Stat 502 HW10 Solutions

1 Exercise 9.9.9 (a) (b) (c) on page 323
Answer: (a) The characteristic function of X is
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because lim, ., e”07% = lim,_,,, €7 - € = 0 due to |e**]| < 1.
Let Y = — X, then
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The answer is “yes”. The function ﬁ is a characteristic function.

(b) The characteristic function of X; is
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(c) Yes. Let X1, X,..., Xi7 be iid ~ X;. Then Y = 3.7, X has characteristic function
(cost)'7. O

2 Exercise 9.9.16 on page 325

Proof: (a) Since X and Y are iid N(0,1) random variables, then X—\%Y is also normally
distributed with mean 0 and variance (1 + 1)/2 = 1. That is,
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(b) Let X1, Xs,...,X,,... be iid ~ F. Since 22 £ X £y then 0 £ ) £ X,
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Repeat the procedure and get in general, Vm > 1,
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On the other hand, the classical central limit theorem (Theorem 9.7.1 on page 313) implies
that
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As a subsequence,
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T Y X; = N(0,1).

By Remark 8.1.2 on page 252, weak limits are unique. So both X and Y must have a N (0, 1)
distribution. O

3 Exercise 9.9.28 on page 328

Proof: (1) By Exercise 9.9.9(a), the characteristic function of F(z) = 1 —e®, 2 > 0 is
1/(1 —it).

(2) If Ey, E5 are iid ~ F, then the characteristic function of F; — Es is
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(3) To show that the characteristic function of the Cauchy density is ¢(t) = eI, we first
find out the distribution function Fi5 of F; — Es. Actually, for any = > 0,
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For any = < 0,
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That is, the distribution function of E; — E»
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Differentiate it and we get a continuous density function fis(x) = %e"“ of By — E.
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Note that the characteristic function of £} — Ej5 is integrable since ffooo
Corollary 9.5.1 on page 303, for any = € R,
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Then for any ¢t € R,
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where X follows Cauchy(0,1). That is, ¢(¢) = e~ is the characteristic function of Cauchy(0,1).
(4) If Xy, X5 are iid ~ Cauchy(0,1), then
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which indicates X; + X5 4 2X;. That is, the convolution of two Cauchy(0,1) densities is a
density of the same type. O



