Math 310, Fall 2015
 Instructor: Chris Skalit
 Exam 1

Write your FULL NAME and UIN in all of your answer books. Show ALL work.

1. (20 points) Find all solutions to the following system of linear equations:

$$
\begin{aligned}
2 x_{1}+x_{2} & =0 \\
2 x_{1}+2 x_{2} & =2 \\
3 x_{1}+2 x_{2}+x_{3} & =2 \\
4 x_{1}+3 x_{3} & =-1
\end{aligned}
$$

Solution: The augmented matrix for this system is
$B=\left[\begin{array}{rrr|r}2 & 1 & 0 & 0 \\ 2 & 2 & 0 & 2 \\ 3 & 2 & 1 & 2 \\ 4 & 0 & 3 & -1\end{array}\right]$. Since rref $B=\left[\begin{array}{rrr|r}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$, we have $x_{1}=-1, x_{2}=2$, and $x_{3}=1$ as our unique solution.
2. Let $A=\left[\begin{array}{rrrr}2 & 0 & 4 & 6 \\ 1 & 1 & -1 & -1 \\ 4 & 2 & 2 & 4\end{array}\right]$.
(a) (10 points) Find all $\mathbf{x} \in \mathbb{R}^{4}$ such that $A \mathbf{x}=\mathbf{0}$. Write your solution in vector parametric form.
Solution: Recall that if $B=\operatorname{rref} A$, we have $B \mathbf{x}=\mathbf{0}$ if and only if $A \mathbf{x}=\mathbf{0}$. Since $B=\operatorname{rref} A=\left[\begin{array}{rrrr}1 & 0 & 2 & 3 \\ 0 & 1 & -3 & -4 \\ 0 & 0 & 0 & 0\end{array}\right]$, we see that in the homogeneous system

$$
\left[\begin{array}{rrrr}
1 & 0 & 2 & 3 \\
0 & 1 & -3 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$x_{1}=-2 x_{3}-3 x_{4}$ and $x_{2}=3 x_{3}+4 x_{4}$ with x_{3} and x_{4} free. We can therefore write our solutions as

$$
\mathcal{S}=\left\{\left[\begin{array}{r}
-2 x_{3}-3 x_{4} \\
3 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]: x_{3}, x_{4} \in \mathbb{R}\right\}=\left\{x_{3}\left[\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-3 \\
4 \\
0 \\
1
\end{array}\right]: x_{3}, x_{4} \in \mathbb{R}\right\}
$$

(b) (5 points) If $\mathbf{b}=\left[\begin{array}{l}2 \\ 2 \\ 6\end{array}\right]$, use your solution to part (a) to find all solutions to $A \mathbf{x}=\mathbf{b}$.

Hint: Note that $\mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ is a solution.
Solution: Recall that all solutions \mathbf{w} to $A \mathbf{x}=\mathbf{b}$ are of the form $\mathbf{w}=\mathbf{x}_{0}+\mathbf{v}$ where \mathbf{v} is a solution to the homogeneous system $A \mathbf{x}=\mathbf{0}$. Thus our solution set is

$$
\mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-3 \\
4 \\
0 \\
1
\end{array}\right]: x_{3}, x_{4} \in \mathbb{R}\right\}
$$

(c) (5 points) Does there exist a $\mathbf{v} \in \mathbb{R}^{3}$ such that the linear system $A \mathbf{x}=\mathbf{v}$ is inconsistent? Explain why or why not.
Solution: We know that $A \mathbf{x}=\mathbf{v}$ is consistent for all $\mathbf{v} \in \mathbb{R}^{3}$ if and only if the columns of A span \mathbb{R}^{3}. This, however, is equivalent to saying that every ROW of rref A contains a pivot. Since this is not the case, we know that we can find a \mathbf{v} for which $A \mathbf{x}=\mathbf{v}$ is inconsistent.
3. (a) (5 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map defined via $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+2 y \\ y-x \\ 3 x\end{array}\right]$. Write down the matrix H such that $T(\mathbf{x})=H \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{2}$.
Solution: The columns of H are just $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$. Thus, $H=\left[\begin{array}{rr}1 & 2 \\ -1 & 1 \\ 3 & 0\end{array}\right]$.
(b) (10 points) Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be defined by $S(\mathbf{x})=B \mathbf{x}$ where $B=\left[\begin{array}{rrr}3 & 3 & -3 \\ -2 & 0 & 1 \\ 0 & 0 & 2 \\ 2 & 1 & -1\end{array}\right]$. Determine whether S is one-to-one and/or onto. Justify your answer.
Solution: $\operatorname{rref} B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Since there is a pivot in every column, S is one-toone. Since there isn't a pivot in every row, S is NOT onto.
(c) (10 points) Let $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that

$$
Q\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad Q\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Compute $Q\left(\left[\begin{array}{l}5 \\ 1\end{array}\right]\right)$. Hint: It will be helpful (and good for partial credit) to first find constants $a, b \in \mathbb{R}$ such that $\left[\begin{array}{l}5 \\ 1\end{array}\right]=a\left[\begin{array}{l}1 \\ 2\end{array}\right]+b\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
Solution: Finding a and b amounts to solving the system

$$
\begin{array}{r}
a+b=5 \\
2 a-b=1
\end{array}
$$

and we see that $a=2$ and $b=3$. We now compute

$$
Q\left(\left[\begin{array}{l}
5 \\
1
\end{array}\right]\right)=Q\left(2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=2 Q\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)+3 Q\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
8 \\
3
\end{array}\right]
$$

4. (a) (7 points) Compute the matrix product or explain why the product is undefined.
(i) $\left[\begin{array}{rr}1 & 2 \\ -1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$

Solution:

$$
\left[\begin{array}{rr}
1 & 2 \\
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]=\left[\begin{array}{rr}
7 & 2 \\
-1 & -2 \\
4 & 2
\end{array}\right]
$$

(ii) $\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]\left[\begin{array}{rr}1 & 2 \\ -1 & 0 \\ 1 & 1\end{array}\right]$

Solution: Undefined. The number of columns of the matrix on the left is not equal to the number of rows of the matrix on the right.
(b) (13 points) Let $D=\left[\begin{array}{rrr}-1 & -1 & 0 \\ 2 & 1 & 0 \\ 5 & 1 & 1\end{array}\right]$. Find D^{-1} (if it exists).

Solution: We set $E=\left[\begin{array}{rrr|rrr}-1 & -1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 5 & 1 & 1 & 0 & 0 & 1\end{array}\right]$ and compute $\operatorname{rref} E=\left[\begin{array}{lll|rrr}1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -2 & -1 & 0 \\ 0 & 0 & 1 & -3 & -4 & 1\end{array}\right]$. Thus, $D^{-1}=\left[\begin{array}{rrr}1 & 1 & 0 \\ -2 & -1 & 0 \\ -3 & -4 & 1\end{array}\right]$.
(c) (5 points) Are the columns of D linearly independent? Why or why not?

Solution: Since D is invertible, its columns are linearly independent.
5. (10 points) Let $C=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 3 & 1\end{array}\right]$. Compute the $L U$ decomposition of C. That is, find
matrices of the form $L=\left[\begin{array}{lll}1 & 0 & 0 \\ * & 1 & 0 \\ * & * & 1\end{array}\right]$ and $U=\left[\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right]$ such that $C=L U$.
Solution: We begin by reducing C to an upper-triangular matrix U :

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 0 \\
0 & 3 & 1
\end{array}\right] \xrightarrow{R 2 \mapsto R 2-R 1}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right] \xrightarrow{R 3 \mapsto R 3-3 R 2}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=U
$$

We now take the 3×3 identity matrix and apply the inverse of these operations in the reverse order:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R 3 \mapsto R 3+3 R 2}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right] \xrightarrow{R 2 \mapsto R 2+R 1}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]=L
$$

