
RIGIDITY OF SCHUBERT CLASSES IN ORTHOGONAL GRASSMANNIANS
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Abstract. A Schubert class σ in the cohomology of a homogeneous variety X is called rigid if the

only projective subvarieties of X representing σ are Schubert varieties. A Schubert class σ is called
multi rigid if the only projective subvarieties representing positive integral multiples of σ are unions

of Schubert varieties. In this paper, we discuss the rigidity and multi rigidity of Schubert classes in

orthogonal Grassmannians. For a large set of non-rigid classes, we provide explicit deformations of
Schubert varieties using combinatorially defined varieties called restriction varieties. We characterize

rigid and multi rigid Schubert classes of Grassmannian and quadric type. We also characterize all the

rigid classes in OG(2, n) if n > 8.
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1. Introduction

1.1. The motivating questions. Let G be an algebraic group and let P be a parabolic sub-
group. A Schubert class σ in the cohomology of the homogeneous variety X = G/P is called
rigid if the only projective subvarieties of X representing σ are Schubert varieties. We will call
a Schubert class σ multi rigid if the only projective subvarieties of X representing a positive,
integral multiple kσ are unions of k Schubert varieties. By definition, a multi rigid class is also
rigid. However, the converse is often false. The class of a line in P2 is rigid but not multi rigid
since, for example, twice the line class can be represented by a smooth conic.

In this paper, we will discuss the rigidity and multi rigidity of Schubert classes in orthog-
onal Grassmannians. The problem of determining rigid and multi rigid cohomology classes
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is a fundamental problem in differential geometry. In recent years, there has been significant
progress in determining multi rigid Schubert classes in compact complex Hermitian symmetric
(CCHS) spaces. In an approach initiated by Bryant [B] and Walters [W] and carried further
by Hong [Ho1], [Ho2], Robles, The [RT] and others, one studies a differential system called the
Schur differential system associated to each Schubert class (see [B] or [Ho1] for the definition
and properties of the Schur differential system). Under suitable assumptions, using Lie algebra
cohomology, one shows that the class is Schur rigid, that is the only integral varieties of this
differential system are Schubert varieties, thereby concluding the multi rigidity of the corre-
sponding Schubert classes. In fact, in this setting, multi rigidity is equivalent to Schur rigidity
[RT]. For example, Hong has shown that if X is a CCHS space other than an odd-dimensional
quadric, then the class of a smooth Schubert variety other than a non-maximal linear space or
P1 ⊂ Cn/Pn is multi rigid [Ho1]. She has also proved the multi rigidity of a large number of
Schubert classes in the Grassmannian G(k, n) [Ho2]. Robles and The have extended the analysis
by determining the complete set of first-order obstructions to Schur rigidity. Consequently, they
have extended Hong’s results to many singular Schubert varieties in CCHS spaces and have
sharpened Hong’s results for Grassmannians [RT].

In [C1], using algebro-geometric techniques, we characterized the rigid Schubert classes in
Grassmannians G(k, n). The purpose of this paper is to extend the techniques introduced in
[C1] to orthogonal Grassmannians. Since orthogonal Grassmannians are not in general CCHS
spaces, this paper provides the first detailed study of the rigidity of Schubert classes in a non-
CCHS homogeneous variety. The algebro-geometric techniques thus have two main advantages
over the differential geometric techniques. First, they can prove the rigidity of a class even when
the class is not multi rigid. Second, they apply to homogeneous varieties other than CCHS
spaces. The main disadvantage is that studying multiples of Schubert classes gets successively
more difficult as the multiple increases, making the technique less suitable for studying multi
rigidity.

The study of rigidity is strongly motivated by the classical problem of determining whether a
cohomology class can be represented by a smooth subvariety. There are several different versions
of the problem:

(1) Given a cohomology class c, can it be represented by a smooth subvariety of X?
(2) Given a cohomology class c, can a multiple be represented by a positive linear combination

of classes of smooth subvarieties of X?
(3) Given a cohomology class c, can a multiple be represented by an arbitrary linear combi-

nation of classes of smooth subvarieties of X?

For rigid, singular Schubert classes, the answer to the first question is negative. For multi rigid,
singular Schubert classes, the answer to the second question is negative. These problems have
been investigated by many authors for the Grassmannian G(k, n) (see [HRT], [K1], [KL] and
[C1]). We will say that a Schubert class is smoothable if it can be represented by a smooth
subvariety. Our results on rigidity and multi rigidity imply that certain Schubert classes in
orthogonal Grassmannians are not smoothable.

We will now introduce the necessary notation and state our results more precisely.

1.2. Notation. We work over the field of complex numbers C. In this paper, varieties are
reduced but may be reducible. Let V be an n-dimensional vector space. Let G(k, n) denote
the Grassmannian parameterizing k-dimensional subspaces of V . Let Q be a non-degenerate,
symmetric bilinear form on V . A k-dimensional subspaceW of V is called isotropic if wT1 Qw2 = 0
for every w1, w2 ∈ W . If W is an isotropic subspace of V , then 2k ≤ n. If n 6= 2k, the space
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parameterizing k-dimensional isotropic subspaces of V is an irreducible homogeneous variety.
When n = 2k, k-dimensional isotropic subspaces of V form two connected components. In this
case, two linear spaces W,W ′ belong to the same connected component if and only if dim(W ∩
W ′) = k modulo 2. Let OG(k, n) denote the orthogonal Grassmannian that parameterizes k-
dimensional isotropic subspaces of V . When n = 2k, we allow OG(k, 2k) to have two isomorphic
connected components. We warn the reader that in the literature it is customary to let OG(k, 2k)
denote only one of the connected components.

Geometrically, Q defines a smooth quadric hypersurface in PV . W is isotropic if and only if
PW lies on the quadric hypersurface defined by Q. Given an isotropic linear space W , we can
define its orthogonal complement W⊥ with respect to Q as the set of all vectors v ∈ V such
that vTQw = 0 for all w ∈ W . Geometrically, PW⊥ is the linear space everywhere tangent to
the quadric defined by Q along PW .

The cohomology groups of both G(k, n) and OG(k, n) are generated by the classes of Schubert
varieties. To describe the Schubert varieties in G(k, n), let a• = 0 < a1 < a2 < · · · < ak ≤ n
be an increasing sequence of k positive integers. Let F• = F1 ⊂ F2 ⊂ · · · ⊂ Fn be a flag. The
Schubert class σa• is the cohomology class of the Schubert variety

Σa•(F•) = {W ∈ G(k, n) | dim(W ∩ Fai) ≥ i for 1 ≤ i ≤ k}.

To describe the Schubert classes in OG(k, n), first assume that n is odd. We parameterize
Schubert varieties in OG(k, n) by pairs of sequences (a•; b•) of total length k such that 0 < a1 <
a2 < · · · < as <

n
2 and n

2 − 1 > bs+1 > bs+2 > · · · > bk ≥ 0 with the property that ai 6= bj + 1
for any 1 ≤ i ≤ s and s+ 1 ≤ j ≤ k. Let F• = F1 ⊂ F2 ⊂ · · · ⊂ Fbn/2c be an isotropic flag. The
Schubert variety Σa•;b•(F•) is the Zariski closure of the locus in OG(k, n) defined by

{W ∈ OG(k, n) | dim(W ∩ Fai) = i for 1 ≤ i ≤ s, dim(W ∩ F⊥bj ) = j for s < j ≤ k}.

Let σa•;b• denote its cohomology class.

Next, assume that n is even. In this case, the notation has to distinguish between the two
connected components of the space of half dimensional linear spaces. We denote half dimensional
linear spaces in one connected component by Fn/2 and the other one by F⊥n/2−1. Technically,

F⊥n/2−1 consists of the span of two half dimensional linear spaces in different connected compo-

nents. However, this will significantly simplify notation. Schubert varieties are parameterized
by pairs of sequences 0 < a1 < a2 < · · · < as ≤ n

2 and n
2 − 1 ≥ bs+1 > bs+2 > · · · > bk ≥ 0 such

that ai 6= bj + 1 for any 1 ≤ i ≤ s and s+ 1 ≤ j ≤ k. The Schubert variety Σa•;b• is the Zariski
closure of the locus in OG(k, n) defined by

{W ∈ OG(k, n) | dim(W ∩ Fai) = i for 1 ≤ i ≤ s, dim(W ∩ F⊥bj ) = j for s < j ≤ k}.

Let σa•;b• denote its cohomology class.

Definition 1.1. We call a Schubert class σa• in OG(k, n) of Grassmannian type if in the sequence
defining it s = k and ak <

n
2 . We call a Schubert class σb• in OG(k, n) of quadric type if in the

sequence defining it s = 0 and n
2 − 1 > b1.

Remark 1.2. A Schubert class in OG(k, n) is of Grassmannian type if every flag element in
its definition is isotropic. In addition, if n is even, the largest dimensional flag element is not
maximal isotropic. A Schubert class in OG(k, n) is of quadric type, if none of the flag elements
in its definition are isotropic. Under the intersection pairing, the dual of a class of Grassmannian
type is a class of quadric type and vice versa.
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A word is in order about our notation. It is customary to parameterize Schubert classes in
G(k, n) by partitions λ : n− k ≥ λ1 ≥ · · · ≥ λk ≥ 0. The relation between the two notations is
given by ai = n− k+ i− λi. Similarly, for the maximal isotropic Grassmannians OG(k, 2k+ 1)
(respectively, OG(k, 2k)), it is customary to denote the Schubert classes by strictly decreasing
partitions λ1 > · · · > λs of length at most k (respectively, k − 1). Note that in these cases the
sequence b• is uniquely determined by the sequence a• by the requirement that ai 6= bj + 1.
The translation in this case is given by ai = k − λi + 1 (respectively, ai = k − λi, noting
that when as = n

2 , λs = 0 is omitted). For the non-maximal orthogonal Grassmannians,
there are several different notations in use. The translation between our notation and other
conventions is straightforward. The advantage of our notation is that it is well adapted for
maps between different Grassmannians. For example, under the natural inclusions G(k, n) ↪→
G(k, n + 1) (respectively, OG(k, n) ↪→ G(k, n)) the classes of Schubert varieties (respectively,
those of Grassmannian type) are denoted by the same sequences.

Given an increasing sequence of positive integers a•, we can associate a non-decreasing se-
quence of non-negative integers α• by setting αi = ai − i. The associated sequence plays an
important role in the geometry of G(k, n). For instance, the dimension of the Schubert variety

Σa•(F•) in G(k, n) is
∑k

i=1 αi. Similarly, given the sequences (a•; b•), it is convenient to record
the sequences (α•, β•) by setting αi = ai − i and βj = n − bj − j. The concatenation of the
sequences α• and β• is a sequence of non-decreasing, non-negative integers. Furthermore, given
such a sequence c•, it is helpful to group together the parts that are equal. We will write the
sequence as (c̃i11 , . . . , c̃t

it), where the sequence has t distinct parts c̃1 < · · · < c̃t that are strictly
increasing and the j-th part c̃j is repeated ij times, i.e.,

c1 = · · · = ci1 = c̃1, ci1+1 = · · · = ci1+i2 = c̃2, . . . , ci1+···+it−1+1 = · · · = ci1+···+it = c̃t.

We will use the different ways of denoting a sequence interchangeably.

1.3. Results and examples. We will now give several illuminating examples and summarize
our results. The classical theorem of Bertini asserts that the general member of a linear system on
a smooth variety is smooth away from the base points of the linear system [H, III.10.9]. Bertini’s
Theorem allows in many instances to deform Schubert varieties as the following example shows.

Example 1.3. The orthogonal Grassmannian OG(1, n) is a quadric hypersurface Q in Pn−1. Let
Qrd denote a quadric of corank r obtained by restricting Q to PΛd, where Λd is a linear space
of dimension d. Let Lj denote an isotropic subspace of dimension j. The Schubert varieties in
OG(1, n) consist of:

• Linear spaces PLj for 0 < j ≤ n−1
2 and the linear spaces PLk and PL′k if n = 2k, where

the linear spaces Lk and L′k belong to different connected components.

• The quadrics Qn−dd for n ≥ d > n
2 + 1.

The linear spaces are smooth and their classes are rigid. When d < n, the quadrics Qn−dd are

singular. Nevertheless, the cohomology class of Qn−dd is the same as the cohomology class of
any quadric Qrd with r ≤ n − d contained in Q. Therefore, the latter classes are not rigid. In
particular, since Q0

d is a smooth quadric, every Schubert class in OG(1, n) can be represented

by a smooth subvariety of OG(1, n). The classes of the linear spaces PLj , for 1 < j ≤ n−1
2 , are

rigid but not multi rigid. For example, twice the class of PLj can be represented by a smooth
quadric of the same dimension. If 2k = n, the classes of the Schubert varieties PLk and PL′k are
multi rigid [Ho1].
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Example 1.3 demonstrates that by deforming the quadrics to less singular quadrics, we can
obtain deformations of Schubert varieties. It also shows that, while the isotropic spaces are
rigid, their multiples may be deformed to quadrics. We will systematically use these two facts
to prove the failure of rigidity or multi rigidity for many Schubert classes.

Our first two theorems characterize the rigidity and multi rigidity of classes of Grassmannian
type and quadric type.

Theorem 1.4. Let σa• be a Schubert class of Grassmannian type in the cohomology of OG(k, n).

Let α• be the sequence associated to a• by setting αi = ai − i. Express α• as (α̃i11 , . . . , α̃
it
t ) by

grouping the equal parts. Then:

(1) The class σa• is rigid if and only if there does not exist an index 1 ≤ u < t such that
iu = 1 and 0 < α̃u = α̃u+1 − 1.

(2) The class σa• is multi rigid if and only if iu ≥ 2 for every 2 ≤ u ≤ t, i1 ≥ 2 unless
α̃1 = 0, and α̃u ≤ α̃u+1 − 2 for every 1 ≤ u < t.

(3) The class σa• is not smoothable if there exists an index 1 ≤ u < t such that 0 < α̃u <
α̃u+1 − 1, or an index 1 ≤ u < t such that α̃u > 0 and iu > 1.

Theorem 1.5. Let σb• be a Schubert class of quadric type in the cohomology of OG(k, n). Let
β• be the sequence derived from b• by setting βj = n − bj − j and group equal terms to express

it as (β̃i11 , . . . , β̃
it
t ). Then:

(1) The class σb• is not rigid unless t = 1 and β̃1 = n− k.
(2) The class σb• is not smoothable if there exists an index 1 ≤ u < t such that bn+1

2 c <
β̃u < β̃u+1 − 1 or an index 1 ≤ u < t such that bn+1

2 c < β̃u and iu > 1.

Example 1.6. The orthogonal Grassmannian OG(2, 5) is isomorphic to P3. The codimension
two Schubert varieties Σ1;1 in OG(2, 5) are lines; however, not all lines in OG(2, 5) are Schubert
varieties. A Schubert variety Σ1;1 is determined by specifying a point p on Q ⊂ P4. Projectively,
the Schubert variety parameterizes lines in Q that contain the point p. In particular, the space
of Schubert varieties with class σ1;1 is a quadric threefold. Let Q′ ⊂ Q be a codimension
one smooth quadric and let l ⊂ Q′ be a line. Then the space of lines that are contained in
Q′ and intersect l is also a line in OG(2, 5). We will later see that this is an example of a
restriction variety. The lines parameterized by the Schubert variety Σ1,1 sweep out the singular
quadric surface TpQ ∩ Q, whereas the lines parameterized by the restriction variety sweep out
the smooth quadric surface Q′. Since OG(2, 5) is isomorphic to P3, the space of lines in OG(2, 5)
is isomorphic to the Grassmannian G(2, 4) parametrizing lines in P3. The Grassmannian G(2, 4)
admits a map to (P4)∗ sending a point q ∈ G(2, 4) to the hyperplane in P4 spanned by the
linear spaces parameterized by the line corresponding to q. This is a two-to-one map branched
over the locus of Schubert varieties. This is one of the first examples where restriction varieties
provide an explicit deformation of Schubert varieties. This example also shows that a Schubert
class may be represented by a variety that is isomorphic, even projectively equivalent (under
GL(n) but not SO(n)), to a Schubert variety but is not a Schubert variety.

We now turn our attention to more general cohomology classes. The next two theorems give
criteria that guarantee that the class is not rigid or multi rigid.

Theorem 1.7. Let σa•;b• be a Schubert class in OG(k, n). Let (α•;β•) be the sequences defined
by setting αj = aj − j and βi = n− bi − i. Express these sequences by grouping the equal terms

(α̃j11 , . . . , α̃
jt
t ; β̃i11 , . . . , β̃

iv
v ). Assume that one of the following conditions holds for (a•; b•):

(1) β̃1 < n− k and bs+i1 6= aj for any 1 ≤ j ≤ s.
5



(2) There exists an index 1 ≤ u < t such that ju = 1, 0 < α̃u = α̃u+1 − 1 and aj1+···+ju 6= bi
for any s < i ≤ k.

(3) #{j|aj ≤ bs+1} = s+bs+1− n−3
2 and there exists an index 1 ≤ h ≤ s such that ah = bs+1.

Then σa•,b• is not rigid.

Theorem 1.8. Let σa•;b• be a Schubert class in OG(k, n). Let (α•;β•) be the sequences defined
by setting αj = aj − j and βi = n− bi − i. Express these sequences by grouping the equal terms

(α̃j11 , . . . , α̃
jt
t ; β̃i11 , . . . , β̃

iv
v ). Assume that either one of the conditions in Theorem 1.7 or one of

the following conditions holds for (a•; b•):

(1) There exists an index 1 ≤ u ≤ t such that aj1+···+ju 6= bi for any s+ 1 ≤ i ≤ k and either
ju = 1 with 0 < α̃u <

n
2 or α̃u = α̃u+1 − 1.

(2) as−1 + 1 < as <
n
2 and either as > bs+1 or as = bj for some s + 1 ≤ j ≤ k and

bj = bj−1 + 2 = bs+1 + j − s− 1.

Then σa•;b• is not multi rigid.

Remark 1.9. Observe that Condition (2) in Theorem 1.7 specializes to the conditions in Part (1)
of Theorem 1.4 for classes of Grassmannian type. Condition (1) in Theorem 1.7 specializes to
the condition in Part (1) of Theorem 1.5 for classes of quadric type. Similarly, Condition (1) in
Theorem 1.8 specializes to the conditions in Part (2) of Theorem 1.4 for classes of Grassmannian
type.

We now turn to examples of rigid Schubert varieties. One can speculate that provided that n
is sufficiently large, a Schubert class σa•;b• in the cohomology of OG(k, n) is rigid if σa• is rigid
in OG(s, n) (described in Theorem 1.4) and bj is either equal to ai for some i or bj = bj−1 + 1
for s < j ≤ n. Our next theorem shows that, in fact, a large subset of such classes are rigid.

Theorem 1.10. Let σa•;b• be a Schubert class in OG(k, n) satisfying the following properties:

(1) Set αi = ai− i and write the sequence as (α̃i11 , . . . , α̃
it
t ). Assume that there does not exist

an index 1 ≤ u < t such that 0 < α̃u = α̃u+1 − 1.
(2) Either bj = as + k − j and n > 2as + 2k − 2s + 1; or s = 1, bj = k − j if j < a1 − 1,

bj = k − j + 1 if j ≥ a1 − 1, and n > 2k + a.

Then σa•;b• is rigid.

Theorem 1.10 and Theorem 1.7 suffice to characterize all the rigid Schubert classes in OG(2, n)
when n > 8. Theorem 6.11 will make this characterization explicit.

Remark 1.11. Robles and The in [RT, Theorem 8.1] have proved the multi rigidity of certain
Schubert classes in maximal orthogonal Grassmannians OG(k, 2k).

The organization of this paper is as follows. In §2, we will recall some basic facts concerning
the rigidity of Schubert cycles in G(k, n). In §3, we will recall the definition of restriction
varieties and describe the combinatorial algorithm for computing their cohomology classes. In
§4, we will prove Theorem 1.4 and Theorem 1.5. In §5, we will prove Theorem 1.7 and Theorem
1.8. Finally, in §6, we will prove Theorem 1.10.

Acknowledgments: I would like to thank Robert Bryant, Lawrence Ein and Colleen Robles for
stimulating discussions about rigidity and the referee for many corrections and useful suggestions.
I am grateful to MSRI and IMPA for providing ideal working conditions while part of this work
was done.
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2. Preliminaries

In this section, we recall facts concerning the rigidity of Schubert classes in G(k, n) and some
maps between Grassmannians and orthogonal Grassmannians that we will use in the rest of the
paper.

2.1. Rigidity in G(k, n). The basic facts concerning rigidity and multi rigidity of Schubert
cycles in G(k, n) proved in [C1], [Ho2] and [RT] can be summarized in the following theorem.

Theorem 2.1. Let σa• be a Schubert class in G(k, n). Let α• be the associated sequence defined

by setting αi = ai − i and express it as (α̃i11 , . . . , α̃
it
t ) by grouping the equal parts.

(1) By [C1, Theorem 1.6], the class σa• is not smoothable if there exists an index 1 ≤ u < t
such that iu > 1 and 0 < α̃u, or an index 1 ≤ u < t such that 0 < α̃u < α̃u+1 − 1.

(2) By [C1, Theorem 1.3], the class σa• is rigid if and only if there does not exist an index
1 ≤ u < t such that iu = 1 and 0 < α̃u = α̃u+1 − 1.

(3) By [Ho2] and [RT, §8.1 and Remark 6.3], the class σa• is multi rigid if and only if iu ≥ 2
for every 1 < u < t, α̃u ≤ α̃u+1 − 2 for every 1 ≤ u ≤ t − 1, i1 ≥ 2 unless α̃1 = 0 and
it ≥ 2 unless α̃t = n− k.

Proof. Part (1) is [C1, Theorem 1.6] and Part (2) is [C1, Theorem 1.3].

Hong, Robles and The index Schubert classes by partitions (pq11 , . . . , p
qr
r ), where the parts

pi are positive, bounded above by n − k and strictly decreasing. The part pi occurs with
multiplicity qi. The parts that are equal to zero are not recorded in their notation. There is a
duality isomorphism τ between the Grassmannians G(k, n) and G(n− k, n) that takes Schubert
varieties to Schubert varieties. When the partitions are depicted by Young diagrams, τ takes
a Schubert variety with class depicted by a Young diagram Y to a Schubert variety with class
depicted by the transpose of Y . Hong, Robles and The denote the transposed partition by

(p
′q′1
1 , . . . , p

′q′r
r ). Then Hong’s Theorem [Ho2], with an improvement by Robles and The [RT, §8.1

and Remark 6.3], asserts that a Schubert class in G(k, n) is Schur rigid (hence, multi rigid by [B,
§2.8.1], [RT, Theorem 7.1] or [W]) if qi, q

′
i ≥ 2 for i ≥ 2 and one of the four mutually exclusive

and exhaustive conditions holds:

(1) If p1 = n− k and p′1 = k, no further conditions are necessary.
(2) If p1 = n− k and p′1 < k, then q′1 ≥ 2.
(3) If p1 < n− k and p′1 = k, then q1 ≥ 2.
(4) If p1 < n− k and p′1 < k, then q1, q

′
1 ≥ 2.

Translating this statement to our notation, the condition qi ≥ 2 for i ≥ 2 means that iu ≥ 2 for
1 < u < t and it ≥ 2 if α̃t < n − k. The two conditions q′i ≥ 2 for i ≥ 2 and q′1 ≥ 2 if p′1 < k
translate to α̃i+1− α̃i ≥ 2 for 1 ≤ i < t. In addition, the condition q1 ≥ 2 if p1 < n−k translates
to the condition i1 ≥ 2 if α̃1 > 0. We conclude that the class σa• is multi rigid if iu ≥ 2 for
every 1 < u < t, α̃u ≤ α̃u+1 − 2 for every 1 ≤ u ≤ t− 1, i1 ≥ 2 unless α̃1 = 0 and it ≥ 2 unless
α̃t = n− k.

It is easy to see that the results of Hong, Robles and The are sharp (see also [R]). To prove
the converse, we have to show that if there exists an index 1 ≤ u ≤ t such that iu = 1 and
α̃u 6= 0, n−k or an index 1 ≤ u < t such that α̃u+1− α̃u = 1, then σa• is not multi rigid. In fact,
by the duality between G(k, n) and G(n− k, n), it suffices to show that if there exists an index
1 ≤ u ≤ t such that iu = 1 and α̃u 6= 0, n − k, then σa• is not multi rigid. First, assume that

it = 1 and α̃t < n− k. Consider an irreducible quadric Qak−2
ak+1 in Fak+1 of rank 3 whose singular

locus is Fak−2. Such a quadric exists, since we are assuming that α̃t < n− k, hence ak + 1 ≤ n.
7



Let Z be the Zariski closure of the locus Z0 of linear spaces W contained in Qak−2
ak+1 such that

dim(W ∩Fai) = i for 1 ≤ i < k. Then Z is an irreducible variety whose cohomology class is 2σa• .
To prove the irreducibility, note that Z0 admits a morphism f : Z0 → G(k − 1, Fak−1

) defined
by sending W to W ∩ Fak−1

. The image is a dense Zariski open subset in the Schubert variety
Σa1,...,ak−1

, hence is irreducible. The fiber of f over a (k − 1)-dimensional vector space Λ is a
rank three quadric in Fak+1/Λ. Hence, the fibers are all irreducible of the same dimension. By
the Theorem on the Dimension of Fibers [S, Theorem I.6.8], we conclude that Z is irreducible.
By intersecting with complementary dimensional Schubert cycles, it is immediate to see that
the cohomology class of Z is 2σa• .

Now assume that 1 ≤ u < t, iu = 1 and α̃u 6= 0. Then we can use a similar construction to
find an irreducible variety representing 2σa• . Let h = i1 + · · · + iu. Let Qah−2

ah+1 be a quadric of

rank 3 in Fah+1 singular along Fah−2. Let Y be the Zariski closure of the locus Y 0 of linear

spaces W such that dim(W ∩ Fai) = i, for 1 ≤ i ≤ k and i 6= h, and W intersects Qah−2
ah+1 in

an h-dimensional linear space. Then Y is irreducible and has class 2σa• . Let Z0 be the locus
of linear spaces W ′ in G(h, ah + 1) defined by requiring dim(W ′ ∩ Fai) = i for i < h and W ′ is

contained in Qah−2
ah+1. By the previous paragraph, Z0 is irreducible. The quasi-projective variety

Y 0 admits a morphism f : Y 0 → Z0, where the fiber over a linear space Λ is isomorphic to a
Zariski open subset in a Schubert variety in G(k − h, V/Λ). Hence, Y is irreducible. As in the
previous case, by intersecting with complementary dimensional Schubert classes, it is clear that
the cohomology class of Y is 2σa• . Therefore, σa• is not multi rigid. This completes the proof
of Part (3). �

Remark 2.2. The proof of Theorem 2.1 shows that when σa• is not multi rigid in G(k, n), then
2σa• can be represented by an irreducible subvariety. Furthermore, this subvariety is contained
in G(k, ak) (when iu = 1 with u < t and α̃u 6= 0 or α̃u+1 − α̃u = 1 with 1 ≤ u < t) or in the
Fano variety of k-planes contained in a quadric of rank 3 in Fak+1 (when it = 1 and α̃t 6= n−k).
For the cases with iu = 1, this is immediate by the construction in the proof. For the cases with
α̃u+1 − α̃u = 1 with 1 ≤ u < t, this follows easily by duality. The duality between G(k, n) and
G(n − k, n) exchanges Schubert classes of the two types. If ak = n, there is nothing to prove.
The image in G(k, n) of the variety constructed in G(n − k, n) represents 2σa• . If ak < n, the
construction applied to the dual Schubert class in G(n− k, n) does not alter the first n− ak flag
elements of dimensions 1, . . . , n − ak, respectively. Hence, the image in G(k, n) of the variety
constructed in the proof under the duality is contained in G(k, ak).

2.2. Maps between Grassmannians. There are natural maps between Grassmannians and
orthogonal Grassmannians. We will utilize these maps throughout the paper. First, since
isotropic subspaces are in particular subspaces, the orthogonal Grassmannian OG(k, n) naturally
embeds in the Grassmannian G(k, n) by inclusion

i : OG(k, n) ↪→ G(k, n).

If Σa• is a Schubert variety of Grassmannian type in OG(k, n), then i(Σa•) is a Schubert variety
in G(k, n) with cohomology class σa• .

Let k ≤ m ≤ bn2 c be an integer. Let W be an m-dimensional isotropic subspace of V . Then
G(k,W ) naturally includes in OG(k, n)

φm,n : G(k,W ) ↪→ OG(k, n).
8



Under this inclusion, a Schubert variety Σa• in G(k,W ) maps to a Schubert variety in OG(k, n).
The Schubert variety in OG(k, n) is of Grassmannian type provided that W is not maximal
when n is even.

Let W be an m-dimensional vector space. Let 0 ≤ s < k and 0 ≤ t be two integers such that
s + t ≤ m. Let W ′ and W ′′ be two subspaces of W of dimensions s and t, respectively, such
that W ′ ∩W ′′ = 0. Then there is a natural embedding

ζ(k−s,t),(k,m) : G(k − s, t) ↪→ G(k,m)

by sending a linear space Λ ∈ G(k − s,W ′′) to Span(Λ,W ′) ∈ G(k,W ). Under this map, a
Schubert variety Σa• in G(k − s, t) embeds as a Schubert variety Σa′• in G(k,W ), where a′i = i
for i ≤ s and a′i = s+ ai−s for s < i ≤ k.

3. Restriction varieties

A restriction variety is a subvariety of OG(k, n) defined by rank conditions with respect to a
flag that is not necessarily isotropic. Restriction varieties were introduced in [C2] to compute
the map induced in cohomology via the inclusion i : OG(k, n) ↪→ G(k, n). In this section, we will
recall the definition of restriction varieties and the algorithm for computing their cohomology
classes. We refer the reader to [C2] for proofs and more details. Restriction varieties will allow
us to exhibit explicit deformations of multiples of Schubert classes in orthogonal Grassmannians,
thereby proving that these classes are not multi rigid.

Let Q be a non-degenerate, quadratic form on an n-dimensional vector space V . We denote
an isotropic linear space of dimension nj by Lnj . In case 2nj = n, Lnj and L′nj denote isotropic

linear spaces in different connected components. Let Qridi denote a sub-quadric of corank ri
obtained by restricting Q to a di-dimensional linear space. We denote the singular locus of Qridi
by Sing(Qridi). For convenience, we set r0 = 0 and d0 = n.

Definition 3.1. A sequence of linear spaces and quadrics (L•, Q•) associated to OG(k, n) is a
totally ordered set

Ln1 ( Ln2 ( · · · ( Lns ( Q
rk−s
dk−s

( · · · ( Qr1d1

of isotropic linear spaces Lnj (or possibly L′ns in case 2ns = n) and sub-quadrics Qridi of Q such
that

(1) Sing(Q
ri−1

di−1
) ⊆ Sing(Qridi) for every 1 < i ≤ k − s.

(2) dim(Lnj ∩ Sing(Qridi)) = min(nj , ri).

(3) Either ri = r1 = nr1 or rt − ri ≥ t− i− 1 for every t > i. Moreover, if rt = rt−1 > r1 for
some t, then di − di+1 = ri+1 − ri for every i ≥ t and dt−1 − dt = 1.

Remark 3.2. The first two conditions in the definition of a sequence mean that the singular loci
of the quadrics are in as special a position as possible. The singular locus of a quadric in the
sequence contains the singular locus of any larger dimensional quadric in the sequence. A linear
space in the sequence is contained in (respectively, contains) the singular locus of a quadric in
the sequence whose corank exceeds (respectively, is less than or equal to) the dimension of the
linear space. The third condition is a technical condition which is included for accuracy but is
not used in this paper. The reader can safely ignore it.

Remark 3.3. Naturally, the dimensions nj , di, ri must satisfy certain inequalities. Since the
largest dimensional isotropic subspace of a non-degenerate quadratic form has at most half the
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dimension of the ambient space, we must have the inequality

2ns ≤ dk−s + rk−s.

Since the corank of a linear section of a smooth quadric is bounded by its codimension, we must
have the inequality

ri + di ≤ ri−1 + di−1 ≤ n for every 1 ≤ i ≤ k − s.
We will always assume that the invariants of a sequence satisfy these inequalities.

Definition 3.4. A sequence (L•, Q•) associated to OG(k, n) is admissible if the linear spaces and
quadrics satisfy the following three properties:

(A1) rk−s ≤ dk−s − 3.

(A2) For any 1 ≤ j ≤ s, there does not exist 1 ≤ i ≤ k − s such that nj − ri = 1.

(A3) Let xi = #{j | nj ≤ ri}. For every 1 ≤ i ≤ k − s,

xi ≥ k − i+ 1− bdi − ri
2
c.

Definition 3.5. Let (L•, Q•) be an admissible sequence for OG(k, n). A restriction variety
V (L•, Q•) is the subvariety of OG(k, n) defined as the Zariski closure of the quasi-projective
variety V (L•, Q•)

0 defined by

{W ∈ OG(k, n) | dim(W ∩ Lnj ) = j,dim(W ∩Qridi) = k − i+ 1,dim(W ∩ Sing(Qridi)) = xi}.

Example 3.6. When di + ri = n for every 1 ≤ i ≤ k− s in the admissible sequence (L•, Q•), the
corresponding restriction variety is the Schubert variety Σn1,...,ns;rk−s,...,r1 in OG(k, n). Moreover,
every Schubert variety occurs this way.

Remark 3.7. The three conditions in the definition of an admissible sequence can be explained
as follows. If rk−s > dk−s − 3, then the smallest dimensional quadric Q

rk−s
dk−s

in the sequence is

reducible or non-reduced. Hence, Q
rk−s
dk−s

in the sequence can be replaced by an isotropic linear

space to more accurately reflect the geometry. If nj = ri + 1, then the (k − i + 1)-dimensional
subspace contained in Qridi either must intersect the singular locus of Qridi in a j-dimensional
subspace or it must be contained in the quadric everywhere singular along Lnj . Hence, one
of these possibilities better reflects the geometry. Finally, the definition of a restriction variety
requires that the k-dimensional isotropic spaces intersect Qridi in a subspace of dimension k−i+1.

A linear space of dimension k−i+1 intersects the singular locus of Qridi in a subspace of dimension

at least k− i+ 1− bdi−ri2 c. Since the linear space is required to intersect the singular locus in a
subspace of dimension xi, the inequality in Condition (A3) must be satisfied.

Quadric diagrams provide a convenient combinatorial shorthand for depicting admissible se-
quences.

Notation 3.8. The string of numbers associated to a sequence (L•, Q•) is a sequence of rk−s
non-decreasing positive integers followed by n − rk−s zeros such that ri − ri−1 of the positive
integers are equal to i. The quadric diagram associated to the sequence (L•, Q•) consists of the
string of numbers associated to (L•, Q•), where the nj-th number in the string is followed by
a bracket ] and the di-th digit is followed by a brace }. If 2ns = n and the sequence contains
L′ns , the bracket after the ns-th digit is decorated with a prime ]′. The quadric diagram is called
admissible if it is associated to an admissible sequence. We always order the brackets from left
to right and the braces from right to left to conform with the indexing in the sequence (L•, Q•).
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Hence, the i-th brace will always refer to the i-th brace from the right and the j-th bracket will
refer to the j-th bracket from the left.

Example 3.9. The quadric diagram associated to the sequence L1 ⊂ L3 ⊂ L5 ⊂ Q3
8 ⊂ Q1

10

in OG(5, 11) is 1]22]00]000}00}0. In this sequence, there are two quadrics of corank 1 and 3.
Hence, the string of numbers is 122 followed by 8 zeros. The corank of the i-th quadric is equal
to the number of positive integers in the string of numbers that are less than or equal to i. The
dimension of the j-th isotropic linear space in the sequence is equal to the number of digits to
the left of the j-th bracket. In this case, there are 1,3 and 5 digits to the left of the brackets.
Hence, the isotropic subspaces in the sequence are L1, L3, L5. Finally, the dimension of the span
of the i-th quadric is equal to the number of digits to the left of the i-th brace. In this case, the
first brace has 10 digits to its left. Hence, the largest dimensional quadric is Q1

10. The second
brace has 8 digits to its left. Hence, the second quadric is Q3

8.

Remark 3.10. It is useful to reformulate Definition 3.4 in terms of quadric diagrams. Condition
(A1) means that the leftmost brace must have at least three zeros to its left. For example,
11]00]00}00 or 33000}00}00}0 are admissible, but 1100}00 is not. Condition (A2) means that
the two digits to the left of a bracket have to be equal. If there is only one digit to the left of a
bracket, it has to be 1. For example, 1]22]33]0000}00}0}0 or 22]22]2000}00000}0 are admissible,
but 2]22]000}000}0 or 1234]0000}0}0}0}0 are not admissible. Condition (A3) is the hardest to
visually verify without resorting to some counting. The quantity k − i + 1 − xi is the number
of brackets and braces to the left of the i-th brace (including the i-th brace) that have a zero
or an integer larger than i to their left. The quantity di − ri is the total number of zeros and
integers larger than i to the left of the i-th brace. Condition (A3) requires the latter number to
be at least twice the former. For example, 10]00}0 violates the condition since there are three
zeros to the right of the 1 and to the left of } but a total of two brackets and braces.

We are now ready to recall the algorithm that computes the class of a restriction variety in
terms of quadric diagrams. Given a sequence (L•, Q•), let D(L•, Q•) be the diagram associated
to the sequence. Given an admissible quadric diagram D, we associate two new quadric diagrams
Da and Db. If these are not admissible, we modify them until they are admissible. We replace
the diagram D with the collection of diagrams that result from this process. Geometrically,
this process encodes a degeneration of the original restriction variety into a union of restriction
varieties.

Definition 3.11. Let D be the quadric diagram associated to an admissible sequence (L•, Q•).
If there exists an index i such that ri − ri−1 < di−1 − di1 in the sequence, let

κ = max(i | ri − ri−1 < di−1 − di).2

Let Da be the quadric diagram obtained by changing the (rκ + 1)-st integer in the string of
numbers of D to κ. Denote this rightmost κ in Da by κ0. If there exists a bracket in Da to the
right of κ0, let Db be the quadric diagram obtained from Da by moving the leftmost bracket to
the right of κ0 to the position immediately to the right of κ0.

Example 3.12. To clarify, let us give some examples. Let D = 233]0000}00}0}0. Then κ = 1.
We change the 2 to 1 to obtain Da = 133]0000}00}0}0. We slide the first bracket in Da to the
right of the 1 we added to the immediate right of it to obtain Db = 1]330000}00}0}0. Note that
in this case both Da and Db are admissible.

1In terms of the corresponding diagram, ri − ri−1 is equal to the number of digits that are equal to i and di−1 − di is

equal to the number of integers between the i-th and (i− 1)-st braces.
2In terms of the diagram, κ is the largest index i such that the number of digits equal to i is less than the number of

digits between the i-th and (i− 1)-st braces.
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Example 3.13. Next let D = 00]0]0000}0. Here κ = 1, so we turn the left most 0 into 1 to
obtain Da = 10]0]0000}0. We slide the first bracket to the right of the 1 to its immediate right
to obtain Db = 1]00]0000}0. Here note that Db is admissible, but Da fails Condition (A2). We
have to turn Da into an admissible quadric diagram.

Algorithm 3.14. [C2, Algorithm 3.8] We now state the algorithm for modifying Da until it
satisfies all the conditions in Definition 3.4.

Step 1. If Da fails Condition (A3), discard it. Da does not lead to any quadric diagrams.
Step 2. If Da satisfies Condition (A3) but not Condition (A2), change the digit to the right of κ0

in the sequence to κ and move the κ-th brace one position to the left. Repeat until you
reach a sequence of brackets and braces that satisfies Condition (A2). Label the resulting
sequence Dc. If Dc is admissible, we refer to it as an admissible quadric diagram derived
from Da. Otherwise, proceed to the next step.

Step 3. If Da or Dc satisfies Conditions (A2) and (A3), but fails Condition (A1), replace Da or
Dc with two identical diagrams Da1 and Da2 obtained by replacing the leftmost brace
(in Da or Dc) with a bracket one position to the left and turning the digits equal to k−s
to 0. Let ns be the number of digits to the left of the rightmost brace in Da2 . If 2ns = n,
then we use ]′ instead of ] in Da2 . We refer to Da1 and Da2 as quadric diagrams derived
from Da.

In Example 3.13, we first turn Da = 10]0]0000}0 into 11]0]000}00. This diagram still fails
Condition (A2), so we repeat to obtain 11]1]00}000. Now condition (A2) is satisfied, but Con-
dition (A1) fails. Since n = 8 = 2 · 4, we obtain the two diagrams 00]0]0]0000 and 00]0]0]′0000.
These are the two diagrams derived from Da.

Example 3.15. Let D = 000}000}000}, then κ = 3. We turn the left most 0 into 3 to obtain
Da = 300}000}000}. In this case, there are no brackets to the left of the 3, so there is no Db.
The sequence Da fails Condition (A1). Since n is odd, we replace Da with two identical quadric
diagrams Da1 = 00]0000}000} and Da2 = 00]0000}000}.

Example 3.16. Let D = 00]0000}00}0. Then Da = 20]0000}00}0 and Db = 2]00000}00}0.
Neither of these diagrams satisfy Condition (A2). We already know that we should replace Da

with 22]000}000}0. Here is how to modify Db.

Algorithm 3.17. [C2, Algorithm 3.9] If Db does not satisfy Condition (A2), suppose it fails for
the j-th bracket. Let i be the integer immediately to the left of the j-th bracket. Replace
this i with i − 1 and move (i − 1)-st brace one position to the left. As long as the resulting
sequence does not satisfy Condition (A2), repeat this process either until the resulting sequence
is admissible (in which case this is the quadric diagram derived from Db) or two braces occupy
the same position. In the latter case, no quadric diagrams are derived from Db.

In Example 3.16, we replace Db = 2]00000}00}0 with 1]00000}0}00, which is a quadric dia-
gram. If our example had been D = 00]0000}0}0, then Db = 2]00000}0}0. Replacing 2 with 1
and moving the rightmost brace to the left would produce 1]00000}}00. Hence, in this case no
quadric diagrams are derived from Db.

We need one more definition. Assume ns > rκ (i.e., there exists a bracket strictly to the right
of the rightmost κ). If there exists an index i such that ri ≥ nxκ+1, let yκ = max{i | ri ≤ nxκ+1}.
Otherwise (i.e., if ri < nxκ+1 for every i), set yκ = k−s+1. The integer yκ is the positive integer
that occurs immediately to the left of the first bracket that has an integer larger than κ to its left
or yκ = k−s+1 if this bracket is preceded by a zero. The condition nxκ+1−rκ−1 = yκ−κ plays an
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important role. A sequence satisfying this equality looks like · · ·κ+1 κ+2 · · ·κ+l−1 κ+l κ+l] · · ·
or · · ·κ + 1 κ + 2 · · ·κ + l − 1 00] · · · , where we have drawn the part of the sequence starting
with the left most κ + 1 and ending with (xκ + 1)-st bracket. We are now ready to state the
algorithm.

Algorithm 3.18. [C2, Algorithm 3.10] Let D be an admissible quadric diagram associated to the
admissible sequence (L•, Q•). If ri + di = n for every 1 ≤ i ≤ k − s, then return D and stop.
Otherwise, let Da and Db be the diagrams described above.

(1) If nxκ+1 − rκ − 1 > yκ − κ or ns ≤ rκ in D, then return the quadric diagrams that are
derived from Da.

(2) If Da violates Condition (A3) in Definition 3.4, then return the quadric diagrams that
are derived from Db.

(3) Otherwise, return the quadric diagrams that are derived from both Da and Db.

We then have the following theorem that calculates the cohomology class of V (L•, Q•).

Theorem 3.19. [C2, Theorem 5.12] Let V (L•, Q•) be a restriction variety. Then the cohomology
class of V (L•, Q•) satisfies

[V (L•, Q•)] =
∑
h

[V (Lh• , Q
h
•)],

where the sum ranges over the restriction varieties corresponding to the admissible quadric dia-
grams derived from D(L•, Q•) by Algorithm 3.18.

For our purposes, it is important to note that in the first two cases of Algorithm 3.18 (with
the exception when n = 2k and a quadric is replaced by two maximal dimensional linear spaces),
a restriction variety is replaced by one restriction variety or two restriction varieties with the
same cohomology class.

4. Classes of Grassmannian type or quadric type

In this section, we discuss the rigidity and multi rigidity of Schubert classes of Grassmannian
type or quadric type in OG(k, n) and prove Theorem 1.4 and Theorem 1.5.

Proposition 4.1. Let i : OG(k, n) → G(k, n) denote the natural inclusion. Let Σa• be a
Schubert variety in OG(k, n) of Grassmannian type with cohomology class σa•. The cohomology
class of the Schubert variety i(Σa•) in the cohomology of G(k, n) is also σa•.

(1) The class σa• is rigid in G(k, n) if and only if the class σa• is rigid in OG(k, n).
(2) The class σa• is multi rigid in G(k, n) if and only if the class σa• is multi rigid for

OG(k, n).

Proof. Since Σa• is of Grassmannian type, it parameterizes isotropic linear spaces W such that
dim(W ∩ Fai) ≥ i for some isotropic subspaces Fa1 ⊂ · · · ⊂ Fak , where if n is even Fak is not
maximal. If an arbitrary linear space W satisfies dim(W ∩ Fai) ≥ i, then W is contained in
the isotropic subspace Fak . Therefore, W is automatically isotropic. It follows that i(Σa•) is a
Schubert variety in G(k, n) with cohomology class σa• .

Let σa• be rigid in G(k, n). Let Y be a variety that represents σa• in OG(k, n). Then i(Y )
represents σa• in G(k, n). Since σa• is rigid in G(k, n), i(Y ) is a Schubert variety in G(k, n).
Since the Schubert variety i(Y ) in G(k, n) is contained in i(OG(k, n)), Y must be a Schubert
variety of Grassmannian type in OG(k, n). If the largest linear space Fak in the definition of
the Schubert variety i(Y ) is not isotropic, then there exists a linear subspace W of dimension

13



k contained in Fak such that dim(W ∩ Fai) = i and W is not isotropic. This contradicts that
i(Y ) is contained in i(OG(k, n)). Hence, Y is a Schubert variety in OG(k, n) of Grassmannian
type. We conclude that σa• is rigid in OG(k, n).

Conversely, suppose that σa• is not rigid in G(k, n). The proof of [C1, Theorem 1.3] constructs
a deformation of the Schubert variety Σa• in G(k, ak) to a variety Y which is not a Schubert
variety. Embedding Y via the map φak,n : G(k, ak) ↪→ OG(k, n), we see that φak,n(Y ) is a
variety that represents σa• but is not a Schubert variety. We conclude that σa• is not rigid in
OG(k, n).

The argument for multi rigidity is almost identical. Let σa• be multi rigid in G(k, n). Suppose
mσa• can be represented by a subvariety Y in OG(k, n). Then i(Y ) has cohomology class mσa•
in G(k, n), hence it is a union of m Schubert varieties. Applying the argument in the second
paragraph of the proof to each component of i(Y ), we conclude that each component of Y must
be a Schubert variety of Grassmannian type in OG(k, n). Hence, σa• is multi rigid in OG(k, n).

Conversely, if σa• is not multi rigid in G(k, n), the proof of Theorem 2.1 Part (3) constructs
an irreducible subvariety Y that represents the class 2σa• . Except when it = 1, the variety Y
is defined inside G(k, ak) (see Remark 2.2). When it = 1 is the only condition violating multi
rigidity, the deformation is defined in the Fano variety of k-planes of a quadric hypersurface of
rank 3 in Fak+1. In particular, we can represent 2σa• by an irreducible variety Y in G(k, ak+1).
If n is even, then by the definition of Schubert cycles of Grassmannian type, Fak is not maximal.
Composing the variety Y with φak+1,n, which embeds Fak+1 into a maximal isotropic subspace,
we obtain an irreducible variety representing 2σa• in OG(k, n). Hence, σa• is not multi rigid.

If n is odd, then the same argument applies when it 6= 1. In that case, the proof of Theorem
2.1 Part (3) constructs an irreducible variety Y in G(k, ak) representing 2σa• . Composing Y with
φak,n, we obtain a variety in OG(k, n) representing 2σa• . When it = 1, the proof of Theorem 2.1
Part (3) constructs an irreducible subvariety Y in the Fano variety of a rank 3 quadric in Fak+1.
By taking this quadric to be a rank 3 quadric contained in Q, we see that Y embeds in OG(k, n)

as the restriction variety associated to the sequence La1 ⊂ · · ·Lak−1
⊂ Qak−2

ak+1. It is easy to check
that the conditions in Definitions 3.1 and 3.4 are satisfied for this sequence. The conditions in
Definition 3.1 are obvious. We have that d1 = ak + 1 and r1 = ak − 2, hence d1 = r1 + 3 and
Condition (A1) holds. Since it = 1, we have that ak−1 < ak − 1. Hence, ak − 2 ≥ aj for every
1 ≤ j ≤ k − 1 and Condition (A2) holds. Finally, x1 = k − 1 > k − 3

2 . Hence, Condition (A3)
holds. By [C2, Theorem 5.12] (see Theorem 3.19), the class of this restriction variety is 2σa• .
To see this, note that when we run the algorithm with κ = 1, only Da is formed. The quadric
diagram Da is not admissible since it violates Condition (A1) (note that the conditions (A2)
and (A3) hold). Hence, the algorithm replaces Da with two identical sequences associated to
the Schubert variety σa• . We conclude that σa• is not multi rigid in OG(k, n). �

Remark 4.2. When n is even, if we consider Schubert cycles σa• in OG(k, n) that have ak =
n
2 , then Part (1) of Proposition 4.1 remains true with the same proof. However, Part (2) of
Proposition 4.1 may be false. Part (2) remains true with the same proof for cycles with ak = n

2
provided that it ≥ 2. However, when it = 1 and ak = n

2 , a cycle can be multi rigid in OG(k, n),
but fail to be multi rigid in G(k, n). For example, in OG(1, n) a maximal isotropic subspace
is multi rigid. However, a half-dimensional linear space is not multi rigid in G(1, n). This is
the main reason to disallow maximal isotropic subspaces in the definition of Schubert cycles of
Grassmannian type when n is even.
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Proof of Theorem 1.4. Let σa• be a Schubert class of Grassmannian type in OG(k, n). By
Proposition 4.1, σa• is rigid in OG(k, n) if and only if it is rigid in G(k, n). By [C1, Theorem
1.3] (see Theorem 2.1 Part (2)), σa• is rigid in G(k, n) if and only if there does not exist an
index 1 ≤ u < t such that iu = 1 and 0 < α̃u = α̃u+1 − 1. Part (1) of the theorem follows.

By Proposition 4.1, σa• is multi rigid in OG(k, n) if and only if it is multi rigid in G(k, n).
Since σa• is of Grassmannian type, we must have that α̃t < n − k. By Hong’s Theorem [Ho2]
(see Theorem 2.1 Part (3)), σa• is multi rigid in G(k, n) if and only if iu ≥ 2 for every 1 < u ≤ t,
α̃u ≤ α̃u+1 − 2, and i1 ≥ 2 unless α̃1 = 0. Part (2) of the theorem follows.

Suppose a Schubert class σa• is smoothable in OG(k, n). Let Y be a smooth subvariety of
OG(k, n) representing σa• . Then i(Y ) is a smooth subvariety of G(k, n) representing σa• . By
[C1, Theorem 1.6] (see Theorem 2.1 Part (1)), σa• is not smoothable in G(k, n) if there exists an
index 1 ≤ u < t such that iu > 1 and α̃u > 0 or an index 1 ≤ u < t such that 0 < α̃u < α̃u+1−1.
We conclude that σa• is not smoothable in OG(k, n) under the same assumptions. Part (3) of
the theorem follows. �

Remark 4.3. When n is even, if we consider Schubert cycles σa• where ak = n
2 , Parts (1) and (3)

of Theorem 1.4 remain true with the same proof but using Remark 4.2 instead of Proposition
4.1. Part (2) of Theorem 1.4 need not be true. However, if in addition we assume that it ≥ 2,
then Part (2) also holds.

Proof of Theorem 1.5. Let σb• be a Schubert class of quadric type. We then have b1 <
n
2 − 1.

Consequently, the dimension of F⊥b1 is greater than n
2 + 1. Since the corank of a quadric is

bounded by its codimension, for a quadric Qr1n−b1 , we have that r1 ≤ b1 ≤ n − b1 − 3. In

particular, Qr1n−b1 is irreducible. Let V be the restriction variety defined by the sequence

Q0
n−b1 ⊂ Q

0
n−b2 ⊂ · · · ⊂ Q

0
n−bk .

The i-th quadric in this sequence has the same dimension as the i-th quadric in the sequence
defining a Schubert variety Σb• but is smooth. It is easy to check that this sequence satisfies the
conditions in Definitions 3.1 and 3.4. Since none of the quadrics are singular, the conditions in
Definition 3.1 vacuously hold. Since there does not exist any isotropic subspaces in the sequence,
Condition (A2) holds. The inequalities in conditions (A1) and (A3) improve when ri decreases.
Since these conditions hold for the sequence corresponding to the Schubert variety with class
σb• , we conclude that they also hold for this sequence. By Algorithm [C2, Algorithm 3.10]
(see Algorithm 3.18), the class of this restriction variety is the Schubert class σb• . The quadric
diagram representing this class has the form

00 · · · 00}0 · · · 0}0 · · · 0}0 · · · 0.

When we apply the algorithm to compute its class, the only quadric diagram that is formed is Da.
Since there are no brackets, Da automatically satisfies Condition (A2) of Definition 3.4. Since
the rank of the smallest dimensional quadric is at least three (recall that Qr1n−b1 satisfies r1 ≤
n− b1 − 3), Da also automatically satisfies Condition (A1). As we already observed, Condition
(A3) holds since it already holds for the sequence associated to the Schubert variety. Hence, Da

is admissible and no new brackets are formed while running the algorithm. Consequently, when
we run the algorithm, we never form Db. By Theorem [C2, Theorem 5.12] (see Theorem 3.19),
we conclude that the cohomology class of this restriction variety is the Schubert class σb• .

Note that the exception t = 1 and β̃1 = n − k (equivalently, t = 1 and bk = 0) in the
statement of the theorem corresponds to the fundamental class of OG(k, n). In all other cases,
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we now show that the restriction variety constructed in the previous paragraph gives a non-
trivial deformation of the Schubert variety. The linear spaces parameterized by V sweep out
the quadric Q0

n−bk . Hence, if bk 6= 0, the restriction variety cannot be projectively equivalent to
a Schubert variety since for a Schubert variety the linear spaces sweep out a quadric of corank
bk. If bk = 0, since t 6= 1, there exists bu such that bu > k − u. Let v be max{u|bu > k − u}.
The smallest dimensional quadric that contains a v-dimensional subspace of every linear space
parameterized by a Schubert variety Σb• has corank bv. In the restriction variety this quadric
has the same dimension and has full rank. Therefore, we conclude that the restriction variety
cannot be projectively equivalent to a Schubert variety. This concludes the proof that unless
t = 1 and bk = 0, a Schubert cycle of quadric type is not rigid. In fact, we have proved that such
a class can always be represented by the intersection of a general Schubert variety in G(k, n)
with the orthogonal Grassmannian OG(k, n) [C2, Example 4.13 and Proposition 6.2].

Suppose that a Schubert class σb• can be represented by a smooth subvariety Y of OG(k, n).
If n is odd, let σa• be the Schubert class of Grassmannian type defined by the sequence ai =
n−1

2 + i− k. Notice that a Schubert variety representing such a class consists of k-dimensional
subspaces contained in a fixed maximal isotropic subspace. In particular, such a Schubert variety
is smooth and isomorphic to G(k, n−1

2 ). Similarly, if n is even, let σa• be the Schubert class
defined by the sequence ai = n

2 + i−k. A Schubert variety representing this class is also smooth
and isomorphic to G(k, n2 ).

In either case, by Kleiman’s Transversality Theorem [K2], the intersection of Y with a general
translate of a Schubert variety Σa• is a smooth subvariety of OG(k, n). The class of this inter-
section in G(k, bn2 c) is given by σc• , where ci = bn2 c − bi. We thus conclude that the Schubert

class σc• is smoothable in the Grassmannian G(k, bn2 c). Set γi = ci− i = βi−bn+1
2 c and express

the sequence γ• by grouping the equal parts as (γ̃i11 , . . . , γ̃
it
t ). If there is an index 1 ≤ u < t

such that iu > 1 and β̃u > bn+1
2 c, then iu > 1 and γ̃u > 0. Similarly, if there exists an index

1 ≤ u < t such that bn+1
2 c < β̃u < β̃u+1− 1, then 0 < γ̃u < γ̃u+1− 1. By [C1, Theorem 1.6] (see

Theorem 2.1 Part (1)), σc• cannot be represented by a smooth subvariety of G(k, bn2 c) leading
to a contradiction. This concludes the proof of Part (2) of Theorem 1.5. �

The proof yields the following corollary.

Corollary 4.4. Let σb• be a Schubert class of quadric type in OG(k, n). If t = 1, then σb• is
smoothable.

Proof. When t = 1, then bi = bi+1 + 1 for 1 ≤ i < k. Hence, the restriction variety associated
to the sequence Q0

n−b1 ⊂ Q0
n−b2 ⊂ · · · ⊂ Q0

n−bk is the orthogonal Grassmannian OG(k, n − bk).
In particular, this restriction variety is smooth. Since the cohomology class of this restriction
variety is the Schubert class σb• , we conclude that σb• is smoothable. �

In fact, we conclude the following stronger corollary.

Corollary 4.5. Let σb• be a Schubert class of quadric type in OG(k, n). Let a• be the sequence
defined by ai = n− bi. If the Schubert class σa• is smoothable in G(k, n), then σb• is smoothable
in OG(k, n). In particular, if bi = bi+1 + 1 for i ≥ 2 and b1 − b2 = 2, then σb• is smoothable.

Proof. Note that the restriction variety representing σb• constructed in the proof of Theorem 1.5
is Σa•∩OG(k, n), where Σa• is a general Schubert variety with class σa• in G(k, n) [C2, Example
4.13 and Proposition 6.2]. If Y is a smooth subvariety representing σa• , then σb• can also be
represented by Y ∩ OG(k, n), possibly after replacing Y with a general translate so that the
intersection is dimensionally proper. By Kleiman’s Transversality Theorem [K2], Y ∩OG(k, n)
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may be taken to be smooth, possibly after replacing Y with a general translate. Hence, σb• is
smoothable. In particular, if bi = bi+1 + 1 for i ≥ 2 and b1 − b2 = 2, then σa• is the hyperplane
class in G(k, n). Hence, by Bertini’s Theorem [H, Theorem III.10.9], σa• is smoothable. We
conclude in this case that σb• is smoothable. �

5. Non-rigidity of Schubert classes

In this section, using restriction varieties, we get explicit deformations of multiples of Schubert
classes in OG(k, n) and prove Theorem 1.7 and Theorem 1.8.

Proof of Theorem 1.7. Let σa•,b• be a Schubert class in the cohomology of OG(k, n). First,

assume that β̃1 < n − k and bs+i1 6= aj for any 1 ≤ j ≤ s. We will explicitly construct a
restriction variety that has class σa•;b• but is not a Schubert variety. This will show that σa•,b•
is not rigid.

By assumption, we have that bs+i1 = bs+i1−1 − 1 = bs+i1−2 − 2 = · · · = bs+1 − i1 + 1. Since
for a Schubert variety bi 6= aj − 1 for any 1 ≤ j ≤ s, we conclude that either aj < bs+i1 or
aj > bs+1 + 1 for every 1 ≤ j ≤ s. In particular, if we represent the Schubert variety with class
σa•;b• by a quadric diagram, then the diagram contains the string of numbers

· · · k − s− i1 + 1 k − s− i1 + 2 · · · k − s− 1 k − s 0 0 · · ·

and the diagram does not have any brackets in this range except possibly at the two underlined
places. Consider the restriction variety V defined by the following sequence

La1 ⊂ · · · ⊂ Las ⊂ Q
bs+1−1
n−bs+1

⊂ Qbs+2−1
n−bs+2

⊂ · · · ⊂ Qbs+i1−1

n−bs+i1
⊂ · · · ⊂ Qbkn−bk .

Notice that this sequence differs from the sequence defining the Schubert variety with class σa•;b•

only in that the ranks of the quadricsQ
bs+i1−1

n−bs+i1
, . . . , Q

bs+i1−1

n−bs+i1
are one more than the corresponding

quadrics in the sequence associated to the Schubert variety. In particular, the quadric diagram
associated to V contains a string of numbers

· · · k − s− i1 + 2 k − s− i1 + 3 · · · k − s 0 0 0 · · ·

and does not contain any brackets except possibly at the two underlined places. The conditions
in Definitions 3.1 obviously hold for this sequence. Conditions (A1) and (A3) of Definition 3.4
hold since they hold for the sequence corresponding to the Schubert variety and the inequalities
can only improve if ri is decreased keeping all other quantities the same. The inequalities
aj < bs+i1 or aj > bs+1 +1 guarantee that Condition (A2) holds. We conclude that the sequence
is admissible.

By Theorem [C2, Theorem 5.12] (see Theorem 3.19), the cohomology class of V is σa•;b• . To
calculate the class of V , we run the algorithm successively for κ equal to k − s − i1 + 1, k −
s − i1 + 2, . . . , k − s. At each stage of the algorithm, we have that nxκ+1 − rκ + 1 > yκ − κ.
Therefore, the algorithm returns only quadric diagrams derived from Da. On the other hand,
Da is always admissible. Since Conditions (A1) and (A3) hold for the sequence corresponding
to the Schubert variety, they also hold for all the intermediate sequences. Condition (A2) holds
since aj < bs+i1 or aj > bs+1 + 1 for every 1 ≤ j ≤ s. It follows that the cohomology class
of V is σa•;b• . However, V is not isomorphic to a Schubert variety. The smallest dimensional
linear space that contains an (s + i1)-dimensional subspace of every k dimensional subspace
parameterized by the Schubert variety has corank bi1 . This corank for V is bi1 −1. We conclude
that σa•;b• is not rigid.
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Next, assume that there exists an index 1 ≤ u < t such that ju = 1, α̃u = α̃u+1 − 1 and
aj1+···+ju 6= bi for any s < i ≤ k. For simplicity, set h =

∑u
i=1 ji. If we represent the Schubert

class σa•;b• by a quadric diagram, then the diagram contains · · · γγ]γγ] · · · , where 0 ≤ γ ≤ k− s
and the brackets depicted here are those of index h and h + 1. By the proof of [C1, Theorem
1.3], there exists a subvariety Y of G(h + 1, Fah+1

) with cohomology class σa1,...,ah,ah+1
that

parameterizes (h+ 1)-dimensional subspaces Λ ⊂ Fah+1
that satisfy dim(Λ ∩ Fai) ≥ i for i < h

but is not a Schubert variety. Let Z be the Zariski closure of the following quasi-projective
variety

{W ∈ OG(k, n) | W ∩ Fah+1
∈ Y, dim(W ∩ Faj ) = j, for j 6= h,dim(W ∩ F⊥bi ) = i}.

Then the class of Z is σa•;b• since specializing Y to a Schubert variety specializes Z to a Schubert
variety. Furthermore, Z is not a Schubert variety. Therefore, the class σa•;b• is not rigid.

Finally, assume that for the sequence (a•; b•), #{j|aj ≤ bs+1} = s+bs+1− n−3
2 and bs+1 = ah.

Consider the restriction variety V associated to the sequence

La1 ⊂ · · · ⊂ Lah−1
⊂ Lah+1 ⊂ Lah+1

⊂ · · · ⊂ Qbs+1−1
n−bs+1

⊂ · · · ⊂ Qbkn−bk .

Notice that this sequence differs from the sequence defining the Schubert variety in that the
dimension of the h-th isotropic linear space is one larger and the corank of the smallest di-
mensional quadric is one smaller. We claim that this is an admissible sequence. As usual, the
conditions in Definition 3.1 are clear. Condition (A1) of Definition 3.4 holds because increasing
the rank of the smallest dimensional quadric only improves the inequality in Condition (A1).

Condition (A2) needs to be checked only for Lah+1 and Q
bs+1−1
n−bs+1

. The ranks of all other quadrics

and the dimensions of all other isotropic linear spaces remain unchanged. Since ah = bs+1,
ah + 1 = bs+1 − 1 + 2 and Condition (A2) holds. Finally, we have to check Condition (A3) for
the smallest dimensional quadric. By assumption, for the sequence representing the Schubert
variety, we have that x′k−s = s+bs+1− n−3

2 . For the new sequence, we have that xk−s = x′k−s−1.
Since the corank of the smallest dimensional quadric is also one less, we see that the inequality
in Condition (A3) holds. We conclude that this sequence is admissible.

This restriction variety V has cohomology class σa•;b• . To compute the class, we run the
algorithm with κ = k − s. In this case, Da violates Condition (A3) of Definition 3.4. Hence,
the only diagrams are derived from Db which is admissible (being the diagram associated to the
Schubert variety with class σa•;b•). Therefore, the cohomology class of V is σa•;b• . As in the
previous cases, it is clear that this restriction variety is not a Schubert variety. Therefore, σa•,b•
is not rigid. This concludes the proof of the theorem. �

Example 5.1. To make the proof of Theorem 1.7 more concrete, we give several examples.
The quadric diagram associated to the Schubert class σ1;3,1 in OG(3, 9) is 1]22000}00}0. The
proof of Part (1) shows that the restriction variety associated to the sequence 1]20000}00}0
has the same class. Similarly, the quadric diagram associated to the Schubert class σ2;5,4,3,0

in OG(5, 13) is 22]234000}0}0}000}. The restriction variety associated to the quadric diagram
22]340000}0}0}000} has the same cohomology class.

Example 1.6 gives an example of Part (3) of Theorem 1.7. The quadric diagram associated to
the Schubert class σ1;1 in OG(2, 5) is 1]000}0. The restriction variety associated to the sequence
00]00}0 also has the same class. More generally, the quadric diagram associated to the Schubert
class σ1,3,5;3,1 in OG(5, 11) is 1]22]00]000}00}0. The restriction variety associated to the sequence
1]200]0]000}00}0 has the same class.
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Proof of Theorem 1.8. Since a multi rigid class is rigid, any Schubert class σa•;b• satisfying one
of the conditions of Theorem 1.7 cannot be multi rigid. To prove the theorem, we have to show
that a Schubert cycle satisfying one of the two conditions in the theorem is not multi rigid.

Let σa•;b• be a Schubert cycle. First, assume that there exists an index 1 ≤ u ≤ t such
that either iu = 1 and 0 < α̃u <

n
2 , or an index 1 ≤ u ≤ t such that α̃u = α̃u+1 − 1. Set

h = j1 + · · · + ju and further assume that ah 6= bi for any 1 ≤ i ≤ s. Then, by Theorem 1.4,
there exists an irreducible subvariety Y representing twice the Schubert class of Grassmannian
type 2σa• in OG(s, n). First, assume that either n is even or it 6= 1. Let Z be the Zariski closure
of the following quasi-projective variety

{W ∈ OG(k, n) | (W ∩ Fas) ∈ Y, dim(W ∩ F⊥bi ) = i}.
Then it is easy to see that Z is an irreducible variety representing 2σa•;b• . When n is odd and
it = 1, the definition of Z has to be slightly altered. Let Y be the variety constructed in the
proof of Theorem 1.4 representing the class 2σa• . Let Z be the closure of the quasi-projective
variety

{W ∈ OG(k, n) | (W ∩Qas−2
as+1) ∈ Y, dim(W ∩ F⊥bi ) = i}.

It is left to the reader to check that Z is an irreducible variety representing 2σa•;b• .

Next, assume that as−1 + 1 < as <
n
2 and as > bs+1. Then we can construct an irreducible

restriction variety that represents the class 2σa•;b• . Let V be the restriction variety defined by
the following sequence

La1 ⊂ · · · ⊂ Las−1 ⊂ Q
as−2
as+1 ⊂ Q

bs+1

n−bs+1
⊂ · · · ⊂ Qbkn−bk .

Note that this sequence differs from the sequence defining the Schubert variety Σa•;b• only in

having the isotropic subspace Las replaced by the quadric Qas−2
as+1. We leave the easy verification

that this sequence is admissible to the reader. By [C2, Proposition 4.16], V is irreducible. By
[C1, Theorem 5.12], the cohomology class of V is 2σa•;b• . Running the algorithm, we have
κ = k− s+ 1. Since there are no brackets to the left of κ0 in Da, only Da leads to new quadric
diagrams. Note that Da is not admissible. It satisfies Conditions (A2) and (A3), but fails
Condition (A1). Therefore, the algorithm replaces Da by two (identical since as <

n
2 ) quadric

diagrams associated to the Schubert class σa•;b• . We conclude that σa•;b• is not multi rigid.

Finally, assume that as−1 +1 < as <
n
2 , as = bj and bj = bj−1 +2 = bs+1 + j−s−1. Consider

the following sequence of linear spaces and quadrics

La1 ⊂ · · ·Las−1 ⊂ Q
as−2
as+1 ⊂ Q

as−2
n−bj+1−j+s−1 ⊂ · · · ⊂ Q

as−2
n−bj+1−1 ⊂ Q

bj+1

n−bj+1
⊂ · · · ⊂ Qbkn−bk

As usual let xi = #{aj | aj ≤ ri}. Let V be the Zariski closure of the locus in OG(k, n) defined
by

{W ∈ OG(k, n) | dim(W ∩ Laj ) = j,dim(W ∩Qridi) = k − i+ 1, dim(W ∩ Sing(Qridi)) = xi}.

Using the Theorem on the Dimension of Fibers [S, Theorem I.6.8], it is easy to check that
V is irreducible. The cohomology class of V is 2σa•;b• . Degenerating Qas−2

as+1 into a union of
two isotropic subspaces of dimension as, we see that the cohomology class of V is twice the
cohomology class of the variety defined with respect to

La1 ⊂ · · ·Las−1 ⊂ Las ⊂ Q
as−2
n−bj+1−j+s−1 ⊂ · · · ⊂ Q

as−2
n−bj+1−1 ⊂ Q

bj+1

n−bj+1
⊂ · · · ⊂ Qbkn−bk .

By the running the algorithm, the reader can check that the latter variety is homologous (in
fact, equal) to a Schubert variety. We conclude that σa•;b• is not multi rigid. This concludes
the proof of the theorem. �
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Remark 5.2. Combining the proofs of Part (2) of Theorem 1.7 and Part (2) of Theorem 1.8,
we conclude the following variation on Part (2) of Theorem 1.7. The class σa•;b• is not rigid if
there exists an index 1 ≤ u < t such that ju = 1, 0 < α̃u = α̃u+1 − 1, and if bi = aj1+···+ju , then
bh−1 − bh = xh−1 − xh + 1 for every h > i.

6. Rigidity of Schubert classes

In this section, we prove Theorem 1.10. We begin by proving a variant of [C1, Lemma 4.1],
which says that if a Schubert variety Σa•;b• does not admit any non-trivial small deformations,
then the Schubert class σa•;b• is rigid.

Lemma 6.1. If Y represents a Schubert class σa•;b• in OG(k, n), then there exists a flat defor-
mation π : Y → B over a smooth curve B and a point p0 ∈ B such that π−1(p) is isomorphic to
Y for p0 6= p ∈ B and π−1(p0) is isomorphic to a Schubert variety Σa•;b•.

Proof. The Grassmannian OG(k, n) admits a Bruhat decomposition into affine cells such that
the Zariski closure of each of these cells is a Schubert variety [Bo, IV.14.12]. If Y is a subvariety of
OG(k, n) representing the Schubert class σa•;b• , then by the action of a one-parameter subgroup
ψ : C∗ → SO(n), Y can be projected onto the Schubert variety Σa•;b• in the decomposition.
One can see this as follows. Let U1 be the smallest dimensional affine stratum whose closure
contains Y . If the closure of U1 is equal to Y , then Y is already a Schubert variety and there is
nothing to prove. Otherwise, pick a point p in U1 not contained in Y . Since U1 is isomorphic to
affine space, we can project Y away from p. Projection from a point is given by a one-parameter
subgroup. As t → ∞, the flat limit of Y under the projection is contained in the boundary
of the cell U1. Since the class of Y is a Schubert cycle which is an indecomposable class, the
flat limit is irreducible and contained in the closure of a smaller dimensional cell U2. If the
closure of U2 is not equal to the projection of Y , we can repeat the process. By induction on
the dimension of the cells Ui, eventually the projection of Y is equal to the closure of one of the
cells. Since the process does not change the cohomology class of the variety, we conclude that
the projection of Y is equal to the Schubert variety with the same cohomology class. Finally,
by composing these projections, we obtain a one-parameter subgroup that projects Y onto the
Schubert variety with the same class.

Let Y∗ → C∗ be the family of varieties ψ(t)Y . The varieties ψ(t)Y are all isomorphic, hence
this family is flat over C∗. By the properness of the Hilbert scheme [H, Proposition III.9.8],
the flat limit exists over t = 0. Let ψ : Y → C be the induced family. Since the Schubert
class is indecomposable, the support of the flat limit has to be irreducible and supported on
the Schubert variety Σa•;b• . Both Y and the Schubert variety have the same cohomology class,
hence the central fiber Y0 is generically reduced. Since the Schubert variety is normal [Br], by
Hironaka’s Theorem [Hi], [Ko, Theorem 2], we conclude that the central fiber is reduced and
the limit is the Schubert variety. Therefore, we can let ψ : Y → C be the family whose existence
is claimed in the lemma. This concludes the proof. �

Lemma 6.2. Let σa•;b• be a Schubert class with s < k. Let Y be a variety representing the class

σa•;b• in OG(k, n). Let Z be the variety swept out by the projective linear spaces Pk−1 in Pn−1

parameterized by Y . Then Z is a quadric of dimension n− bk − 2.

Proof. The dimension and the degree of Z are determined by the cohomology class of Y . Let
i : OG(k, n)→ G(k, n) be the natural inclusion. Let Sl be a general Schubert variety in G(k, n)
parameterizing k-dimensional linear spaces that intersect a vector space of dimension l. Let [X]
denote the cohomology class of X. By definition, the projective linear spaces parameterized by
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a Schubert variety Σa•;b• are contained in PF⊥bk ∩Q which is a quadric of dimension n− bk − 2

in Pn−1. Hence, in the cohomology of G(k, n), [Y ]∪ [Sbk+1] = 0. We conclude that Z is disjoint

from a general linear space Pbk in Pn−1. It follows that the dimension of Z is at most n− bk− 2.
By semi-continuity, it is clear that the dimension is at least n− bk− 2. Hence, we conclude that
the dimension of Z is n− bk − 2.

The degree of Z can be similarly computed. Suppose a general linear space Λ ∼= Pbk+1

intersects Z in d points p1, . . . , pd. We may assume that no isotropic linear space contains two
of these points. Consider the locus of isotropic subspaces parameterized by Y that intersect Λ.
Then, by assumption, this locus has at least d irreducible components depending on the choice
of pi. On the other hand, in the cohomology of OG(k, n), [Sbk+2 ∩OG(k, n)] ∪ σa•;b• = 2σa′•,b′• ,
where a′1 = 1, a′i+1 = ai + 1 if ai ≤ bk and a′i+1 = ai if ai > bk and b′j = bj−1 for s < j ≤ k. To

see this observe that the linear space defining Sbk+2 intersects the quadric Qbkn−bk = F⊥bk ∩Q in
two points p and q. Any isotropic linear space in the intersection Sbk+2 ∩ Σa•;b• has to contain
one of the points p and q and satisfy the rank conditions imposed by Σa•;b• . If we specify one
of the points p or q, it is immediate to turn these conditions into Schubert conditions given by
(a′•, b

′
•). Let vp be the isotropic vector corresponding to p. An isotropic linear space containing

vp must have a′1 = 1 and must be contained in TpQ
bk
n−bk . The linear space TpQ

bk
n−bk contains Lai if

ai ≤ bk and intersects Lai for ai > bk and F⊥bj for j < k in codimension one linear spaces. Hence,

any isotropic linear space in the intersection Sbk+2 ∩ Σa•;b• must satisfy Schubert conditions
a′i+1 = ai + 1 if ai ≤ bk (with respect to the span of Lai and vp) and a′i+1 = ai if ai > bk (with

respect to the span of Lai ∩ TpQ
bk
n−bk and vp) and b′j = bj−1 (with respect to the span of vp and

F⊥bj−1
∩ TpQbkn−bk). The fact that any isotropic linear space satisfying these Schubert conditions

is contained in Sbk+2 ∩ Σa•;b• is a tautology. Since Schubert classes are indecomposable, we
conclude that the intersection of Y with Sbk+2 can have at most two components. Hence, d is
at most 2. Since by Lemma 6.1, Y degenerates to a Schubert variety, the degree of Z is at least
two. We conclude that the degree of Z is two. This concludes the proof of the lemma. �

The proof of Theorem 1.10 will be by induction. In view of Lemma 6.1, the next proposition
allows us to prove the rigidity of base cases.

Proposition 6.3. Let r ≥ 1 and let Q be a smooth quadric hypersurface of dimension at least
2. Then the cone over the Segre embedding of Pr ×Q does not admit any small deformations.

Proof. We will first show that the Segre embedding of Pr × Q is not a hyperplane section
of a projective variety other than a cone. By [L, Corollary 1(b)], it suffices to show that
H1(Pr × Q,TPr×Q(−1)) = 0, where TPr×Q denotes the tangent bundle of Pr × Q. Let p and
q denote the two projections p : Pr × Q → Pr and q : Pr × Q → Q. Then, by [H, II.8.Ex.3],
TPr×Q ∼= p∗TPr ⊕ q∗TQ, where TPr and TQ denote the tangent bundles of Pr and Q, respectively.
We conclude that

H1(Pr ×Q,TPr×Q(−1)) ∼= H1(Pr ×Q, (p∗TPr)(−1))⊕H1(Pr ×Q, (q∗TQ)(−1)).

By the Euler sequence, we have

0→ OPr×Q(−1,−1)→
n+1⊕
i=1

OPr×Q(0,−1)→ (p∗TPr)(−1)→ 0.

By the Kodaira Vanishing Theorem, H1(Pr×Q,OPr×Q(0,−1)) = H2(Pr×Q,OPr×Q(−1,−1)) =
0. Therefore, H1(Pr ×Q, (p∗TPr)(−1)) = 0.
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Similarly, let i : Q → Pt be the inclusion of Q in the projective space spanned by Q. Then
the standard exact sequence for the normal bundle yields the exact sequence

0→ (q∗TQ)(−1)→ (q∗(i∗TPt))(−1)→ OPr×Q(−1, 1)→ 0.

Using the Euler sequence for TPt and the Kodaira Vanishing Theorem, we conclude that H1(Pr×
Q, (q∗TQ)(−1)) = 0. Therefore, H1(Pr×Q,TPr×Q(−1)) = 0. Consequently, Pr×Q cannot occur
as the hyperplane section of a projective variety other than a cone.

To conclude the proof of the proposition, suppose that the cone over the Segre embedding
of Pr × Q admits a small deformation to a projective variety X. Then a hyperplane section
of X is a deformation of Pr × Q. An analogous but easier cohomology calculation shows that
H1(Pr×Q,TPr×Q) = 0. Therefore, a small deformation of Pr×Q is isomorphic to Pr×Q. Since
the Picard group of Pr × Q is discrete, the hyperplane section of X is the Segre embedding of
Pr ×Q. By the previous paragraph, we conclude that X itself must be the cone over the Segre
embedding of Pr × Q. This concludes the proof. Note that the proposition would be false if
r = 0 or if Q has dimension 1. �

Corollary 6.4. Let σa•;b• be a Schubert class in OG(k, n) such that s = k − 1 > 0, n > 2k + 3
and ak−1 = bk = k. Then σa•;b• is rigid.

Proof. In the sequence a•, suppose ai = i for 1 ≤ i < h and ai = i+ 1 for h ≤ i ≤ k − 1. First,
observe that in the minimal embedding of OG(k, n), the Schubert variety Σa•;b• is the cone

over the Segre embedding of Pk−h × Q0
n−2k. Every k-plane W parameterized by the Schubert

variety is required to intersect the isotropic plane Fak−1=k in a (k − 1)-dimensional subspace
W ′. The line consisting of k-dimensional subspaces containing W ′ and contained in the span
of W and Fk is contained in the Schubert variety. Hence, the Schubert variety is a cone with
vertex at the point corresponding to Fk. The intersection of the Schubert variety with a general
codimension one Schubert variety (defined with respect to a linear space Λn−k−1 of dimension
n − k − 1) parameterizes isotropic k planes that are spanned by a (k − 1)-dimensional linear
space W ′, which is contained in Fk and satisfies dim(W ′∩Fai) ≥ i, and by an isotropic vector in
F⊥k ∩Λn−k−1, which is disjoint from Fak . Hence, this intersection is isomorphic to Pk−h×Q0

n−2k.
Since the Schubert varieties are projectively normal [Br], in the minimal embedding of OG(k, n),
Σa•;b• is embedded as a cone over the Segre embedding of Pk−h ×Q0

n−2k.

Since k − 1 > 0 and n > 2k + 3, by Proposition 6.3, a small deformation of the cone over the
Segre embedding of Pk−h × Q0

n−2k is again a cone over the Segre embedding of Pk−h × Q0
n−2k.

By Lemma 6.1, we conclude that any variety Y representing the Schubert class σa•;b• has to

be a cone over Pk−h × Q0
n−2k. The vertex of the cone determines a k-dimensional isotropic

subspace Fk. By Theorem 1.4, a line in OG(k, n) parameterizes linear spaces that contain a
fixed (k−1)-dimensional isotropic space and are contained in a fixed (k+1)-dimensional isotropic
space. Since Y is a cone with vertex at the point corresponding to Fk, we conclude that every
linear space parameterized by Y must intersect Fk in a subspace of dimension at least k − 1.
Furthermore, the span of Fk with any linear space parameterized by Y must be isotropic. By
Lemma 6.2, the linear spaces sweep out a quadric of codimension k. Hence, every linear space
parameterized by Y must be contained in F⊥k . Finally, to conclude that Y is a Schubert variety,
notice that for W parameterized by Y , the map W 7→W ∩Fk defines a morphism to OG(k−1, n)
away from the cone point of Y . It is easy to see that this morphism is the projection from the
cone point of Y followed by the first projection on Pk−h × Q0

n−2k. Since by Theorem 1.4 the
Schubert class σa• is rigid in OG(k − 1, n), we conclude that Y must be defined by requiring
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W ⊂ F⊥k and dim(W ∩ Fai) ≥ i for 1 ≤ i ≤ k − 1 for a set of isotropic subspaces Fai . Hence, Y
is a Schubert variety. We conclude that σa•;b• is rigid. �

The next proposition gives some additional base cases.

Proposition 6.5. Let σa•;b• be a Schubert cycle in OG(k, n) such that s = k − 1, ak−1 = bk =
k − 1 and n > 2k + 1. Then σa•,b• is rigid.

Proof. Let i : OG(k, n) → G(k, n) be the natural inclusion. Then, the image of the Schubert
variety i(Σa•;b•) has cohomology class 2σ1,2,...,k−1,n−k. In the Plücker embedding of G(k, n),
i(Σa•;b•) is a smooth quadric R of dimension n − 2k. Since a deformation of a quadric of
dimension n−2k is again a quadric of the same dimension, by Lemma 6.1, we conclude that, for
any variety Y representing the class σa•;b• , i(Y ) is a quadric of dimension n−2k and cohomology
class 2σ1,2,...,k−1,n−k. By assumption, the dimension of the quadric is at least two. The next
lemma proves that the linear space spanned by such a quadric is contained in G(k, n). Since this
linear space necessarily has the form of k-planes containing a fixed (k − 1)-plane and contained
in an (n − k + 1)-dimensional linear space, we conclude that every linear space parameterized
by Y contains a fixed (k − 1)-dimensional linear space Λ. Since the Schubert variety consisting
of isotropic k-planes containing Λ has the same dimension as Y and contains Y , we conclude
that Y is equal to the Schubert variety. Therefore, σa•;b• is rigid. �

Lemma 6.6. Let R be a smooth quadric of dimension d ≥ 2 contained in the Plücker embedding
of G(k, n). Suppose that the cohomology class of R is 2σ1,2,...,k−1,k+d. Then the linear space
spanned by R is contained in G(k, n).

Proof. First, suppose that d, the dimension of R, is equal to 2. A smooth quadric surface has two
rulings by lines. A line in the Grassmannian G(k, n) consists of linear spaces that contain a fixed
(k − 1)-dimensional linear space contained in a fixed (k + 1)-dimensional linear space. Suppose
that two of the lines in one of the rulings on R are defined by the partial flags Uk−1 ⊂ Uk+1

and Wk−1 ⊂ Wk+1. A line in the opposite ruling determined by the flag Vk−1 ⊂ Vk+1 on R
has to intersect these two lines. Therefore, Uk+1 and Wk+1 must intersect in a linear space of
dimension at least (k − 1) containing Vk−1.

If dim(Uk+1∩Wk+1) = k−1, then every line in the other ruling must have Vk−1 as part of the
partial flag defining the line. Hence, every point of R is contained in the locus of k-planes that
contain Vk−1. The locus of k-planes that contain Vk−1 is a linear space in G(k, n) that contains
the span of R.

If Uk+1 = Wk+1, then every k-plane parameterized by the quadric R is contained in Uk+1.
Therefore, R is contained in the linear Schubert variety parameterizing k-dimensional subspaces
of Uk+1. In this case, the cohomology class of R cannot be 2σ1,2,...,k−1,k+d unless d = 1.

Therefore, we may assume that dim(Uk+1 ∩Wk+1) = k and that the span of Uk+1 and Wk+1

has dimension k+ 2. We may also assume that the dimension of intersection of Uk−1 and Wk−1

is at least k − 2. Otherwise, the flag Vk+1 defining a line of the opposite ruling would have
to be equal to the span of Uk−1 and Wk−1. Hence, R would be contained in the linear space
parameterizing k-planes contained in the span of Uk−1 and Wk−1. Consequently, R is contained
in the embedding of G(2, 4) in G(k, Span(Uk+1,Wk+1)) given by Λ 7→ Span(Λ, Uk−1 ∩Wk−1).
Since G(2, 4) is a quadric fourfold in P5 under the Plücker embedding, the quadric surface R has
to be a codimension two linear section of G(2, 4). The class of this surface in G(2, 4) is σ2,3 +σ1,4

contrary to our assumptions. We conclude that we must have dim(Uk+1 ∩Wk+1) = k − 1. In
particular, R is contained in the linear space parameterizing k-planes that contain a fixed (k−1)-
dimensional linear space.
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Now suppose d > 2. If the linear space spanned by R is not contained in G(k, n), we can find
a P3 not contained in G(k, n) such that R∩P3 is a quadric surface whose span is not contained in

G(k, n). Since 2σ1,2,...,k−1,k+d+1 · σd−2
n−k,n−k+2,...,n = 2σ1,2,...,k−1,k+2 [F, Chapter 14], this quadric

surface has class 2σ1,2,...,k−1,k+2. We thus contradict the discussion of the case d = 2. This
concludes the proof of the lemma. �

We now build on Corollary 6.4 and Proposition 6.5 to prove the rigidity of other classes by
induction.

Proposition 6.7. Suppose that σa•;b• is a Schubert class such that as = bk = s and bj = s+k−j.
If n > 2k + 1, then σa•;b• is rigid.

Proof. We will prove this proposition by induction on k − s. If k = s, then σa• is the class of
a point, which is clearly multi rigid (in particular, rigid). If k = s + 1, then the proposition
reduces to Proposition 6.5. Suppose the proposition holds for k − s < γ. Let Y be a variety
representing the cohomology class σa•;b• . For the rest of the argument, it is more convenient to
use projective language. By Lemma 6.2, the projective linear spaces parameterized by Y sweep
out a quadric QY of dimension n− s− 2.

Fix a general point p ∈ QY . Consider the linear spaces parameterized by Y that contain p.
The cohomology class of this locus is σa′•;b′• , where a′s+1 = bk = s + 1 and b′j = s + 1 + k − j.
By induction on k − s, this locus is a Schubert variety parameterizing isotropic k-dimensional
subspaces that contain a fixed (s+1)-dimensional isotropic space. In particular, the linear spaces
parameterized by Y and that contain p, sweep out a quadric of dimension n− s− 3 and corank
s + 1 contained in QY . It follows that the corank of QY is at least s. Since the codimension
of QY in the quadric defined by the quadratic form Q is s, the corank of QY is at most s. We
conclude that the corank of QY is exactly s.

For a general point p of QY , the linear spaces parameterized by Y that contain p also contain
the singular locus of QY . By the upper semi-continuity of the dimension of intersection of the
linear spaces parameterized by Y with the singular locus of QY , we conclude that every k-plane
parameterized by Y contains the singular locus of QY . Since the locus of k-planes contained in
QY and containing the singular locus of QY is a Schubert variety with class σa•;b• , we conclude
that Y is a Schubert variety. Hence, σa•;b• is rigid. �

Lemma 6.8. Let σa;b• be a Schubert cycle such that s = 1, a• = a1 = a, bi = k−i if k−i < a−1,
and bi = k − i+ 1 if k − i ≥ a− 1. If n > 2k + a, then σa;b• is rigid.

Proof. We prove the lemma by induction on a. If a = 1, then this lemma reduces to Proposition
6.7. Suppose a = 2. Let Y be a variety representing σa•;b• . Fix a general (n − 1)-dimensional
linear space Λ. The locus of k-dimensional linear spaces parameterized by Y that are contained
in Λ has cohomology class σ1;k−1,k−2,...,2,1 in OG(k, n − 1). By Proposition 6.7, this locus is
a Schubert variety. Hence, it parameterizes k-dimensional isotropic linear spaces that contain
a fixed vector v and are contained in the orthogonal complement of v in Q ∩ Λ. Let Λ′ be a
general codimension one linear space containing v. The linear spaces parameterized by Y that
are contained in Λ′ similarly must all contain some vector v′ and be contained in the orthogonal
complement of v′ in Q∩Λ′. By considering linear spaces parameterized by Y that are contained
in Λ ∩ Λ′, we conclude that v = v′. In particular, every k-dimensional isotropic linear space
containing v must be contained in Y . Now take a general pencil of codimension one linear spaces
Λt. This yields a one parameter family of vectors vt such that every k-dimensional isotropic linear
space containing vt is contained in Y . The degree of the curve on QY swept out by the points
corresponding to the vectors vt is determined by the cohomology class σa•;b• . In particular, this
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curve must be a line in QY . (Note that the class of the locus of isotropic subspaces that intersect
a curve of degree d on the quadric Q is dσ2;k−1,...,2,0 as can be easily seen by intersecting with
the Poincaré dual Schubert class.) We conclude that Y contains every isotropic linear space
that intersects a codimension two isotropic subspace. Hence, Y is a Schubert variety.

Suppose by induction on a that any variety representing σa;b• is a Schubert variety for a < j.
Let a = j. Let Y represent σa;b• . Let Λ be a general codimension one linear space. Then
the locus of k-dimensional isotropic linear spaces parameterized by Y that are contained in Λ
is a Schubert variety of k-dimensional isotropic linear spaces that intersect an isotropic linear
space Γ of dimension a− 1. By taking another general codimension one linear space containing
Γ, we conclude that any isotropic linear space intersecting Γ is contained in Y . Repeating the
construction for another general linear space Λ′, we obtain another linear space Γ′ of dimension
a − 1 such that every isotropic linear space intersecting Γ′ is contained in Y . By induction, Γ
and Γ′ have to intersect in a linear space of dimension a− 2 and have to span an isotropic linear
space Ψ of dimension a. By the same argument, it is clear that every isotropic linear space that
intersects Ψ is contained in Y . This proves that Y is a Schubert variety. Hence, σa;b• is rigid.
This concludes the induction and the proof of the proposition. �

Proposition 6.9. Let σa•;b• be a Schubert cycle such that s = k− 1, bk = ak−1, n > 2ak−1 + 3.

Let αi = ai − i and group the equal terms to express the sequence α• as (α̃i11 , . . . , α̃
it
t ). Assume

that there does not exist an index 1 ≤ u < t such that 0 < α̃u = α̃u+1 − 1. Then σa•;b• is rigid.

Proof. We will prove the proposition by induction on ak−1. If ak−1 = k−1, then the proposition
reduces to Proposition 6.5. If ak−1 = k, then the proposition reduces to Corollary 6.4. Suppose
that the proposition is true if ak−1 < γ. Let Y be a variety representing the class σa•;b• . Let h
be the index such that ai = i for i < h and ai > i for i ≥ h. Take a general Schubert variety S
in G(k, n) with class σn−k,...,n−h−1,n−h,n−h+2,...,n−1,n. By the argument in the proof of Lemma
6.2, the projective linear spaces parameterized by Y ∩S sweep out a quadric QY ∩S of dimension
n− bk − 3. Even when Y is a Schubert variety, the corank of this quadric is bk − 1. Hence, by
semi-continuity the corank for Y is at most bk − 1. Therefore, there exists a smooth quadric of
dimension n−4 containing Y ∩S. Hence, Y ∩S is a subvariety of OG(k, n−2). The cohomology
class of Y ∩ S in OG(k, n − 2) is σa′•;b′• , where a′i = ai if i < h and a′i = ai − 1 if i > h and
b′k = bk − 1.

By induction on ak−1, Y ∩ S is a Schubert variety in OG(k, n − 2). When a′k−1 = k, the
variety is a cone. Inductively, we conclude that Y ∩ S is singular along a Schubert variety with
class σa′′• , where a′′• is the sequence of length k obtained from a′• by adding the largest integer
less than a′k−1 not contained in the sequence a′•. It follows that Y has to be singular along a
variety with class σa∗• , where a∗• is the sequence of length k obtained from a• by adding the
largest integer less than ak−1 not contained in a•. By [C1, Proposition 3.1], we conclude that
there exists a distinguished isotropic linear space Λ of dimension ak such that Y is singular along
every k-dimensional linear space parameterized by Y that is contained in Λ.

Now by induction it is easy to see that Y is a Schubert variety. First, by induction, it is
clear that the quadric QY swept out by the linear spaces parameterized by Y is singular along
PΛ. Let W be a linear space such that [W ] ∈ Y and dim(W ∩ Λ) = k − 1. Then, inductively
every k-dimensional linear space containing W ∩ Λ is also in Y . Let U be the open set in Y
parameterizing k-dimensional linear spaces that intersect Λ in a subspace of dimension k − 1.
Then the map W 7→ W ∩ Λ gives a morphism from U to a variety in OG(k − 1, n) with class
σa• . By Theorem 1.4, this Schubert class is rigid; hence, the variety is a Schubert variety.
We conclude that there exist an isotropic partial flag such that the k-dimensional linear spaces
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parameterized by Y satisfy dim(W ∩Fai) ≥ i. We conclude that Y is a Schubert variety. Hence,
σa•;b• is rigid. �

Corollary 6.10. Let σa•;b• be a Schubert cycle such that s ≥ 1, bj = as + k − j, and n >
2as + 2k − 2s + 1. Let αi = ai − i and group the equal terms to express the sequence α• as
(α̃i11 , . . . , α̃

it
t ). Assume that there does not exist an index 1 ≤ u < t such that 0 < α̃u = α̃u+1−1.

Then σa•;b• is rigid.

Proof. The proof is almost identical to the proof of Proposition 6.7. We induct on k − s. If
k − s = 1, then the proposition reduces to Proposition 6.9. Suppose the corollary is true by
induction for k− s < γ. Let Y be a variety representing the class σa•;b• . Let QY be the quadric
swept out by the projective (k− 1)-planes parameterized by Y . Let p be a general point of QY .
The class of the locus of linear spaces parameterized by Y that contain p has cohomology class
a′1 = 1, a′i+1 = ai + 1 for 1 ≤ i ≤ s and b′j = bj−1 for s + 1 < j ≤ k. By induction on k − s,
this is a Schubert variety. By the argument in Proposition 6.7, QY has corank as. By Theorem
1.4 and induction, it is easy to see that there is a partial flag Fa1 ⊂ · · · ⊂ Fas , where Fas is the
singular locus of QY , such that Y contains the locus parameterizing k-dimensional linear spaces
W that are contained in QY and satisfy dim(W ∩ Fai) = i. We conclude that Y is a Schubert
variety and σa•;b• is rigid. �

We are now ready to prove Theorem 1.10.

Proof of Theorem 1.10. Under the assumptions of the theorem, σa•;b• is rigid by Corollary 6.10
or Lemma 6.8. This concludes the proof. �

We have already characterized all the rigid Schubert classes in OG(1, n) in Example 1.3. The
next theorem characterizes all the rigid Schubert classes in OG(2, n) when n > 8.

Theorem 6.11. A Schubert class σa•;b• in OG(2, n) with n > 8 is rigid if and only if one of
the following holds:

(1) σa•;b• = σa1,a2 and either a1 = 1 or a2 6= a1 + 2.
(2) σa•;b• = σb• = σ1,0.
(3) σa•;b• = σa;a and n > 2a+ 3.
(4) σa•;b• = σa;0.
(5) If n = 2k, then σa•;b• = σb• = σk−1,0 or σa;b = σa;k−1 with a 6= k − 2.

Proof. First, the Schubert class σa•;b• may be of quadric type. By Theorem 1.5, the class is not
rigid unless it is the identity element of the cohomology ring. In that case, the class is rigid
since it can only be represented by the orthogonal Grassmannian itself. Hence, if the class is of
quadric type in OG(2, n), then it is rigid if and only if it has the form σa•;b• = σb• = σ1,0.

Second, the Schubert class may be defined with respect to isotropic linear spaces alone. In
that case, by Theorem 1.4 and Remark 4.2, the Schubert class σa1,a2 is rigid if and only if either
a1 = 1 or a2 6= a1 + 2. If n = 2k, there is an involution of the quadric that interchanges the two
connected components of the space of maximal isotropic linear spaces. Hence, we do not change
the rigidity of a Schubert class if we change the connected component of a maximal isotropic
space used in the definition of the Schubert variety. Consequently, when n = 2k, by Theorem
1.4 and Remark 4.2, σa;k−1 is rigid if and only if a 6= k − 2.

Finally, we can assume that the Schubert class is defined with respect to one isotropic linear
space and one quadric. By Theorem 1.7 (1), σa;b is not rigid unless b = 0 or b = a. Furthermore,
by Theorem 1.7 (3), σa;a is not rigid if n = 2a + 3. Conversely, by Proposition 6.9, the classes
σa;a are rigid if n > 2a + 3. Similarly, by Lemma 6.8, the classes σa;0 are rigid, provided that
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n > 4 + a. The last condition is automatic if n > 8. If n = 2k is even, by the same lemma, the
class σb• = σk−1,0 is rigid. This concludes the proof of the theorem. �
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Math., Birkhäuser, Basel, 2005, pp. 33–85.
[B] R. Bryant, Rigidity and quasi-rigidity of extremal cycles in Hermitian symmetric spaces. Princeton University Press

Ann. Math. Studies AM–153, 2005.

[C1] I. Coskun, Rigid and non-smoothable Schubert classes, J. Differential Geom., 87 no. 3 (2011), 493–514.
[C2] I. Coskun, Restriction varieties and geometric branching rules, Adv. Math., 228 no. 4 (2011), 2441–2502.

[F] W. Fulton, Intersection Theory, Springer-Verlag, Berlin Heidelberg, 1998.

[H] R. Hartshorne, Algebraic geometry. Springer, 1977.
[HRT] R. Hartshorne, E. Rees, and E. Thomas, Nonsmoothing of algebraic cycles on Grassmann varieties. Bull. Amer.

Math. Soc., 80 no.5 (1974), 847–851.

[Hi] H. Hironaka, A note on algebraic geometry over ground rings. The invariance of Hilbert characteristic functions
under the specialization process. Illinois J. Math., 2 (1958), 355–366.

[Ho1] J. Hong, Rigidity of smooth Schubert varieties in Hermitian symmetric spaces. Trans. Amer. Math. Soc., 359 (2007),
2361–2381.

[Ho2] J. Hong, Rigidity of singular Schubert varieties in Gr(m,n). J. Differential Geom., 71 no. 1 (2005), 1–22.

[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry. Wiley Interscience, 1978.
[K1] S. Kleiman, Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Inst. Hautes
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