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Abstract. A Schubert class in the Grassmannian is rigid if the only proper subvarieties representing

that class are Schubert varieties. The hyperplane class σ1 is not rigid because a codimension one Schubert
cycle can be deformed to a smooth hyperplane section. In this paper, we show that this phenomenon

accounts for the failure of rigidity in Schubert classes. More precisely, we prove that a Schubert class in

G(k, n) is not rigid if and only if the partition λ = (λ1, . . . , λk) defining the class has a part λi such that
n− k ≥ λi−1 > λi and λi = λi+1 + 1. Under these assumptions on λ, the parts λi and λi+1 determine

a partial flag isomorphic to one defining a hyperplane class in another Grassmannian G(k′, n′). Using
a deformation of the hyperplane in G(k′, n′), we can deform the Schubert cycle Σλ. Otherwise, the

Schubert class σλ is rigid. We also show that if the partition λ contains the partition defining a rigid

and singular Schubert cycle in some Grassmannian as a sub-partition, then σλ cannot be represented
by a smooth subvariety of G(k, n). More precisely, if λ does not have the form λ1 = · · · = λj1 = n− k,

λi = λi+1 + 1 for j1 < i < j2 and λi = λj2 for i ≥ j2, then the Schubert class σλ cannot be represented

by a smooth subvariety of G(k, n).
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1. Introduction

A Schubert variety in the Grassmannian G(k, n) is smooth if and only if it is a linearly embedded
sub-Grassmannian ([LS]). Even when a Schubert variety is singular, there may be smooth subvarieties
of G(k, n) representing the same cohomology class. For example, the Schubert variety representing σ1 in
G(2, 5) is a singular hyperplane section of G(2, 5) in the Plücker embedding. However, Bertini’s Theorem
([H], II.8.18) guarantees that a general hyperplane section of G(2, 5) is a smooth variety representing σ1.
In contrast, σ2 cannot be represented by a smooth subvariety of G(2, 5). In fact, any proper subvariety
of G(2, 5) with cohomology class σ2 is a Schubert variety. Nevertheless, there are many Schubert classes,
such as σ3,2,0 in G(3, 7), that admit non-trivial deformations but cannot be represented by a smooth,
proper subvariety of G(k, n).

In this paper, we characterize the rigid Schubert classes in Grassmannians. We also give a nearly-
sharp criterion for determining when a Schubert class cannot be represented by a smooth subvariety
of the Grassmannian. Throughout the paper we work over the field of complex numbers C. We first
introduce the necessary notation and state our results.
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Schubert varieties. Let V be an n-dimensional vector space and let λ denote a partition with k parts
satisfying

n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

It is often convenient to group the repeated parts of λ and write λ = (µi11 , . . . , µ
ij
j ), where the parts

n − k ≥ µ1 > µ2 > · · · > µj ≥ 0 of λ occur i1, . . . , ij times (with
∑j
s=1 is = k), respectively. We will

interchangeably use both notations.
Let F• be a full flag in V . The Schubert variety Σλ(F•) is the subvariety of G(k, n) parameterizing

k-dimensional linear spaces W of V such that

dim(W ∩ Fn−k+i−λi) ≥ i, for 1 ≤ i ≤ k.

Let σλ denote the cohomology class of Σλ(F•). Schubert classes generate the extremal rays of the cone
of effective classes and give an additive Z-basis for the cohomology of G(k, n). We say that a variety X
represents a cohomology class c if X is proper and the cohomology class of X is c.

Definition 1.1. A Schubert class σλ is called rigid if the only proper subvarieties of G(k, n) representing
σλ are Schubert varieties.

Definition 1.2 (Rigid partition). We will call a partition λ = (µi11 , . . . , µ
ij
j ) a rigid partition for G(k, n) if

there does not exist an index 1 ≤ s < j with is = 1 and n− k > µs = µs+1 + 1.

For example, (4, 4, 2, 0), (3, 3, 2, 2), (4, 3, 1, 1) and (2, 2, 2, 0) are rigid partitions for G(4, 8), whereas
(3, 2, 0, 0), (4, 4, 1, 0) are not rigid partitions for G(4, 8).

In recent years, the Schur rigidity of Schubert varieties have been extensively studied by differential
geometers (see [Br], [Ho1], [Ho2] and [W]). Recall that a Schubert class is Schur rigid if the only integral
varieties of the corresponding Schur differential system (see Definition 40 of [W] or 2.8.1 of [Br]) are
Schubert varieties. In [Ho2], Hong proves that a large class of Schubert varieties are Schur rigid. In this
paper, we develop the algebro-geometric theory of rigidity and make no use of Schur rigidity. Our first
theorem completely characterizes rigid Schubert classes.

Theorem 1.3. A Schubert class σλ in G(k, n) is rigid if and only if λ is a rigid partition for G(k, n).

Example 1.4. Theorem 1.3 implies that the Schubert class σ3,2,0 in G(3, 7) can be represented by proper
subvarieties of G(3, 7) that are not Schubert varieties. A deformation of the Schubert variety Σ3,2,0 can
be obtained as follows. Fix a four dimensional subspace V ′ of V . Let Y be a general hyperplane section of
the Grassmannian G(2, V ′) in its Plücker embedding. Let X be the subvariety of G(3, V ) parameterizing
three-dimensional linear subspaces of V that contain a two-dimensional subspace parameterized by Y .
Then X represents the class σ3,2,0 in G(3, 7), but is not isomorphic to a Schubert variety (for instance, the
singular locus of X is irreducible, where as the singular locus of Σ3,2,0 has two irreducible components).
Nevertheless, the class σ3,2,0 cannot be represented by a smooth subvariety of G(3, 7). This example
raises the problem of characterizing Schubert classes that can be represented by smooth subvarieties of
G(k, n).

Definition 1.5 (Non-smoothable partition). We will call a partition λ = (µi11 , . . . , µ
ij
j ) a non-smoothable

partition for G(k, n) if either there exists an index 1 ≤ s < j such that is 6= 1 and n − k > µs; or there
exists an index 1 ≤ s < j such that n− k > µs 6= µs+1 + 1.

For example, (3, 3, 1, 0), (3, 2, 2, 1), (4, 2, 0, 0) are non-smoothable partitions forG(4, 8), whereas (3, 2, 1, 0),
(2, 1, 0, 0), (4, 4, 2, 1) are not non-smoothable partitions for G(4, 8).

Theorem 1.6. Let λ be a non-smoothable partition for G(k, n). Then σλ cannot be represented by a
smooth subvariety of G(k, n).
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Theorem 1.6 is nearly sharp in a sense that we now make precise. Suppose V ′ ⊂ V is a subspace of
dimension m. If s ≥ max(0, k + m − n), then the Grassmannian G(s,m) can be embedded into G(k, n)
as follows. Let U be a subspace of V of dimension k− s such that U ∩V ′ = 0. Given [W ′] ∈ G(s,m), the
span of W ′ and U is a k-dimensional subspace of V . This induces an embedding of G(s,m) into G(k, n)
compatible with the Plücker embedding. We will call a sub-Grassmannian of G(k, n) obtained as the
image of such a morphism a linearly embedded sub-Grassmannian. The Gysin image of the fundamental
class of G(s,m) is σλ, where

λ = ((n− k)k−s, (n−m+ s− k)s),

and the Gysin image of the fundamental class of a hyperplane section in G(s,m) is σλ′ , where

λ′ = ((n− k)k−s, n−m+ s− k + 1, (n−m+ s− k)s−1)

in the cohomology of G(k, n). In particular, note that the Schubert classes σλ with

λ = ((n− k)k−s, ps) or ((n− k)k−s−1, p+ 1, ps),

can be represented by smooth subvarieties of the Grassmannian G(k, n) for any 0 ≤ s ≤ k and 0 ≤ p ≤
n− k − 1.

More generally, the space of Schubert varieties of class σn−r,n−r contained in G(2, n) is parameterized
by the Grassmannian G(r, n). Consider the subvariety of G(r, n) parameterizing the locus of subvarieties
of G(2, n) with class σn−r,n−r that are contained in a general hyperplane section of G(2, n) in the Plücker
embedding. Consider the incidence correspondence

I := {(X,H) | X ⊂ G(2, n) ∩H with [X] = σn−r,n−r} ⊂ G(r, n)× (P(n2)−1)∗

parameterizing pairs of a Schubert subvariety of G(2, n) with class σn−r,n−r and a hyperplane section
of G(2, n) in the Plücker embedding containing it. The first projection exhibits I as a projective space
bundle over G(r, n) with fibers isomorphic to projective spaces of dimension

(
n
2

)
−
(
r
2

)
− 1. Consequently,

I is smooth. By generic smoothness ([H], III.10.7), a general fiber of the second projection is a smooth
subvariety of G(r, n). This variety is the zero locus of a section of the vector bundle

∧2
S∗ over G(r, n),

where S denotes the tautological bundle of G(r, n), hence has cohomology class σr−1,r−2,r−3,...,3,2,1,0.
Using the construction in the previous paragraph, it follows that the Schubert classes σλ in G(k, n) with

λ = ((n− k)s, p, p− 1, p− 2, . . . , p− k − s+ 2, p− k + s+ 1)

with k ≥ s ≥ 0 and p−k+s+1 ≥ 0 can be represented by smooth subvarieties of G(k, n). Consequently,
Theorem 1.6 is sharp in the following sense. Let λ be a partition with it = 1 and µt = µt+1 + 1 for all
1 ≤ t < j, then σλ can be represented by a smooth subvariety of G(k, k + 3 + µj). However, this still
leaves the following question open.

Question 1.7. Let λ = (µi11 , . . . , µ
ij
j ) be a partition with it = 1 and µt = µt+1 + 1 for every 1 ≤ t < j

and
∑j
t=1 it = k. For which n does there exist a smooth variety in G(k, n) representing the class σλ?

Let us explain the strategy of the proof of Theorem 1.6 in the case of G(2, n). Theorem 1.6 asserts
that the only classes σa,b that can be represented by smooth subvarieties of G(2, n) have either a = n− 2
or a− b ≤ 1. Let σa,b be a Schubert class in G(2, n) such that a < n− 2 and a− b > 1. We need to show
that σa,b cannot be represented by a smooth subvariety of G(2, n). Suppose to the contrary that X is a
smooth, proper subvariety of G(2, n) representing σa,b. Then by intersecting X with a general Schubert
variety Σn−3−a,n−3−a (which is smooth), we obtain a smooth, proper variety that represents the class
σn−3,n−3+b−a. Hence, to prove Theorem 1.6 for G(2, n), it suffices to show that a variety Y representing
the class σn−3,n−3−c for c > 1 cannot be smooth.

The dimension of Y is c+2. By Pieri’s formula ([F], 14.6.1), the degree of Y in the Plücker embedding
of G(2, n) is c + 1. Any subvariety of G(2, n) representing a Schubert class σλ can be specialized to a
scheme whose support is a Schubert variety Σλ. In particular, the dimension of the linear span of Y in
the Plücker embedding has to be greater than or equal to 2c + 2, the dimension of the linear span of a
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Schubert variety Σn−3,n−3−c. We conclude that the Plücker embedding of Y has to be a minimal variety
in projective space of dimension c+ 2 and degree c+ 1.

Recall that the degree d of an n-dimensional, non-degenerate, irreducible variety in Pr is bounded by
d ≥ r+ 1−n. The varieties for which equality holds are called minimal varieties and have been classified
by Del Pezzo [D] and Bertini [Be]. A modern proof can be found in [EH]. Here we recall the statement
of the classification of varieties of minimal degree (Theorem 1 of [EH]) for the convenience of the reader:
If X is an irreducible, non-degenerate variety of dimension r and degree n+ 1− r in Pn, then X is either
a quadric hypersurface, a rational normal scroll, the Veronese surface in P5 or a cone over any of these
varieties.

Since c > 1, the degree of Y is at least three. The dimension of a smooth rational scroll or a Veronese
surface is less than or equal to its degree. Since the degree of Y is less than its dimension, by the
classification of the varieties of minimal degree, Y is a cone. Therefore, Y is singular. In fact, it is easy
to see that Y is a cone over a rational normal scroll. This suffices to prove Theorem 1.6 for G(2, n). The
proof in the general case follows the same strategy, however, the base cases that need to be treated are
not necessarily minimal varieties. Fortunately, the base cases are all cones over Segre varieties and do
not admit any non-trivial infinitesimal deformations.

Theorem 1.3 is then proved by analyzing the singular locus of a variety representing a Schubert class
σλ. For example, any proper variety X representing the class σn−3,0 in G(2, n) has to be a cone over
a rational normal scroll. The cone point p of X determines a two-dimensional subspace L of V . Since
the Zariski tangent space to X at p has dimension 2n − 4, we conclude that the span of X has to
be the projectivized tangent space to G(2, n) at p. Hence, X is contained in the Schubert variety of
two-dimensional subspaces of V that intersect L. Since both varieties are irreducible and of the same
dimension, X is equal to the Schubert variety. The proof in the general case proceeds by showing that
the singular locus determines the partial flag defining the Schubert variety of the same class.

There are many variants and generalizations of the problems we study in this paper.

Problem 1.8. Which non-negative linear combinations of Schubert classes in G(k, n) can be represented
by irreducible/smooth proper subvarieties?

Hong’s results in [Ho2] imply that positive, integral multiples of many Schubert classes cannot be
represented by smooth, proper subvarieties of the Grassmannian. On the other hand, it is possible
to find many linear combinations that can be represented by smooth subvarieties by simply exhibiting
smooth subvarieties of the Grassmannian. The following proposition gives some simple constructions of
smooth subvarieties of Grassmannians. We thus obtain a large collection of cohomology classes that can
be represented by smooth subvarieties.

Proposition 1.9. The following are examples of classes that can be represented by smooth subvarieties
of the Grassmannian.

(1) (Bertini) The cohomology class rσm1 can be represented by a smooth subvariety of G(k, n) for
every r > 0 and 0 < m < k(n− k).

(2) The cohomology class
∑
ν α

ν
λ,µσν , where ανλ,µ is the Littlewood-Richardson coefficient, can be

represented by a smooth subvariety of G(k, n) provided that λ and µ have the form (bi11 , . . . , b
ij
j )

and (cij1 , . . . , c
i1
j ), respectively, with the property that bi + cj−i ≥ n− k.

(3) The cohomology classes rσ((n−k)k−1,a), with r > 0 and a < n− k, and rσ((n−k)s,(n−k−1)k−s), with
r > 0 and k > s > 0, can be represented by smooth subvarieties of G(k, n).

(4) The space of projective linear spaces of dimension k contained in a general complete intersection
in Pn is either empty or a smooth subvariety in G(k + 1, n + 1). Irreducible components of the
spaces of linear spaces contained in Grassmannians are smooth.

(5) Let Yi ∈ G(ki, ni), 1 ≤ i ≤ j, be smooth subvarieties with classes ci =
∑
ciλσλ. Let c̃i =

∑
ciλσλ̃,

where λ̃ is the partition obtained by adding n − ni − k + ki to each of the parts of λ and a tail
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of k − ki zeros. Then, the product Y1 × · · · × Yj can be embedded as a smooth subvariety of
G(
∑j
i=1 ki,

∑j
i=1 ni) representing the class

∏
c̃i.

The following problem is a closely related variant of Problem 1.8:

Problem 1.10. Which cohomology classes in the Grassmannian can be expressed as a linear combination
(allowing negative signs!) of the classes of smooth proper subvarieties?

Example 1.11. While σ2 in G(2, 5) cannot be represented by a smooth, proper subvariety, it can be
expressed as the difference of the classes of two smooth subvarieties:

σ2 = (σ1)2 − σ1,1.

The Schubert variety Σ1,1 is smooth and by Bertini’s Theorem a general codimension two linear section of
the Plücker embedding of G(2, 5) is a smooth representative of (σ1)2. In [K1], Kleiman proves that if c is
the cohomology class of a variety of dimension d ≤ k(n−k)

2 in G(k, n), then q! c, where q = k(n−k)−d−1,
can be written as a linear combination of classes of smooth subvarieties. In [KL], Kleiman and Landolfi
conjectured that in G(3, 6) the codimension two Schubert cycles cannot be deformed into smooth cycles by
rational equivalence. In [HRT], R. Hartshorne, E. Rees and E. Thomas have shown the stronger fact that
σ2 in G(3, 6) cannot even be written as a linear combination of the classes of smooth closed submanifolds
of G(3, 6). The complete characterization of classes that can be expressed as a linear combination of
smooth subvarieties currently seems out of reach.

Acknowledgements: It is a pleasure to thank Robert Bryant and Joe Harris for many enlightening
conversations. The author would also like to thank Sara Billey, Anders Buch, Lawrence Ein, Bill Fulton,
Brendan Hassett, János Kollár, Fumei Lam, Jason Starr, Ravi Vakil and the anonymous referees. I am
indebted to the Mathematical Sciences Research Institute for providing a wonderful work environment
where part of this project was completed.

2. Singularities of Schubert Varieties

In this section, we recall some facts about the singularities of Schubert varieties in Grassmannians used
in the sequel. There is a wealth of information about the singularities of Schubert varieties: Schubert
varieties are normal, Cohen-Macaulay with rational singularities and admit natural resolutions such as the
Bott-Samelson resolution. The singular loci of Schubert varieties and the multiplicity along each singular
locus can be explicitly described. We refer the reader to the excellent book by Billey and Lakshmibai for
further information, detailed history and extensive references [BL].

The Bott-Samelson/Zelevinsky Resolution. Schubert varieties in the Grassmannian admit a natural
resolution f : Σ̃ → Σ such that the exceptional locus of f has codimension at least two. Let λ =
(µi11 , µ

i2
2 , . . . , µ

ij
j ) be a partition for G(k, n) and let as =

∑s
l=1 il. Let Σ̃λ be the Schubert variety in the

flag variety F (a1, a2, . . . , aj ;n) defined by

Σ̃λ := {(V1, . . . , Vj) ∈ F (a1, a2, . . . , aj ;n) | Vs ⊂ Fn−k+as−λas , 1 ≤ s ≤ j}.

Since Σ̃λ is an iterated tower of Grassmannian bundles, it is smooth. Furthermore, Σ̃λ maps onto Σλ by
the natural projection

π : F (a1, a2, . . . , aj ;n)→ G(k, n).
By Zariski’s Main Theorem, the map is an isomorphism over the locus of k-planes W parameterized
by Σλ with the property that dim(W ∩ Fn−k+as−λas ) = as for 1 ≤ s ≤ j. The map π|Σ̃λ has positive
dimensional fibers over the locus of k-planes W with the property that dim(W ∩ Fn−k+as−λas ) > as for
some 1 ≤ s ≤ j.

Definition 2.1. Given a partition λ = (µi11 , . . . , µ
ij
j ) for G(k, n), a singular partition λs associated to λ is

λs = (µi11 , . . . , (µs + 1)is+1, µ
is+1−1
s+1 , . . . , µ

ij
j ) for some 1 ≤ s < j provided that the resulting partition is

admissible for G(k, n).
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Remark 2.2. In terms of Young diagrams, the singular partitions are obtain from λ by adding a hook to
λ so that the resulting partition is still admissible for G(k, n). See Figure 1 for an example.

Figure 1. The singular partitions associated to (4, 2, 2, 1, 0) are (5, 5, 2, 1), (4, 2, 2, 2, 2)
and (4, 3, 3, 3).

The exceptional locus of the map π|Σ̃λ consists of the union of the inverse images of Σλs(F•) for every
singular partition associated to λ. The locus π−1(Σλs(F•)) is irreducible and has codimension greater
than one. (Σλs has codimension µs − µs+1 + is + 1 in Σλ(F•) and the general fiber dimension of π
restricted to π−1(Σλs(F•)) is is.) Furthermore, the exceptional locus of π is empty if and only if j = 1
or j = 2 and µ1 = n − k. The following lemma allows us to determine the singular locus of a Schubert
variety.

Lemma 2.3. Let f : X → Y be a birational morphism from a smooth, projective variety X onto a normal
projective variety Y . Assume that f is an isomorphism in codimension one. Then p ∈ Y is a singular
point if and only if f−1(p) is positive dimensional.

Proof. By Zariski’s Connectedness Theorem ([H], III.11.4), if f−1(p) is not positive dimensional, then it
is a point. Consider the open set U in Y consisting of the locus where f−1(p) is a single point. Then,
by Zariski’s Main Theorem, f |f−1(U) : f−1(U) → U is an isomorphism. Since f−1(U) is a Zariski open
subset of a smooth variety, f−1(U) and consequently U is smooth. Conversely, suppose p is a point such
that f−1(p) is positive dimensional. If p is smooth, then to check that the map f is a local isomorphism,
it suffices to check that the Jacobian does not vanish. Since the map f is an isomorphism in codimension
one and the vanishing locus of the Jacobian of f is a divisor, we conclude that the Jacobian does not
vanish. On the other hand, since f is not a local isomorphism around f−1(p), we conclude that p has to
be a singular point. �

We obtain the following two corollaries due to Lakshmibai and Seshadri ([LS]).

Corollary 2.4 ([LS]). A Schubert variety Σλ in G(k, n) is smooth if and only if it is a linearly embedded
sub-Grassmannian, or equivalently, λ = ((n− k)s, pk−s).

Corollary 2.5 ([LS]). The singular locus of a Schubert variety Σλ(F•) in G(k, n) is the union of all the
Schubert varieties Σλs(F•), where λs is a singular partition associated to λ.

Observation 2.6. In particular, by Kleiman’s Transversality Theorem ([K2]), the intersection of a collec-
tion of general Schubert varieties Σλ1 , . . . ,Σλj is smooth and non-empty provided that σλ1 · · ·σλj 6= 0
and σλis ·

∏
l 6=i σλl = 0 for every 1 ≤ i ≤ j and every singular partition λis associated to λi.

Using this Observation 2.6, we can prove Proposition 1.9.
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Proof of Proposition 1.9. The class rσ1, with r > 0, is represented by the intersection of G(k, n) in its
Plücker embedding with a hypersurface of degree r. Hence, rσm1 is represented by the intersection of
G(k, n) with a general hypersurface of degree r and m − 1 general hyperplanes. By Bertini’s Theorem
([H], II.8.18), this intersection is smooth. This proves (1).

(2) is a special case of Observation 2.6. Let as =
∑s
l=1 il. Let F• and G• be two general flags

defining Σλ and Σµ, respectively. If bi + cj−i ≥ n − k, then Fn−k+ai−bi ∩ Gn−ai−cj−i = {0} for every
i. Consequently, the intersection of the two Schubert varieties Σλ ∩ Σµ is isomorphic to the product of
Grassmannians

∏
lG(il, nl), where nl = n− k + il − bl − cj−l+1 for 1 ≤ l ≤ j. Hence, this intersection is

smooth.
The Schubert cycles σ(n−k)k−1,0 and σ(n−k−1)k are projective spaces Pn−k and Pk, respectively. Smooth

complete intersections of type (r, 1a−1) and (r, 1s−1) in these projective spaces have cohomology classes
rσ(n−k)k−1,a and rσ(n−k)s,(n−k−1)k−s , respectively. This proves (3).

The incidence correspondence I := {(L,X) | L ⊂ X}, where L is a linear space and X is a complete
intersection of degrees d1, . . . , dj is smooth. By generic smoothness ([H], III.10.7), the general fiber of
the second projection is empty or smooth. This proves the first part of (4). The second part of (4) is
well-known.

Let Vi of dimension ni be j general linear spaces in an n =
∑j
i=1 ni dimensional linear space. Since Vi

are general, the span of any j − 1 of them intersects the last one trivially. Given varieties Yi ⊂ G(kiVi),
consider the following variety

Y = {[W ] ∈ G(k, n) | [W ∩ Vi] ∈ Yi}.

Then Y is isomorphic to
∏j
i=1 Yi. Given a point (W1, . . . ,Wj) ∈

∏j
i=1 Yi, then the span W1 · · ·Wj is a

k-dimensional subspace in Y . Conversely, for W ∈ Y , (W ∩ V1, . . . ,W ∩ Vj) ∈
∏j
i=1 Yi. It is clear that

these maps are inverses of each other. The statement about the cohomology classes is straightforward.
This completes the proof of Proposition 1.9. �

3. Rigidity of smooth Schubert varieties

In this section, we prove a proposition that will allow us to reduce Theorem 1.6 to a few basic cases.
An immediate corollary of the proposition is the rigidity of smooth Schubert varieties.

Proposition 3.1. Let λ be a partition for G(k, n) such that λ1 = · · · = λs = n−k and λk = r. Let X be
a subvariety of G(k, n) representing the cohomology class σλ. Then the linear spaces parameterized by X
contain a fixed s-dimensional linear space and are contained in a fixed (n− r)-dimensional linear space.

Proof. For the proof of this proposition, it is more convenient to think of the Grassmannian G(k, n) as
the Grassmannian G(k − 1, n − 1) of projective (k − 1)-dimensional linear spaces in PV . Let λ be a
partition with λs = n − k and λk = r. Let X be a variety representing the class σλ. Consider the
incidence correspondence

IX = {(p, [W ]) | [W ] ∈ X, p ∈W} ⊂ Pn−1 ×G(k − 1, n− 1).

Let π1 and π2 denote the two projections to Pn−1 and G(k−1, n−1), respectively. Since a Schubert class
is indecomposable, X is an irreducible variety. The fibers of π2 are projective spaces of dimension k− 1,
hence IX is irreducible. Consequently, the first projection π1(IX) is an irreducible, projective variety in
Pn−1.

Let L ∼= Pr−1 be a general linear space. The class of the locus in G(k − 1, n − 1) that parameterizes
the set of Pk−1 that intersect L is the Pieri class σn−k−r+1. Since the cup product of this class with σλ
is zero, we conclude that a general linear space of dimension r − 1 does not intersect π1(IX). Therefore,
dim(π1(IX)) ≤ n − r − 1. On the other hand, by Pieri’s formula ([F], 14.6.1), the cup product of σλ
with σn−k−r is not zero, hence dim(π1(IX)) = n − r − 1. In order to conclude that the linear spaces
parameterized by X are contained in a fixed codimension r linear space, it suffices to prove that the
degree of π1(IX) (with its reduced induced structure) is equal to one.
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Let λ∗ denote the partition dual to λ given by λ∗i = n − k − λk−i+1. Since the cup product of X
with σλ∗ is equal to the Poincaré dual of the point class, by Kleiman’s Transversality Theorem ([K2]),
a general Schubert variety representing σλ∗ intersects X in a reduced point. Furthermore, since π1(IX)
is a variety of dimension n− r − 1, a general projective linear space of dimension r intersects π1(IX) in
finitely many reduced points.

Fix a general linear space PFr+1
∼= Pr such that the intersection of PFr+1 with π1(IX) consists of

finitely many reduced points q1, . . . , qj and there exists a partial flag F• beginning with Fr+1 such that
the Schubert variety with class σλ∗ defined with respect to F• intersects X in a reduced point. By the
transitivity of the monodromy group ([HM], 6.45), we may assume that any geometric property that
occurs at one of the intersection points qi also occurs at the others. By construction, there is a linear
space [Λ] ∈ X such that [Λ] = X ∩ Σλ∗(F•). We must necessarily have PΛ ∩ PFr+1 = qi for one of the
intersection points qi ∈ π1(IX) ∩ PFr+1. In particular, by the transitivity of the monodromy group, we
may assume that for each qi in PFr+1 ∩π1(IX), there exists a linear space Λqi parameterized by X and a
Schubert cycle Σλ∗(F

qi
• ) defined with respect to a partial flag containing Fr+1 such that X and Σλ∗(F

qi
• )

intersect transversely at [Λqi ]. Note that dim(Λqi ∩ Fr+1) = 1.
The locus of partial flags

G• = Fr+1 = Gn−k+1−λ∗1 ⊂ Gn−k+2−λ∗2 · · · ⊂ Gn−λ∗k
starting with the fixed general linear space Fr+1 such that the Schubert variety Σλ∗(G•) intersects X
transversely is a non-empty, Zariski-open subset U of a partial flag variety. Since a non-empty Zariski open
subset of an irreducible variety is connected, U is connected. There is a natural morphism from U to the
points of intersection PFr+1∩π1(IX) sending a partial flag G• to P(Λ∩Fr+1), where [Λ] = X ∩Σλ∗(G•).
This map surjects onto PFr+1 ∩ π1(IX). Since the image of a connected set is connected, we conclude
that the intersection of π1(IX) with PFr+1 is connected. Consequently, PFr+1 ∩ π1(IX) is a single point.
Therefore, π1(IX) has degree one and is a linear space. This proves that the linear spaces parameterized
by X have to be contained in a fixed codimension r linear space.

The fact that the linear spaces parameterized by X contain a fixed s-dimensional linear space follows
by duality. The Grassmannian G(k, n) is isomorphic to the Grassmannian G(n − k, n). Under this
isomorphism a Schubert class σλ is replaced by σλ′ , where λ′ is the partition given by the columns of
the Young diagram associated to λ. In particular, λ′ satisfies λ′n−k = s. By the previous paragraph,
all the linear spaces parameterized by the image of X under this isomorphism are contained in a fixed
codimension s linear space. Under the duality, this linear space produces a fixed linear space of dimension
s contained in all the linear spaces parameterized by X. This concludes the proof. �

As a corollary, we recover a well-known rigidity result (see [Br], [Ho1] or [Ho2]).

Corollary 3.2. Any proper subvariety of G(k, n) representing the Schubert class σλ with λ = ((n −
k)s, pk−s) is a Schubert variety. Consequently, the smooth Schubert varieties in Grassmannians are rigid.

Proof. LetX be a variety representing the cohomology class σλ where λ = ((n−k)s, pk−s). By Proposition
3.1, every linear space parameterized by X contains a fixed linear space of dimension s and is contained
in a fixed linear space of codimension p. The dimension of X is (k − s)p. Since the Schubert variety
parameterizing k-dimensional linear spaces containing a fixed s-dimensional linear space and contained
in a fixed codimension p linear space is irreducible of dimension (k − s)p and contains X, we conclude
that X must be equal to the Schubert variety. �

Remark 3.3. In [Br] and [Ho1], Bryant and Hong, using more involved differential geometric arguments,
prove that smooth Schubert varieties other than non-maximal linear spaces in Grassmannians are Schur
rigid.

Next we would like to define some operations on partitions that will allow us to state a reduction
lemma.
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Definition 3.4. Let λ = (λ1, . . . , λk) be a partition for G(k, n).

(1) If λ1 < n− k, then define the partition λ+ 1 to be the partition (λ1 + 1, . . . , λk + 1) for G(k, n)
obtained by adding one to each part.

(2) If λk = 0, define the partition λ+ to be the partition (n − k, λ1, . . . , λk−1) for G(k, n) obtained
by omitting the part λk = 0 and adding the part n− k to the resulting partition.

(3) If λ1 = n− k, define the partition λ− to be the partition for G(k− 1, n− 1) obtained by omitting
the part λ1 from λ.

Lemma 3.5 (Reduction Lemma). Let σλ be a Schubert class in G(k, n).

(1) If λ1 < n− k and σλ+1 cannot be represented by a smooth, proper subvariety of G(k, n), then σλ
cannot be represented by a smooth, proper subvariety of G(k, n).

(2) If λk = 0 and σλ+ cannot be represented by a smooth, proper subvariety of G(k, n), then σλ
cannot be represented by a smooth, proper subvariety of G(k, n).

(3) If λ1 = n − k and σλ− cannot be represented by a smooth, proper subvariety of G(k − 1, n − 1),
then σλ cannot be represented by a smooth, proper subvariety of G(k, n).

Proof. Suppose that λ1 < n−k and that X is a smooth, proper subvariety representing σλ. By Kleiman’s
Transversality Theorem, the intersection of X with a general smooth Schubert variety Σ(1k) is a smooth,
proper subvariety of G(k, n). By the Littlewood-Richardson rule ([F], 14.6.2), X ∩ Σ(1k) represents the
cohomology class σλ+1. This proves Part (1) of the lemma.

Suppose that λk = 0 and that X is a smooth, proper subvariety representing σλ. By Kleiman’s
Transversality Theorem, the intersection of X with a general smooth Schubert variety Σ(n−k,0k−1) is a
smooth, proper subvariety of G(k, n). This variety represents the class σλ+ . This proves Part (2) of the
lemma.

Finally, if λ1 = n − k, by Proposition 3.1, any variety X representing the class σλ is contained in a
linearly embedded sub-Grassmannian G(k− 1, n− 1). The class of X in G(k− 1, n− 1) is σλ− . Part (3)
of the lemma follows. �

4. The proofs of Theorem 1.3 and Theorem 1.6

In this section we give the proof of Theorem 1.3 and Theorem 1.6. The proof of these theorems depend
on a few base cases which we establish in a series of lemmas and propositions.

Lemma 4.1. Let X be a proper variety representing a Schubert class σλ. Then there exists a flat, one-
parameter family Y → B over a smooth curve such that the general fiber is isomorphic to X and the
special fiber Y0 is isomorphic to a Schubert variety Σλ.

Proof. The GrassmannianG(k, n) has a cell-decomposition by Schubert cells, where each cell is isomorphic
to an affine space. Suppose that X is contained in the closure of a cell. If X is equal to the closure of
the cell, then X is a Schubert variety. Otherwise, by projecting from a point not on X, X can be
degenerated to a variety contained in a cell of lower dimension. Consequently, using the action of a
one-parameter subgroup of GL(n), every subvariety of G(k, n) can be degenerated to a scheme supported
on a union of Schubert varieties (usually with multiplicities). By the properness of the Hilbert scheme
a flat limit always exists. Since the class σλ is indecomposable in cohomology, a variety X representing
σλ is irreducible. Furthermore, the flat limit of the family is supported on a Schubert variety Σλ and is
generically reduced. Since the Schubert variety Σλ is normal, Hironaka’s Lemma ([H], Theorem III.9.11,
[Ko] Theorem 2 or [Hi]) guarantees that there are no embedded components in the limit. �

Proposition 4.2. Let λ = ((n−k)r, (n−k−1)k−r−1, n−k−2) with k−r > 2 or λ = ((n−k)k−2, n−k−1, r)
with r < n− k − 2 be a partition for G(k, n). Then the only proper varieties of G(k, n) representing the
Schubert class σλ are Schubert varieties. In particular, any variety representing σλ in G(k, n) is singular.
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Proof. Let X be a proper subvariety of G(k, n) representing σ(n−k)k−2,n−k−1,r. We begin by showing
that X is a variety of minimal degree. The dimension of X is n − k − r + 1. By Pieri’s formula, the
degree of X in the Plücker embedding is n− k − r. By Lemma 4.1, X can be specialized to a Schubert
variety. By semi-continuity ([H], III.12.8), the dimension of the linear span of X is at least the dimension
of the linear span of a Schubert variety representing the same class. We will next observe that a Schubert
variety with class σ(n−k)k−2,n−k−1,r is a minimal variety, i.e., it has the maximal possible dimensional
linear span given its degree and dimension. (Recall that an irreducible variety of dimension n and degree
d spans a linear space of dimension at most n+d−1 ([EH]).) Since X has the same degree and dimension
as the Schubert variety and the dimension of its linear span is at least that of the Schubert variety, we
conclude that X must be a minimal variety.

To see that the Schubert variety with class σ(n−k)k−2,n−k−1,r is a minimal variety, it suffices to show
that the linear span is a projective linear space of dimension at least 2n− 2k − 2r. Fix an ordered basis
e1, . . . , en for the vector space V . Let F• be flag where Fi is the span of the first i basis elements e1, . . . , ei.
The Schubert variety Σ(n−k)k−2,n−k−1,r(F•) contains the points

p1,...,k−2,i,j = e1 ∧ e2 ∧ · · · ∧ ek−2 ∧ ei ∧ ej ,

where i ∈ {k− 1, k}, i < j and j ∈ {k, . . . , n− r}. Hence, the span of the Schubert variety in the Plücker
embedding contains the span of these Plücker coordinate points. Since there are 2n − 2k − 2r + 1 such
Plücker coordinate points, the projective linear space spanned by the Schubert variety has dimension
at least 2n − 2k − 2r. Since this is the maximal possible, the dimension of the linear span must equal
2n− 2k − 2r. We thus conclude that X is a minimal variety in projective space.

By our assumptions, the degree of X is greater than two. Moreover, the dimension of X is larger than
its degree. By the classification of varieties of minimal degree, X must be a cone. In particular, X is
singular. Suppose that the vertex of the cone is p. (Note that X has a unique singular point. Observe
that the Schubert variety with the same class has a unique singular point. By Proposition 4.1 and the
semi-continuity of the dimension of the singular locus, the dimension of the singular locus of X must be
zero. Hence, X is a cone with a unique vertex point.)

By Proposition 3.1, X is contained in a linearly embedded sub-Grassmannian G(2, n− k− r+ 2) and
has class σn−k−1−r,0 in this sub-Grassmannian. Since X is a cone, the Zariski tangent space of X at
p is equal to the linear span of X, which is a projective linear space of dimension 2n − 2k − 2r. Since
the Zariski tangent space to G(2, n − k − r + 2) at p also has dimension 2n − 2k − 2r and contains the
Zariski tangent space to X at p, we conclude that X ⊂ Y = TpG(2, n− k − r + 2) ∩G(2, n− k − r + 2).
Comparing the Plücker equations of a Schubert variety with class σn−k−1−r,0 with the equations of the
Zariski tangent space to G(2, n− k − r + 2) at p, it is immediate that Y is a Schubert variety with class
σn−k−1−r,0. Since both X and Y are irreducible, projective varieties of the same dimension, we conclude
that they must be equal. Therefore, X is a Schubert variety. The claim about σ(n−k)r,(n−k−1)k−r−1,n−k−2

follows by the duality between G(k, n) and G(n− k, n). This concludes the proof of the proposition. �

Proposition 4.3. Let λ = (as, 0k−s) 6= (1, 0k−1). Then the only proper subvarieties of G(k, n) represent-
ing the cohomology class σλ are Schubert varieties. In particular, σλ cannot be represented by a smooth,
proper subvariety of G(k, n) provided k > s > 0, a 6= n− k and (as, 0k−s) 6= (1, 0k−1).

Proof. We first prove that if 0 < s < k, a 6= n − k and (as, 0k−s) 6= (1, 0k−1), then σλ is singular.
It suffices to prove this for the classes σ(n−k−1)k−1,0 in G(k, n). If X is a smooth variety represent-
ing σas,0k−s , then the intersection of X with a general smooth Schubert variety representing the class
σ(n−k)k−s−1,(n−k−1−a)s+1 yields a smooth variety representing the class σ(n−k)k−s−1,(n−k−1)s,n−k−1−a. By
Proposition 3.1, this class is supported on a linearly embedded sub-Grassmannian G(s + 1, k + a + 1)
and has the class σ(k+a−s−1)s,0 in this sub-Grassmannian. Note that a Schubert variety σ(n−k−1)k−1,0 in
G(k, n) embedded in its Plücker embedding is a cone over the Segre embedding of Pk−1 × Pn−k−1. By
Lemma 4.1, any variety representing this class is a deformation of the cone over the Segre variety. To
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conclude the proof, we appeal to the following theorem of Thom, Grauert-Kerner, Schelssinger, Kleiman-
Landolfi ([KL], Theorem 2.2.8): Let K be a field and let X = PnK × PmK be embedded in projective space
by the Segre morphism. If n ≥ 1 and m ≥ 2, then the cone over X is rigid over K.

By our assumptions, if k = 2, then a > 1 and n − k − 1 ≥ 2. Similarly, if n − k = 2, then k > 2.
We conclude that the assumptions of Theorem 2.2.8 of [KL] are satisfied. Since the cone over the Segre
variety admits no infinitesimal deformations, X is a cone over a Segre variety and hence is not smooth.
Furthermore, the singular point p0 of X corresponds to a k-plane Λ. Since X is a cone, for every point
p ∈ X, the line joining p and p0 is contained in X. Since a line in the Grassmannian G(k, n) consists
of k-planes that contain a fixed (k − 1)-plane and are contained in a fixed (k + 1)-plane, we conclude
that every k-plane corresponding to a point of X must intersect Λ in a (k − 1)-dimensional linear space.
Hence, X is contained in the Schubert variety Σ(n−k−1)k−1,0. Since they are both irreducible varieties of
the same dimension, X equals the Schubert variety Σ(n−k−1)k−1,0.

By Corollary 3.2, if s = 0, s = k or a = n− k, a variety X representing σλ is a Schubert variety. We
can now prove that if (as, 0k−s) 6= (1, 0k−1), then X is a Schubert variety by induction on n and k − s.
We may assume that 0 < a < n − k and 0 < s < k. By induction on k and n, the singular locus of X
has class ((a + 1)s+1, 0k−s−1). By induction on k − s, the singular locus of X is a Schubert variety of
k-planes intersecting a fixed linear space Λn−k+s+1−a of dimension n− k+ s+ 1− a. Intersect X with a
general Schubert variety Σ1k defined with respect to a hyperplane H. By induction on n, the intersection
X ∩ Σ1k is a Schubert variety in G(k, n − 1) with class (as, 0k−s). Since the singular locus of X ∩ Σ1k

is the Schubert variety of k-planes intersecting Λ ∩H in a subspace of dimension n − k + s + 1 − a, we
conclude that X ∩Σ1k is the Schubert variety of k -planes intersecting Λ∩H in a subspace of dimension
n− k+ s− a. Since this is true for a general hyperplane H, we conclude that the k-planes parameterized
by X intersect Λ in a subspace of dimension n − k + s − a. Therefore, X is a Schubert variety. This
concludes the proof. �

Remark 4.4. Example 13 and Remark 33 of [Br] or Proposition 3.5 of [Ho2] show that when λ = (as, 0k−s)
with 1 < s < k and a > 2, the Schubert classes are Schur rigid.

Proof of Theorem 1.6. We are now ready to prove Theorem 1.6. We need to show that if λ is a non-
smoothable partition for G(k, n), then σλ cannot be represented by a smooth subvariety of G(k, n).
Express λ = (µi11 , . . . , µ

ij
j ), where

∑
il = k and µ1 > µ2 > · · · > µj .

We may assume that µ1 6= n− k. Otherwise, by Proposition 3.1, any subvariety of G(k, n) represent-
ing σλ is contained in a linearly embedded sub-Grassmannian G(k − i1, n− i1) and represents the class
(µi22 , µ

i3
3 , . . . , µ

ij
j ) in this sub-Grassmannian. If the latter class cannot be represented by a smooth subva-

riety, then σλ cannot be represented by a smooth subvariety of G(k, n). Similarly, we may assume that
µj = 0. Otherwise, by Proposition 3.1, any subvariety representing σλ is contained in a linearly embedded
sub-Grassmannian G(k, n−µj) and represents the class ((µ1−µj)i1 , (µ2−µj)i2 , . . . , (µj−1−µj)ij−1 , 0ij )
in this sub-Grassmannian. If the latter class cannot be represented by a smooth subvariety, then σλ
cannot be represented by a smooth subvariety of G(k, n). Now we proceed by induction on j.

• If j = 1, then λ is not non-smoothable and the theorem holds. In fact, the Schubert variety Σλ is a
linearly embedded sub-Grassmannian and smooth. We may, therefore, assume that j > 1.

• If j = 2, since we are assuming that µ1 < n − k, λ is non-smoothable if i1 > 1 or if µ1 > µ2 + 1.
In either of these cases, by Proposition 4.3, any variety representing the class σλ is a singular Schubert
variety. Note that if µ1 = n − k, then σλ is the class of a linearly embedded sub-Grassmannian and
can be represented by a smooth subvariety of G(k, n). If i1 = 1 and µ1 = µ2 + 1, then σλ is the class
of a hyperplane section of a linearly embedded sub-Grassmannian and can be represented by a smooth
subvariety of G(k, n).

• If j = 3, since we are assuming that µ1 < n− k, then a non-smoothable partition λ satisfies one of the
following possibilities.
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• If µ2 > µ3 + 1 or i2 > 1, then applying Case (1) of the Lemma 3.5 (n−k−µ1)-times we conclude
that if σλ can be represented by a smooth subvariety of G(k, n), then σλ′ , with λ′ = ((n−k)i1 , (n−
k+ µ2 − µ1)i2 , (n− k+ µ3 − µ1)i3), can be represented by a smooth subvariety of G(k, n). Next,
applying Case (3) of the Lemma 3.5 i1-times, we conclude that σλ′ can be represented by a
smooth subvariety of G(k, n), then σλ′′ with λ′′ = ((n− k + µ2 − µ1)i2 , (n− k + µ3 − µ1)i3) can
be represented by a smooth subvariety of G(k − i1, n − i1). By the case j = 2, σλ′′ cannot be
represented by a smooth subvariety of G(k − i1, n− i1). Therefore, σλ cannot be represented by
a smooth subvariety of G(k, n). From now on we may assume that µ2 = µ3 + 1 and i2 = 1.

• If µ1 > µ2 + 1 or i1 > 1, since we are assuming that µ3 = 0, by applying Cases (2) and (3)
of Lemma 3.5 (i3)-times, we conclude that if σλ can be represented by a smooth subvariety of
G(k, n), then σλ′ with λ′ = (µi11 , µ

i2
2 ) can be represented by a smooth subvariety of G(k−i3, n−i3).

Since by induction σλ′ cannot be represented by a smooth subvariety of G(k − i3, n − i3), we
conclude that σλ cannot be represented by a smooth subvariety of G(k, n).

Note that if µ1 = n − k, i2 = 1 and µ2 = µ3 + 1, then σλ is the class of a hyperplane section
of a linearly embedded sub-Grassmannian and can be represented by a smooth subvariety of G(k, n).
Similarly, if i1 = i2 = i3 = 1 and µi = µi+1 + 1, then σλ can be represented by a smooth subvariety
of G(3, n). If µ3 = r, then σλ is the class of the variety parameterizing Schubert cycles σr−3,r−3 in the
Plücker embedding of G(2, r) that are contained in a general hyperplane section.

• Finally, if j > 3, we can easily reduce to the case j = 3 by induction. Let λ be a non-smoothable
partition. Suppose that for s < j − 1, is > 1 or µs > µs+1 + 1. Then applying Cases (2) and (3) of
Lemma 3.5 (ij)-times, we conclude that if σλ can be represented by a smooth subvariety of G(k, n),
then σλ′ with λ′ = (µi11 , µ

i2
2 , . . . , µ

ij−1
j−1 ) can be represented by a smooth subvariety of G(k − ij , n − ij).

Since by induction on j, σλ′ cannot be represented by a smooth subvariety of G(k − ij , n − ij), we
conclude that σλ cannot be represented by a smooth subvariety of G(k, n). Similarly, if ij−1 > 1 or
µj−1 > µj + 1, then applying Case (1) of Lemma 3.5 (n− k − µ1)-times followed by Case (3) of Lemma
3.5 i1-times, we conclude that if σλ can be represented by a smooth subvariety of G(k, n), then σλ′ with
λ′ = ((n − k + µ2 − µ1)i2 , . . . , (n − k + µj−1 − µ1)ij−1 , (n − k + µj − µ1)ij ) can be represented by a
smooth subvariety of G(k − i1, n− i1). Since, by induction on j, σλ′ cannot be represented by a smooth
subvariety, σλ cannot be represented by a smooth subvariety of G(k, n). This concludes the proof of the
theorem. �

If σλ can be represented by a smooth subvariety X in G(k, n), then, by Theorem 1.6, λ has the
form ((n − k)i1 , p, p − 1, p − 2, . . . , p − s + 1, (p − s)is+2). Furthermore, Proposition 3.1 implies that the
Schubert class σλ′ with λ′ = (s, s − 1, s − 2, . . . , 1, 0is+2) is also representable by a smooth subvariety
of G(k − i1, n − p + s). Hence, we can restrict our discussion to classes σλ with λ = (s, s − 1, . . . , 1, 0l)
in G(s + l, n). The cup product of the cohomology class [X] of X and the Schubert cycle σν , with
ν = ((n− s− l)l+1, 0s−1), is zero. We conclude that the incidence correspondence

I = {(W1,W2)|W1 ⊂W2, [W2] ∈ X} ⊂ G(l + 1, n)×X

of pairs of an (l + 1)-dimensional subspace W1 and an (s + l)-dimensional subspace W2 parameterized
by X and containing W1 cannot dominate G(l + 1, n) under the first projection π1. On the other hand,
considering the cup product of [X] and σν′ , with ν′ = ((n − s − l)l, (n − s − l − 1), 0s−1), it is easy
to see that the image of π1 is a divisor in G(l + 1, n) with class σ1. Consequently, X parameterizes
Schubert varieties with class σ(n−s−l)l+1 contained in a hyperplane section of G(l + 1, n) in its Plücker
embedding. Hence, a Schubert cycle cannot be represented by a smooth subvariety of G(k, n) unless it
is the class of a linearly embedded sub-Grassmannian or the class of a variety parameterizing linearly-
embedded sub-Grassmannians in a hyperplane section of a Grassmannian. Moreover, as discussed in the
Introduction, the classes with l = 1 can always be represented by smooth subvarieties. Consequently, for
Grassmannians G(k, n) with k = 2 or 3, Theorem 1.6 can be stated as follows.

Corollary 4.5. Let σλ1,λ2 be a Schubert class in G(2, n). Then the following are equivalent.
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(1) σλ1,λ2 can be represented by a smooth subvariety of G(2, n).
(2) λ1 = n− 2 or λ2 ≥ λ1 − 1.
(3) σλ1,λ2 is the class of a linearly embedded sub-Grassmannian or a hyperplane section of a linearly

embedded sub-Grassmannian.

Corollary 4.6. Let σλ be a Schubert class in G(3, n). Then the following are equivalent.

(1) σλ can be represented by a smooth subvariety of G(3, n).
(2) λ is not a non-smoothable partition.
(3) σλ is the class of a linearly embedded sub-Grassmannian, the hyperplane section of a linearly

embedded sub-Grassmannian or the class of planes with class σk−3,k−3 contained in a general
hyperplane section of the Plücker embedding of G(2, k) for k ≤ n.

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. First, observe that the condition for a partition λ = (µi11 , . . . , µ
ij
j ) to have an index

1 ≤ s < j with is = 1 and n− k > µs = µs+1 + 1 is invariant under the duality that exchanges Schubert
classes in G(k, n) and G(n− k, n).

Let λ = (µi11 , . . . , µ
ij
j ) be a partition such that there exists an index 1 ≤ s < j with is = 1 and

n − k > µs = µs+1 + 1. We construct a variety representing the cohomology class σλ, which is not
isomorphic to a Schubert variety. The construction is identical to the construction of the variety X in
Example 1.4.

First suppose that s = 1. Let al =
∑l
m=1 im. Fix a (j − 1)-step partial flag F• with vector spaces

of dimensions n − k + ai − µi for 2 ≤ i ≤ j. Fix a hyperplane section H in the Plücker embedding of
G(a2, Fn−k+a2−µ2). Consider the following variety

Y := {[W ] ∈ G(k, n)| W ′ ⊂W ∩Fn−k+a2−µ2 for [W ′] ∈ H, and dim(W ∩Fn−k+ai−µi) ≥ ai, 2 ≤ i ≤ j}.
Then Y represents the Schubert class σλ, but is not a Schubert variety unless the hyperplane section H
is a Schubert variety. For example, if H is a smooth hyperplane section, then the singular locus of Y has
a different cohomology class than the singular locus of the Schubert variety. Y is not singular along a
Schubert variety with class σ

(µ1+1)2,µ
i2−1
2 ,µ

i3
3 ,...,µ

ij
j

.

More generally, suppose s > 1. Let F be a vector space of dimension n−k+as+1−µs+1. Consider the
class ((µ1−µs+1)i1 , . . . , (µs−µs+1), 0is+1) in G(as+1, F ). If we consider this class under the isomorphism
between G(dim(F ) − as+1, F ) and G(as+1, F ), we get a class where s = 1. Hence, by the previous
construction, this class can be represented by a variety Z which is not a Schubert variety. Pick a partial
flag

F ⊂ Fn−k+as+2−µs+2 ⊂ · · · ⊂ Fn−k+aj−µj .

The variety Y defined as follows has the class (µi11 , . . . , µ
ij
j ), but is not a Schubert variety.

Y := {W ∈ G(k, n) | U ⊂W ∩ F for some U ∈ Z and dim(W ∩ Fn−k+al−µl) ≥ al for s+ 1 ≤ l ≤ j}.

This proves that if a Schubert class is rigid, then λ = (µi11 , . . . , µ
ij
j ) cannot have an index s with is = 1

and n− k > µs = µs+1 + 1.
Suppose that λ = (µi11 , . . . , µ

ij
j ) is a partition that does not have an index 1 ≤ s < j such that is = 1

and n− k > µs = µs+1 + 1. Let X be a variety that represents σλ. We would like to prove that X is a
Schubert variety. We will prove this by induction on j, n and the sequence i1, . . . , ij . On the sequences
(i1, . . . , ij) with

∑
is = k, we use the ordering (i′1, . . . , i

′
l) < (i1, . . . , ij) if l < j or if l = j, i′s = is for

s < m and i′m > im for some m > 0. If j = 1, then by Corollary 3.2, X is a Schubert variety.
If j = 2, then by Proposition 4.3, X is a Schubert variety. Suppose that the proposition is true for all

j up to j0. If µ1 = n− k or µj > 0, by Proposition 3.1, we may assume that X is contained in a linearly
embedded sub-Grassmannian. Hence, by induction on j and n, we can reduce to the case µ1 < n − k
and µj = 0. By intersecting X with a general Schubert variety Σn−k and a general Schubert variety Σ1k

and induction on ij and n, we conclude that the singular locus of X has cohomology class
∑
σλs , where

λs ranges over all singular partitions associated to λ. In Proposition 4.1, the deformation is given by the
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group action. Hence, except for the central fiber, the members of the family are isomorphic. In particular,
each irreducible component of the singular locus forms a flat family away from the central fiber. The flat
limit for each irreducible component has to be contained in the singular locus of the Schubert variety
and must be connected in codimension one. Since the singular locus of X and the Schubert variety have
the same cohomology class and the components of the singular locus of the Schubert variety in loci of
codimension greater than one, we conclude that the singular locus of X must be a union of irreducible
components one for each singular partition associated to λ.

In particular, the singular locus of X contains a variety Y with class σλ′ , where

λ′ = (µi11 , . . . , (µt−1 + 1)it−1+1, µit−1
t , . . . , µ

ij
j ).

Since µ1 < n− k, we may set t = 2. Note that λ′ is also a rigid partition unless i2 = 2 and µ2 = µ3 + 1.
Assume first that either i2 > 2 or µ2 > µ3 + 1. Then, by induction on the sequence (i1, . . . , ij), Y is a
Schubert variety in G(k, n) defined with respect to a flag

F• = Fn−k+a1−µ1 ⊂ Fn−k+a2−µ2 ⊂ · · · ⊂ Fn−k+aj−µj .

We have to make one exception: if i2 = 1, then Fn−k+a2−µ2 should be omitted from the sequence. Let
us assume that i2 > 1. Then requiring k-planes to intersect Fn−k+ai−µi in a subspace of dimension ai
defines a Schubert variety Σλ with the same class as X. Intersect the partial flag F• with a general
codimension one linear space L to obtain a partial flag in L. Correspondingly, intersect the variety X
with the Schubert variety Σ1k defined with respect to L. This gives rise to a variety ZL with class σλ in
G(k, n− 1). By induction on n, ZL is a Schubert variety and it is defined with respect to the partial flag
F• ∩L. As we vary L, the varieties ZL cover X and we conclude that any linear space parameterized by
X intersects the linear space Fn−k+ai−µi in a subspace of dimension at least ai. Since both X and Σλ
are irreducible varieties of the same dimension and X is contained in Σλ, we conclude that X = Σλ.

If i2 = 1, the same argument shows that the linear spaces parameterized by X intersect Fn−k+ai−µi
in a subspace of dimension ai with the exception of i = 2 (which is omitted from the parial flag F•). If
j > 3, let R be the Zariski closure of the variety R0 in G(k − ij , Fn−k+aj−1−µj−1) defined by

R0 = {W ′ ∈ G(k − ij , Fn−k+aj−1−µj−1)|
W ′ = W ∩ Fn−k+aj−1−µj−1 for W ∈ X with dim(W ∩ Fn−k+aj−1−µj−1) = k − ij}.

Then R has cohomology class σν with ν = (µi11 , . . . , µ
ij−1
j−1 ) and is a Schubert variety by induction on j.

It follows that X is also a Schubert variety. If j = 3, consider the singular locus Y of X with class σλ′ ,
where λ′ = (µi11 , (µ2 +1)i2+1, (µ3−1)i3−1). By induction on i3, Y is a Schubert variety (even when i1 = 1
and µ1 = µ2 + 2 since all the k-planes are required to intersect Fn−k+a1−µ1 in a subspace of dimension
a1). Y determines the missing partial flag element Fn−k+a2−µ2 . The argument in the previous paragraph
allows us to conclude that X is a Schubert variety.

Finally, suppose i2 = 2 and µ2 = µ3 + 1. Then let u < j be the smallest index such that iu > 2 or
µu > µu+1 + 1. If there does not exist such an index, then is = 2 and µs = µs+1 + 1 for all 1 < s < j.
Using the duality between G(k, n) and G(n−k, n), we are reduced to the case in the previous paragraph.
We may, therefore, assume that there exists such an index u. Repeating the argument for the index t = u
instead of t = 2, it is easy to conclude that X is a Schubert variety. This concludes the proof of the
theorem.

�
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