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Abstract

Jump diffusion processes are widely used to model asset prices over time, mainly
for their ability to capture complex discontinuous behavior, but inference on the
model parameters remains a challenge. Here our goal is Bayesian inference on
the volatility of the diffusion part of the process based on discrete samples. Since
volatility is our only interest, an unspecified model for the jump part of the process
is desirable, but this causes serious problems for the familiar Bayesian approach.
To avoid the difficulties caused by modeling the jumps, we consider a purposely
misspecified model that ignores the jump part entirely. We work out precisely the
asymptotic behavior of the posterior under the misspecified model, propose some
simple modifications to correct for the effects of misspecification, and demonstrate
that the modified pseudo-Bayesian inference on the volatility is efficient in the sense
that its asymptotic variance equals the no-jumps model Cramér–Rao bound.

Keywords and phrases: Bernstein–von Mises theorem; Brownian motion; credi-
ble interval; Gibbs posterior; uncertainty quantification.

1 Introduction

Jump diffusion models have gained considerable attention in the last two decades, espe-
cially in finance and economics, where they are used to model asset prices as a function of
time. An advantage of these models, over the classical Black–Scholes models (e.g. Musiela
and Rutkowski 2005), based solely on a continuous Brownian motion, is their ability to
accommodate the rapid—seemingly discontinuous—changes in asset prices often seen in
applications. In fact, several authors have concluded that neither a purely-continuous nor
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purely-jump model is sufficient for real applications (e.g., Aı̈t-Sahalia and Jacod 2009,
2010; Barndorff-Nielsen and Shepard 2006; Podolskij 2006). More specifically, by compar-
ing the observed behavior of at-the-money and out-of-the-money call option prices near
expiration with their analogous theoretical behavior, Carr and Wu (2003) and Medvedev
and Scaillet (2007) argued that both continuous and jump components are necessary to
explain the implied volatility behavior of S&P500 index options. In this paper we con-
sider a continuous-time process X = (Xt : t ∈ [0, T ]) over a fixed and finite time horizon
[0, T ] that can be decomposed as

Xt = βt+ θ1/2Wt + Jt, t ∈ [0, T ], (1)

where βt + θ1/2Wt is a continuous diffusion—with β the drift coefficient, θ the volatility
coefficient, and (Wt : t ∈ [0, T ]) a standard Brownian motion—and J = (Jt : t ∈ [0, T ])
is a pure jump process with finite activity and independent of W . We emphasize here
that we only assume that, with probability 1, the jump process J has a finite number of
jumps in [0, T ] and that each jump is finite. For example, the results herein cover the case
where J is a compound Poisson process. The quantity of interest here is the volatility
coefficient θ, a fundamentally important measure of uncertainty or risk (Musiela and
Rutkowski 2005)). Our goal is to construct a Bayesian posterior distribution or, more
generally, a data-dependent measure, Πn on R+ := (0,∞) that can be used to provide
valid uncertainty quantification about the volatility coefficient.

If the entire process X were observable, then we could immediately identify the jumps
and, by subtraction, this could be converted to a standard problem. However, here, as is
typically the case in practice, the process X is not fully observable; in particular, we can
only observe X at n fixed times 0 < t1 < t2 < · · · < tn < T . This is the context consid-
ered in, e.g., Aı̈t-Sahalia and Jacod (2009) and Figueroa-López (2009). A consequence of
observing the process only at discrete times is that the continuous and jump parts cannot
be separated, so we are forced to deal with the jump part of the process. Bayesian un-
certainty quantification is achieved by modeling all unknowns and using Bayes’s theorem
to get a posterior distribution for inference on θ. Unfortunately, the need to model the
jump portion of the process causes a number of difficulties: in particular, for sufficiently
flexible models for J , the likelihood function is analytically intractable; specifying priors
and computing the posterior for the distribution of J , perhaps using ABC methods (e.g.,
Marin et al. 2012), may be non-trivial and expensive; and a misspecified model for J
can bias the posterior inference on θ. Since the distribution of J in (1) is a nuisance
parameter, it is desirable to have an alternative “Bayesian-like” approach that gives a
posterior distribution for the volatility while, at the same time, avoids those shortcomings
of a proper Bayesian approach. This is our goal here.

Towards this, we consider a purposely misspecified model that completely ignores the
jumps, basically treating the observations as if they arise from a simple diffusion model.
This misspecified model is highly regular and easy to compute, so if this is not heavily
influenced by misspecification, then perhaps it would suffice for valid uncertainty quan-
tification on the volatility coefficient θ. A special case of our Theorem 1 below says that
the corresponding pseudo-Bayesian posterior is asymptotically normal but the misspec-
ification has some undesirable effects, namely, the center is off-target and the spread is
too large. To correct for the effects of misspecification, we consider two adjustments: a
suitable scaling of the log-likelihood to correct the spread and a location shift. Both of
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these adjustments rely on us having a suitable estimator of the quadratic variation of the
jump process J . We then show, in Theorem 2, that the corresponding modified pseudo-
Bayesian posterior is asymptotically normal, centered around a consistent estimator of
the true volatility, with variance equal to the Cramér–Rao lower bound for optimal/ideal
case when there are no jumps, i.e., the model is not misspecified. The particular modifica-
tion is easy to implement and we present some simulation results to illustrate the validity
of the corresponding pseudo-Bayesian posterior credible intervals in finite samples.

2 A misspecified model

Assume that we observe the continuous-time process (Xt) at n distinct time points t1 <
· · · < tn, i.e., our observations are Xt1 , . . . , Xtn ; for notational convenience later on, set
t0 = 0 and X0 ≡ 0. For notational simplicity, we will assume that the time points are
equally spaced, so that each time difference ti − ti−1 equals ∆n = Tn−1; the case of
non-equally spaced sampling can be handled similarly. To avoid dealing directly with the
jump component of the model (1), we consider a purposely misspecified model that ignores
both the drift and the jump part, i.e., it assumes that the differences Di = Xti −Xti−1

,
i = 1, . . . , n, are iid N(0, θ∆n) for some θ > 0. This misspecified model is easy to work
with and has no nuisance parameters so, if it—or a simple modification thereof—also
provides valid inference on the volatility, then it ought to be useful. The likelihood
function for this misspecified model, up to proportionality constants, is given by

Ln(θ) = θ−n/2 exp
{
− 1

2∆nθ

n∑
i=1

D2
i

}
= θ−n/2 exp

{
−n

2

θ̂n
θ

}
, (2)

where

θ̂n = (n∆n)−1

n∑
i=1

D2
i = T−1

n∑
i=1

D2
i ,

is the maximum likelihood estimator. Just like in the familiar Bayes approach, we intro-
duce a prior distribution Π for θ, with density function π. Here we consider a generaliza-
tion of the Bayesian setup by define the pseudo-posterior distribution as

Πn(A) =

∫
A
Ln(θ)1/κnπ(θ) dθ∫
Ln(θ)1/κnπ(θ) dθ

, A ⊆ R+, (3)

where κn is a suitable (possibly stochastic) sequence to be specified. The distribution Πn

in (3) is sometimes referred to as a “Gibbs posterior” (e.g., Bissiri et al. 2016; Grünwald
and van Ommen 2016; Jiang and Tanner 2008; Syring and Martin 2015; Zhang 2006a,b)
and κn is a “temperature” parameter; the case κn ≡ 1 corresponds to the usual Bayes
posterior. Unlike in the well-specified Bayesian setting, where posterior consistency is
typical, our model being misspecified means that we cannot expect Πn to converge to a
point mass at the true volatility coefficient. Therefore, some correction will be needed
to point the pseudo-posterior towards the true volatility coefficient, but first we need to
understand how Πn in (3) behaves without any intervention on our part.

A fundamental result in Bayesian asymptotics is the Bernstein–von Mises theorem,
which states that, under certain regularity conditions, a suitably centered and scaled
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version of the posterior will resemble a normal distribution, in the sense that the total
variation distance between that normalized posterior and the normal distribution con-
verges to zero in probability. This classical version is typically used in the case of a
well-specified model, but recently there has been work on a version of the Bernstein–von
Mises theorem for misspecified models. In particular, Kleijn and van der Vaart (2012), in
their Theorem 2.1, give a Bernstein–von Mises theorem when the model is misspecified.
Our result that follows is based on their approach.

Before stating the result, we need to introduce some notation. Let P? denote the
distribution of the differences (D1, . . . , Dn), with Di = Xti − Xti−1

, under the jump
diffusion model, and P?J the corresponding conditional distribution, given the jump part
J of the process (1). Also, let β? and θ? denote the true drift and volatility coefficients,
and define the expectation, conditional expectation, variance, and conditional variance
as E?, E?J , V?, and V?J , respectively. We consider a “high-frequency” scenario (e.g., Aı̈t-
Sahalia and Jacod 2014), so n is large and it is safe to assume that, with probability 1,
the time windows [ti−1, ti) contain at most one jump. Therefore, for almost all J , under
P?J , we have that (D1, . . . , Dn) are independent, Di ∼ N(β?∆n + µi, θ

?∆n), where

µi = Jti − Jti−1
, i = 1, . . . , n. (4)

For a given J , let 〈J〉 =
∑n

i=1 µ
2
i denote the quadratic variation of the jump process J ,

and let {J} denote the set of indices i such that the window [ti−1, ti) contains a jump, i.e.,
µi 6= 0 if and only if i ∈ {J}. We assume that the process (1) has finite jump activity, so
|{J}| ∨ 〈J〉 <∞ with P?-probability 1. We also assume that κn is a stochastic sequence
and that there exists κ†, possibly depending on J , such that κn → κ† in P?J -probability
for the given J . Finally, the point around which the pseudo-posterior will concentrate is

θ† = θ? + T−1〈J〉.

Note that both θ† and κ† are constants with respect to the conditional distribution P?J .

Theorem 1. Consider the pseudo-Bayesian posterior Πn in (3) based on a prior Π and
the misspecified model with likelihood in (2). If the prior density π is continuous and pos-
itive in a neighborhood of θ†, then, for P?-almost all J , the posterior Πn is asymptotically
normal in the sense that

d
(
Πn, N(θ̂n, 2κ

†θ†2n−1)
)
→ 0 in P?J-probability as n→∞,

where d is the total variation distance. The above conclusion also holds unconditionally,
i.e., the above convergence is also in P?-probability.

Proof. See the Appendix.

The theorem asserts that, for the “high-frequency” setting where n is large, if the data-
generating process (1) has finite jump activity, then the pseudo-posterior will resemble
a normal distribution centered around θ̂n. Since θ̂n converges to θ† (see the proof of the
theorem), it follows that the posterior will resemble a normal distribution centered at
θ†. This is different from the usual Bernstein–von Mises theorems found in the Bayesian
literature in that the point around which the posterior concentrates depends on both
parameters and a hidden portion of the data, namely, 〈J〉.
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There are two seemingly undesirable consequences of misspecification. The first, as
alluded to above, is that Πn is biased in the sense that the point around which Πn

concentrates is θ† instead of the true volatility coefficient θ?. The second is more subtle
and concerns the spread of Πn. Kleijn and van der Vaart (2012, Sec. 1) point out that the
asymptotic variance in their Bernstein–von Mises theorem may not agree with that for θ̂n
based on M-estimation theory (e.g., van der Vaart 1998, Ch. 5). Indeed, the maximum
likelihood estimator θ̂n for the misspecified model can be viewed as an M-estimator and
will, therefore, be asymptotically normal, with asymptotic variance given by the so-called
“sandwich formula” which, in this case, gives

V?J(θ̂n) =
2θ†2

n

{
1−

( 〈J〉
Tθ†

)2}
+O(n−2).

This follows from the calculations leading up to (12) in the Appendix. Up to order n−1,
this closely resembles the asymptotic variance in Theorem 1; in particular, if κ† were
equal to the term in braces above, then the two variance formulas agree. Note that the
genuine Bayes posterior has κ† = 1 and, therefore, will have asymptotic variance larger
than that in the above display. Consequently, the pseudo-Bayesian posterior credible
intervals would be too large, making the inference inefficient. Section 3 below describes
how we can correct for these two undesirable consequences of misspecification.

3 Correcting for misspecification

As discussed above, there are two effects of the model misspecification on Πn, both
depending on the quadratic variation of the jump portion of the process. To deal with
these effects, we will need a suitable estimator of the quadratic variation 〈J〉. Intuitively,
those observed differences Di which are of relatively large magnitude are likely due to
jumps, so a reasonable estimator is

〈̂J〉n =
n∑
i=1

D2
i 1(|Di| > ηn), (5)

where ηn is a sequence that vanishes sufficiently slow, and 1(·) is the indicator function.
We claim that if ηn ∝ n−ω for some ω ∈ (0, 1

2
), then

E?J |〈̂J〉n − 〈J〉| = O(n−1/2), n→∞, (6)

for P?-almost all J . Results of this type for Lévy processes are available in the literature
(e.g., Aı̈t-Sahalia and Jacod 2014, Fact 3.7), but the proof of (6) given in the Appendix
under only the finite jump activity assumption is relatively simple. With a suitable
estimator in hand, now we are ready to address the effects of misspecification.

Towards constructing a modified pseudo-posterior for the volatility, we must consider
the following question: what is the “correct/optimal” asymptotic variance in the nor-
mal approximation? Of course, the best possible inference obtains if the model is not
misspecified, i.e., there are no jumps; this is equivalent to the case where the sample
path of the process is fully observed since, in that case, the jumps are visible and can be
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removed. An easy calculations reveals that, in this ideal case, the asymptotic variance is
the Cramér–Rao bound, 2θ?2n−1. This optimal variance obtains in Theorem 1 if

κ† =
(θ?
θ†

)2

=
(

1− 〈J〉
Tθ†

)2

.

This suggests we choose κn in (3) as

κn =
(

1− 〈̂J〉n
T θ̂n

)2

, (7)

so that, by (6), κn → κ† in P?J -probability for P?-almost all J . With this understanding,

we define a “modified” pseudo-Bayesian posterior Π̃n as the distribution of θ − T−1〈̂J〉n
when θ is distributed as Πn in (3), with κn as in (7). In other words, if πn is the density

function corresponding to Πn, then Π̃n has density function

π̃n(θ) = πn(θ + T−1〈̂J〉n), θ ∈ R+. (8)

Then we have the following Bernstein–von Mises theorem for Π̃n.

Theorem 2. Under the same setup as in Theorem 1, for P?-almost all J , the modified
pseudo-Bayesian posterior Π̃n, with κn as in (7), satisfies

d
(
Π̃n, N(θ̂n − T−1〈̂J〉n, 2θ

?2n−1)
)
→ 0 in P?J-probability as n→∞,

where d is the total variation distance. The above convergence is also in P?-probability.

Proof. Since the total variation distance is invariant to location shifts, we have that

d
(
Π̃n, N(θ̂n − T−1〈̂J〉n, 2θ

?2n−1)
)

= d
(
Πn, N(θ̂n, 2θ

?2n−1)
)
.

That the right-hand side converges to 0 in P?J -probability follows from Theorem 1 and the
particular choice of κn in (7). The P? convergence is proved just like in Theorem 1.

The first observation is that, since θ̂n − T−1〈̂J〉n is a consistent estimator of θ?, the
modified pseudo-posterior is concentrating around the true volatility coefficient, as de-
sired. Furthermore, by our choice of the sequence κn, the asymptotic variance agrees
with that achieved in the ideal case where there are no jumps present or, equivalently,
when the sample path of the process is fully observed. The remaining question is if the

posterior variance agrees with the variance of the center θ̂n − T−1〈̂J〉n under P?. Propo-
sition 1 in Aı̈t-Sahalia and Jacod (2010) reveals that, in the present setting, under P?J ,

the estimator θ̂n − T−1〈̂J〉n satisfies a central limit theorem, with asymptotic variance

2θ?2n−1. Therefore, the credible intervals coming from the modified posterior Π̃n will be
asymptotically valid under P?J , i.e., the coverage probability of the 100(1− α)% credible
intervals will converge to 1−α for P?-almost all J . It follows immediately from the dom-
inated convergence theorem that the coverage probability converges to 1−α under P? as
well. It turns out that the finite-sample performance depends on the choice of threshold
ηn in (5) and we address this in Section 4.
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4 Numerical results

An important question is how to choose the threshold ηn. The theory says that we need
ηn = mn−ω for some m > 0 and some ω ∈ (0, 1

2
) but, in finite samples, m and ω are not

independent parameters; that is, only the value of ηn matters, not the particular (m,ω).
This point is discussed at length in Aı̈t-Sahalia and Jacod (2014, Sec. 6.2.2), and they
suggest one reasonable strategy for choosing ηn. We consider here a simpler approach
based on outlier detection. That is, let Q denote the interquartile range of the observed
increment magnitudes |D1|, . . . , |Dn|; this value is likely to be small since almost all of the
increments correspond to the diffusion part of the process. Take ηn to be some value that
lower-bounds the set of all |Di|s that exceeds some cutoff, say, 5Q. We make no claims
that this approach is “optimal” in any sense, only that it is both simple and reasonable.
A thorough investigation of this and the Aı̈t-Sahalia and Jacod method for selecting the
threshold ηn is beyond the scope of this paper.

For illustration, consider the model (1) with drift β? = 1, volatility θ? = 10, and
compound Poisson process jumps with a rate of λ = 5 jumps per unit time and jumps
sampled from the discrete uniform distribution on {−τ, τ} with τ = 3. We simulate
n = 5000 equally spaced observations from this process. A plot of the observed sample
path on the interval [0, 1] is shown in Figure 1(a) with the jump times highlighted by
vertical lines. For the misspecified Bayes model, we consider a conjugate inverse gamma
prior with shape a = 1 and rate b = 1; the presence of the temperature parameter κn does
not affect conjugacy. We also fix ηn based on the interquartile range strategy described
above. Figure 1(b) shows the pseudo-posterior density function (8), the corresponding
95% credible interval for the volatility, and the density function of the normal approx-
imation in Theorem 2. The key observations are that the credible region contains the
true volatility in this case and that the modified pseudo-Bayes posterior and the normal
approximation are very similar.

To further investigate the finite-sample properties our proposed approach for inference
on the volatility, we consider a simulation study. Using the same model as above, but
varying the jump rate λ ∈ {4, 8, 16, 32}, the jump magnitude τ ∈ {1, 2, 4, 8}, and the
sample size n, we investigate the coverage probability of the modified pseudo-Bayesian
credible intervals, based on the choice of threshold mentioned above. Figure 2 displays the
empirical coverage probability, based on 5000 Monte Carlo simulations in each setting,
summarized over the jump rate and standard deviation, for several values of n. This plot
reveals that the choice of threshold based on the interquartile range performs reasonably
well in this setting, giving coverage probabilities very close to the nominal 95% level.

5 Concluding remarks

In this paper we considered the construction of a pseudo-Bayes posterior for inference
on the volatility in a complex jump diffusion model where the jump distribution is left
unspecified. Our strategy here was to misspecify the model on purpose, to avoid dealing
directly with a model for the jump portion of the process, and then to correct in some
other way for the effects of misspecification. Of course, this “misspecification on purpose”
strategy could be used in many other problems to provide valid uncertainty quantification
for the parameters of interest without having to specify a complete model for the possibly
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Figure 1: Plot of one sample path X (left) along with the corresponding density func-
tion for the modified pseudo-posterior (right); also shown in the right panel is the 95%
posterior credible interval (vertical lines), the normal approximation in Theorem 2, and
the true volatility coefficient (4).

very complex nuisance parameters, which is very attractive. Furthermore, when one has
reliable prior information about the interest parameter, it is straightforward to incorpo-
rate this into the proposed pseudo-Bayesian analysis compared to a fully non-Bayesian
approach, say, using M-estimation.

For this particular model, there are several extensions that one could consider. For
example, if the drift parameter was also of interest, then, instead of ignoring β as we
did here, it would be relatively straightforward to construct the same modified Bayesian
posterior for the pair (β, θ). More interesting is the case where the volatility parameter
is not a scalar constant but, instead, a function θt. Certain functionals of θt, in particu-
lar, the average volatility T−1

∫ T
0
θt dt, can be inferred directly using virtually the same

techniques as presented here, but inference on the function itself would require more.
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A Proofs

A.1 Proof of Theorem 1

Without loss of generality, we will assume in the proof that T = 1 and ∆n = n−1. To
prove the Bernstein–von Mises theorem, follow the approach described in Theorem 2.1
of Kleijn and van der Vaart (2012). Our first objective is to show that

E?J
[
Πn({θ : |θ − θ†| > Mnn

−1/2})
]
→ 0, n→∞,

for any sequence of constants Mn → ∞. To establish this, we need only to study the
posterior mean and variance. That is, if EΠn denotes expectation with respect to the
pseudo-posterior, then, by Markov’s inequality, we have

Πn({θ : |θ − θ†| > Mnn
−1/2}) ≤ nM−2

n EΠn(θ − θ†)2. (9)

To show that the expectation of the left-hand side in the above display vanishes, it suffices
to show that

E?J{EΠn(θ − θ†)2} = O(n−1). (10)

Towards this, we will use the Laplace approximation which says that, for suitable func-
tions g, the posterior mean of g(θ) is

g(θ̂n){1 +O(n−1)}, n→∞.

Therefore, in our case, if we apply the above to g(θ) = (θ − θ†)2, then we have

EΠn(θ − θ†)2 = (θ̂ − θ†)2{1 +O(n−1)}.

Since the log-likelihood function for our misspecified model has a unique maximum θ̂n in
the interior of the θ-space and satisfies (logLn)′′(θ̂n) < 0, the big-oh term above is uniform
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in observations, i.e., the O(n−1) term in the above display is a function of (D1, . . . , Dn)
that can be uniformly bounded by a constant times n−1 and, in particular, the scaling
by κ−1

n does not affect this conclusion. Therefore, to get (10), it suffices to show that

E?J(θ̂n − θ†)2 = O(n−1) (11)

Towards showing (11), we recall that θ̂n =
∑n

i=1D
2
i where, under P?J , (D1, . . . , Dn) are

independent with
Di ∼ N(β?∆n + µi, θ

?∆), i = 1, . . . , n,

and µi are defined in (4). It follows that θ̂n has the same distribution as θ?∆n times a
non-central chi-square random variable, Y , with n degrees of freedom and non-centrality
parameter λ = (θ?∆n)−1

∑n
i=1(β?∆n + µi)

2. In particular,

E(Y ) = n+ λ and V(Y ) = 2(n+ 2λ).

If we let V?J denote variance with respect to P?J , then we have that

E?J(θ̂n − θ†)2 = V?J(θ̂n) + {E?J(θ̂n)− θ†}2

= (θ?∆n)2V(Y ) + {(θ?∆n)E(Y )− θ†}2.

Plugging in the formulas for the mean and variance of Y and simplifying, gives

E?J(θ̂n − θ†)2 = 2θ?θ†n−1 +O(n−2). (12)

This is clearly O(n−1), so we have established (11). Note that this derivation depends
on J only through |{J}| and 〈J〉. Since (11) implies (10), we have proved the claimed
pseudo-posterior concentration rate result.

Next, we need to demonstrate that the model is suitably regular. More specifically,
Theorem 2.1 in Kleijn and van der Vaart (2012) require that the model satisfies a certain
local asymptotic normality property, i.e., the log-likelihood ratio has a quadratic approx-
imation locally around the specified θ†. Since the misspecified model is so nice, it is a
straightforward exercise to show that∣∣∣ 1

κn
log

Ln(θ† + n−1/2h)

Ln(θ†)
− Vθ† Zn(θ†)h+ 1

2
Vθ† h

2
∣∣∣ = oP?

J
(1),

where Vθ† = (2κ†θ†2)−1 and Zn(θ†) = n1/2(θ̂n−θ†). The above display holds uniformly on
compact subsets of h, and it follows from (11) that Zn(θ†) is bounded in P?J -probability.
Therefore, the assertion in Theorem 1 follows from Kleijn and van der Vaart’s.

The extension of these results to the unconditional distribution, P?, is also straight-
forward. Based on the finite jump activity assumption, all that we demonstrated above
holds with P?-probability 1. In particular, we have that, for any ε > 0,

P?J
{
d
(
Πn, N(θ̂n, 2κ

†θ†2n−1) > ε
}
→ 0, for P?-almost all J.

Since this sequence is bounded and converges almost surely, it follows from the dominated
convergence theorem that

P?
{
d
(
Πn, N(θ̂n, 2κ

†θ†2n−1) > ε
}

= E?
[
P?J
{
d
(
Πn, N(θ̂n, 2κ

†θ†2n−1) > ε
}]
→ 0,

i.e., d
(
Πn, N(θ̂n, 2κ

†θ†2n−1)→ 0 in P?-probability.
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A.2 Proof of the claim in Equation (6)

For P?-almost all J , we have that (D1, . . . , Dn) are independent under P?J with

Di = µi + Zi ∼ N(β?∆n + µi, θ
?∆n), i = 1, . . . , n

where µi are given in (4) and µi 6= 0 only for those indices i ∈ {J}. To prove the claim in
Equation (6), we split the indices to those that contain a jump (in {J}) and those that
do not (in {J}c). Then we get

〈̂J〉n − 〈J〉 =
n∑
i=1

D2
i 1(|Di| > ηn)− 〈J〉

=
∑
i 6∈{J}

Z2
i 1(|Zi| > ηn) +

∑
i∈{J}

Z2
i 1(|Zi + Ji| > ηn)

+ 2
∑
i∈{J}

µiZi 1(|Zi + µi| > ηn) +
∑
i∈{J}

µ2
i 1(|Zi + µi| ≤ ηn).

Take absolute value of both sides, apply the triangle inequality, and then take expectation.
This yields the inequality

E?J |〈̂J〉n − 〈J〉| ≤
∑
i 6∈{J}

E?J{Z2
i 1(|Zi| > ηn)}+

∑
i∈{J}

E?J{Z2
i 1(|Zi + µi| > ηn)}

+ 2
∑
i∈{J}

E?J{|µiZi| 1(|Zi + µi| > ηn)}+
∑
i∈{J}

E?J{µ2
i 1(|Zi + µi| ≤ ηn)}.

We will proceed by showing, one by one, that each of the four terms in the upper bound
above is O(n−1/2). First, note that

Zi ∼ N(β?∆n, θ
?∆n), i = 1, . . . , n,

are iid and hence its fourth moment is bounded by a constant independent of n. Then
we have, by the Cauchy–Schwartz inequality∑

i 6∈{J}

E?J{Z2
i 1(|Zi| > ηn)} . (E?J |Z1|4)1/2

∑
i 6∈{J}

(P(|Zi| > ηn))1/2

. |{J}c|P(|Zi| > ηn)1/2.

It is clear that |{J}c| is of order n. So we only need to find a good bound for the
tail probability. Assume, for the moment, that β? > 0. Using the usual normal tail
probability bounds, we get

P(|Zi| > ηn) .
∆

1/2
n

ηn − β?∆n

e−(ηn−β?∆n)2/∆n .
∆

1/2
n

ηn
e−η

2
n/∆n .

So, if ηn ∝ n−ω, for ω ∈ (0, 1
2
), then the upper bound for the above tail probability is

o(n−k) for any positive integer k. Hence it follows easily∑
i 6∈{J}

E?J{Z2
i 1(|Zi| > ηn)} = o(n−1/2);

11



the same conclusion can be reached if β? < 0. Next,∑
i∈{J}

E?J{Z2
i 1(|Zi + µi| > ηn)} ≤ |{J}|{θ?∆n + (β?∆n)2} = O(n−1)

and, similarly, using Cauchy–Schwartz,∑
i∈{J}

E?J{|µiZi| 1(|Zi + µi| > ηn)} . {θ?∆n + (β?∆n)2}1/2
∑
i∈{J}

|µi| = O(n−1/2).

For the last term, we need to bound P?J(|Zi+µi| ≤ ηn). Again, without loss of generality,
if we assume that β? > 0 and µi > 0, then we get

P?J(|Zi + µi| ≤ ηn) ≤ P{N(0, 1) > ∆−1/2
n (µi + β?∆n − ηn)},

which, using the normal tail probability bound again, is bounded by

∆
1/2
n

µi + β?∆n − ηn
e−(µi+β

?∆n−ηn)2/∆n .

Since µi > 0 is a fixed constant, the above quantity vanishes exponentially fast, so∑
i∈{J}

µ2
i P(|Zi + µi| ≤ ηn) ≤ o(n−1/2)

∑
i∈{J}

µ2
i .

All four terms have been shown to be O(n−1/2), completing the proof of (6). Finally,
note that the result holds for all J such that |{J}| and 〈J〉 =

∑
i∈{J} µ

2
i are finite. Since

this is a P?-probability 1 event, (6) holds for P?-almost all J .
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