two constructions just described are inverses of each other (except when the scrolls are balanced of
degree 1 or 2). 2

Remark 1. The same technique can be used to compute the characteristic numbers of scrolls in other
homogeneous varieties. For example, in order to compute the characteristic numbers of scrolls on a
smooth quadric hypersurface one can repeat the discussion by replacing the Grassmannian G(k, n) with
the orthogonal Grassmannian.

Remark 2. Finally, observe that even if the flag bundles FX(b1, . . . , bj ; E
∗) are not homogeneous, as

long as the Kontsevich moduli spaces M 0,m(FX(b1, . . . , bj ; E
∗), β

i
a1

1
,...,i

aj

j

) are irreducible, reduced and

of the expected dimension and X is homogeneous, we can still obtain enumerative information from the
invariants of jumping curves. In this case the invariants give the number of jumping curves (possibly
counted with multiplicity).

4. Explicit computations

4.1. The invariants of jumping curves for the tautological bundle of G(k, n). In this subsection
we list the characteristic numbers of small degree unbalanced scrolls. By Corollary 3.4 these characteristic
numbers are equal to certain Gromov-Witten invariants of partial flag varieties. The latter following [DiFI]
can be computed using the associativity relations in the quantum cohomology ring. The numbers we list
were computed using Farsta [Kr], a computer program that uses the associativity relations to determine
the invariants from a few initial invariants.

The first table contains the number of surface scrolls N(r1, r2; p) in P
3 of type r1, r2 that contain p

general points.

N(1, 1; 9) = 1 N(2, 2; 17) = 1044120 N(2, 3; 21) = 5335687360
N(0, 2; 8) = 4 N(1, 3; 16) = 2059800 N(1, 4; 19) = 6935529153
N(1, 2; 13) = 504 N(0, 4; 14) = 310800 N(0, 5; 17) = 181561120
N(0, 3; 11) = 900
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The second table contains the number N(r1, r2; l, p) of surface scrolls in P4 of type r1, r2 that contain p
general points and meet l general lines. We note that some of these numbers were computed before in [C1]
using degeneration techniques. The cubic number 279, 596, 220 has been recently computed by Levcovitz,
Vainsencher and Xavier using techniques of classical algebraic geometry [LVX]. Other invariants of scrolls
are available from the author upon request.

N(0, 2; 12, 0) = 7440 N(0, 3; 16, 0) = 279596220
N(0, 2; 10, 1) = 1180 N(0, 3; 14, 1) = 30177034
N(0, 2; 8, 2) = 190 N(0, 3; 12, 2) = 3357774
N(0, 2; 6, 3) = 30 N(0, 3; 10, 3) = 385008

4.2. The invariants of jumping curves for the Horrocks-Mumford bundle. In this final sub-
section we determine the invariants of jumping curves for the Horrocks-Mumford bundle. Let ω denote
the hyperplane class in P4. Recall that the Horrocks-Mumford bundle is the unique (up to isomorphism
and pull-back by projective linear transformations of P

4) stable bundle on P
4 with chern polynomial

1+5ω+10ω2 [DS]. The Horrocks-Mumford bundle occupies a special role in the theory of vector bundles
of rank 2 on Pn. We do not know any indecomposable vector bundles of rank 2 on Pn for n > 4. On
P4 the Horrocks-Mumford bundle provides an example of an indecomposable rank 2 vector bundle. One
can obtain others by applying standard operations like tensoring by a line bundle or pulling back the
Horrocks-Mumford bundle via finite branched covers f : P4 → P4. However, all the indecomposable
rank 2 bundles on P4 that we know essentially arise from the Horrocks-Mumford bundle via standard
operations.

A theorem of Serre guarantees that the normal bundle of a smooth codimension 2 subvariety X in Pn

for n ≥ 3 can be extended to a vector bundle on Pn if and only if the determinant of the normal bundle
of X is the restriction of OPn(m) to X for some m (Theorem 5.1.1. of [OSS]). The Horrocks-Mumford
bundle can be constructed as the extension of the normal bundle of an abelian surface of degree 10
embedded in P4 (see [Hu] for additional constructions of the Horrocks-Mumford bundle).

Here we list some degree 1 and 2 invariants of the Horrocks-Mumford bundle. Longer lists of invariants
are available from the author. We use the notation N(d, r1, r2; p, l, λ) to denote the Gromov-Witten
invariant of degree d rational curves with splitting type (r1, r2) intersecting p points, l lines and λ planes.
We do not include the invariants for the generic splittings since the invariants of rational curves in Pn

are well known (see for example [V]).

These invariants were also computed using the associativity relations in the quantum cohomology ring
of the projective bundle π : PE → P4 using Farsta. As initial data we used the following invariants:
There is a unique fiber of π through a given point. There are not any fibers that intersect the inverse
image of 2 lines or 4 planes since 2 lines or 4 planes do not have any common intersections in P4. There
is a unique line with generic splitting containing 2 points. There are no conics with generic splitting
intersecting 12− 2j planes and j lines since the dimension of the space of conics in P4 is 11. A sample of
these invariants is given in the table below.

N(1, 0, 5; 0, 0, 2) = 45 N(1, 0, 5; 0, 1, 0) = 30 N(1, 1, 4; 0, 0, 4) = 36
N(1, 1, 4; 0, 1, 2) = 22 N(1, 1, 4; 0, 2, 0) = 14 N(1, 1, 4; 1, 0, 1) = 8
N(2, 4, 6; 0, 0, 10) = 23250 N(2, 4, 6; 0, 1, 8) = 6065 N(2, 4, 6; 0, 2, 6) = 1645
N(2, 4, 6; 0, 3, 4) = 456 N(2, 4, 6; 0, 4, 2) = 124 N(2, 4, 6; 0, 5, 0) = 35
N(2, 4, 6, 1, 0, 7) = 760 N(2, 4, 6; 2, 0, 4) = 37 N(2, 4, 6; 3, 0, 1) = 3
N(2, 4, 6, 1, 1, 5) = 230 N(2, 4, 6; 1, 3, 1) = 20 N(2, 4, 6; 2, 2, 0) = 3
N(2, 4, 6; 1, 2, 3) = 71 N(2, 4, 6; 2, 1, 2) = 13 N(2, 3, 7; 0, 0, 8) = 47680
N(2, 3, 7; 0, 1, 6) = 12340 N(2, 3, 7; 0, 2, 4) = 3308 N(2, 3, 7; 0, 3, 2) = 904
N(2, 3, 7; 0, 4, 0) = 248 N(2, 3, 7; 1, 0, 5) = 1520 N(2, 3, 7; 2, 0, 2) = 68



GROMOV-WITTEN INVARIANTS OF JUMPING CURVES 13

References

[BHM] W. Barth, K. Hulek, and R. Moore. Shioda’s modular surface S(5) and the Horrocks-Mumford bundle. In Vector
bundles on algebraic varieties (Bombay, 1984), pages 35–106. Tata Inst. Fund. Res., Bombay, 1987.

[BKT] A. S. Buch, A. Kresch, and H. Tamvakis. Gromov-Witten invariants on Grassmannians. J. Amer. Math. Soc.
16(2003), 901–915.

[Ci] I. Ciocan-Fontanine. On quantum cohomology rings of partial flag varieties. Duke Math. J. 98(1999), 485–524.
[C1] I. Coskun. Degenerations of Surface scrolls and the Gromov-Witten invariants of Grassmannians. J. Algebraic Geom.

15(2006), 223–284.
[C2] I. Coskun. A Littlewood-Richardson rule for two-step flag varieties. preprint.
[DS] W. Decker and F.-O. Schreyer. On the uniqueness of the Horrocks-Mumford bundle. Math. Ann. 273(1986), 415–

443.
[DiFI] P. Di Francesco and C. Itzykson. Quantum intersection rings. In The moduli space of curves (Texel Island, 1994),

volume 129 of Progr. Math., pages 81–148. Birkhäuser Boston, Boston, MA, 1995.
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