Stat 501 Probability Theory I (Final) Fall 2019

Name:	UIN:
Problem 1. Let \mathscr{C} be a collection the σ -field generated by \mathscr{C} (and by respectively). Prove	,
$\sigma(\mathscr{C}) = \sigma$	$\cdot(\mathscr{A}(\mathscr{C})).$

Problem 2. Suppose X_n is a sequence of random variables that is Cauchy in probability. Show that there is a subsequence X_{n_k} of X_n such that $\lim_{n\to\infty} X_{n_k}$ exists almost surely.

Problem 3. Fix any $p \geq 1$. Let $a_1, ..., a_n$ and $b_1, ..., b_n$ be real numbers. Prove that

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}.$$

(Hint: Minkowski inequality for a proper probability space.)

Problem 4. Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a probability space, and X, Y be two bounded random variables. This problem is to show that if

$$\int_B X d\mathbb{P} = \int_B Y d\mathbb{P}, \quad \text{for all } B \in \mathcal{B},$$

then X = Y almost surly. The proof is divided into the following steps.

(a) Note that the two events $A_1 = \{X > Y\}$ and $A_2 = \{X < Y\}$ are in \mathcal{B} . Show that $\int_{A_1} (X - Y) d\mathbb{P} = 0$ and $\int_{A_2} (Y - X) d\mathbb{P} = 0$.

(b) Use (a) to show that $\mathbb{P}(A_i) = 0, i = 1, 2$.

(c) Use (b) to conclude X = Y almost surely.

Problem 5. Suppose μ is a probability measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ such that for all intervals of the form $(a, b], -\infty \leq a \leq b < +\infty$, we have

(1)
$$\mu((a,b]) = \int_{(a,b]} f d\lambda.$$

Here, λ is the Lebesgue measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, and $f \in L^1(\lambda)$ is a given function .

The aim of this problem is to show, under assumption (1), that

(2)
$$\mu(B) = \int_{B} f d\lambda,$$

for all $B \in \mathcal{B}(\mathbb{R})$. The proof is divided into two steps.

(a) Set

$$\mathscr{C} = \{ B \in \mathscr{B}(\mathbb{R}), \text{ equation (2) holds for } B \}.$$

Show that $\mathscr C$ is a λ -system.

(b) Use (a) to show that (2) holds for all $B \in \mathcal{B}(\mathbb{R})$.