Math 310, Fall 2015
 Instructor: Chris Skalit
 Exam II

Write your \boldsymbol{F} ULL NAME and UIN in all of your answer books. Show $\boldsymbol{A} \boldsymbol{L L}$ work.

1. Let $A=\left[\begin{array}{rrrr}3 & 6 & 3 & 6 \\ 2 & 4 & 4 & 4 \\ -1 & 1 & -1 & -2 \\ 3 & 6 & 3 & 8\end{array}\right]$ and $B=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$.
(a) (10 points) Compute $\operatorname{det} A$. Hint: Row reduce before attempting a cofactor expansion.

Solution: Multiplying the first row by $1 / 3$ gives $\left[\begin{array}{rrrr}1 & 2 & 1 & 2 \\ 2 & 4 & 4 & 4 \\ -1 & 1 & -1 & -2 \\ 3 & 6 & 3 & 8\end{array}\right]$. Adding suitable multiples of the first row of this matrix to those below it yields
$A^{\prime}=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$. We can compute the determinant of A^{\prime} via cofactor expansion down the first row:

$$
\operatorname{det}\left(A^{\prime}\right)=1 \operatorname{det}\left(\left[\begin{array}{lll}
0 & 2 & 0 \\
3 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]\right)=(-3)(2)(2)=-12
$$

Finally, by recalling the row operations that transformed A to A^{\prime}, we have $\operatorname{det}\left(A^{\prime}\right)=$ $(1 / 3) \operatorname{det} A$, so $\operatorname{det} A=-36$.
(b) (1 point) What is $\operatorname{det} B$?

Solution: Since the columns of B are clearly not linearly independent, B is not invertible and hence $\operatorname{det} B=0$.
(c) (4 points) What is $\operatorname{det}(A B)$? Is the matrix product $A B$ invertible? Why or why not?
Solution: $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)=0$ by part (b). Hence, $A B$ is not invertible.
2. Let $C=\left[\begin{array}{rrrr}-1 & -2 & 1 & 4 \\ 1 & 2 & 0 & -1 \\ 2 & 4 & 1 & 1\end{array}\right]$. Note that $\operatorname{rref}(C)=\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(a) (3 points) Find a basis for $\operatorname{Col}(C)$. What is its dimension?

Solution: Since rref C has pivots in the first and third columns, we know that those columns of C form a basis for the column space, meaning that $\mathrm{Col} C$ has basis $\left\{\left[\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and $\operatorname{dim}(\operatorname{Col} C)=2$.
(b) (2 points) Find a basis for $\operatorname{Row}(C)$. What is its dimension?

Solution: Since $\operatorname{Row}(A)=\operatorname{Row}(\operatorname{rref} A)$, it's clear that our basis is $\left\{\left[\begin{array}{llll}1 & 2 & 0 & -1\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & 3\end{array}\right]\right\}$, and $\operatorname{dim}(\operatorname{Row} C)=2$.
(c) (5 points) Find a basis for $\operatorname{Nul}(C)$. What is its dimension?

Solution: For $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$, the nullspace is the set of solutions to $C \mathbf{x}=\mathbf{0}$, or equivalently, the solution set to $(\operatorname{rref} C) \mathbf{x}=\mathbf{0}$. We obtain the relations

$$
\begin{array}{ll}
x_{1}+2 x_{2}-x_{4} & =0 \\
x_{3}+3 x_{4} & =0
\end{array}
$$

so $\operatorname{Nul}(C)=\left\{\left[\begin{array}{c}-2 x_{2}+x_{4} \\ x_{2} \\ -3 x_{4} \\ x_{4}\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}1 \\ 0 \\ -3 \\ 1\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}$. Our basis therefore consists of $\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -3 \\ 1\end{array}\right]\right\}$, and $\operatorname{dim}(\mathrm{Nul} C)=2$.
(d) (5 points) Suppose that M is a 7×8 matrix whose column space has dimension 5 . What are $\operatorname{dim}(\operatorname{Nul}(M))$ and $\operatorname{dim}(\operatorname{Row}(M))$?
Solution: M defines a linear transformation $\mathbb{R}^{8} \rightarrow \mathbb{R}^{7}$. The rank nullity theorem says that $\operatorname{dim}(\operatorname{Nul} M)+\operatorname{dim}(\operatorname{Col} M)=8$, so $\operatorname{dim}(\operatorname{Nul} M)=3$. The column space and row space of a matrix have the same dimension, so $\operatorname{dim}($ Row $M)=5$.
3. Let V be a real, 3-dimensional vector space with bases $\mathcal{A}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $\mathcal{B}=$ $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$. Suppose that the following relations are known:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{w}_{3} \\
& \mathbf{v}_{2}=\mathbf{w}_{1}+\mathbf{w}_{2} \\
& \mathbf{v}_{3}=\mathbf{w}_{1}+2 \mathbf{w}_{2}
\end{aligned}
$$

(a) (7 points) Write down the change of basis matrix $P_{\mathcal{A} \rightarrow \mathcal{B}}$, which transforms \mathcal{A} coordinates to \mathcal{B}-coordinates.

Solution:

$$
P_{\mathcal{A} \rightarrow \mathcal{B}}=\left[\begin{array}{lll}
{\left[\mathbf{v}_{1}\right]_{\mathcal{B}}} & {\left[\begin{array}{ll}
\mathbf{v}_{2}
\end{array}\right]_{\mathcal{B}}} & {\left[\mathbf{v}_{3}\right]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right]
$$

(b) (8 points) Compute $P_{\mathcal{B} \rightarrow \mathcal{A}}$.

Solution:

$$
P_{\mathcal{B} \rightarrow \mathcal{A}}=\left(P_{\mathcal{A} \rightarrow \mathcal{B}}\right)^{-1}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
2 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right]
$$

(c) (5 points) If $\mathbf{x} \in V$ is a vector whose \mathcal{A}-coordinates are $[\mathbf{x}]_{\mathcal{A}}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$, what is $[\mathbf{x}]_{\mathcal{B}}$?

Solution:

$$
[\mathbf{x}]_{\mathcal{B}}=\left(P_{\mathcal{A} \rightarrow \mathcal{B}}\right)[\mathbf{x}]_{\mathcal{A}}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(d) (5 points) Let $T: V \rightarrow V$ be linear such that $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}-\mathbf{v}_{3}, T\left(\mathbf{v}_{2}\right)=\mathbf{v}_{1}+\mathbf{v}_{2}$, and $T\left(\mathbf{v}_{3}\right)=0$. Find the matrix $[T]_{\mathcal{A}}$ for T with respect to the basis \mathcal{A}.

Solution:

$$
[T]_{\mathcal{A}}=\left[\left[T\left(\mathbf{v}_{1}\right)\right]_{\mathcal{A}} \quad\left[\begin{array}{lll}
\left.T\left(\mathbf{v}_{2}\right)\right]_{\mathcal{A}} & {\left[T\left(\mathbf{v}_{3}\right)\right]_{\mathcal{A}}}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]\right.
$$

(e) (5 points) Write $[T]_{\mathcal{B}}$ as a product of three matrices. You do NOT need to compute the product.

Solution:

$$
[T]_{\mathcal{B}}=\left(P_{\mathcal{A} \rightarrow \mathcal{B}}\right)[T]_{\mathcal{A}}\left(P_{\mathcal{B} \rightarrow \mathcal{A}}\right)=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{rcc}
1 & 1 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{rcc}
0 & 0 & 1 \\
2 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right]
$$

4. Let $E=\left[\begin{array}{rrr}1 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 0 & 2\end{array}\right]$.
(a) (6 points) Compute the characteristic polynomial of E and find all eigenvalues.

Solution: The characteristic polynomial is

$$
P_{E}(t)=\operatorname{det}(E-t I)=\operatorname{det}\left(\left[\begin{array}{rrrr}
1-t & 0 & 1 \\
1 & 2-t & -1 \\
0 & 0 & 2-t
\end{array}\right]\right)=(2-t)(1-t)(2-t)
$$

The eigenvalues are therefore 1 and 2 .
(b) (11 points) For each eigenvalue λ found in part (a), compute the corresponding eigenspace E_{λ}.
Solution: To compute the 1-eigenspace we have

$$
\mathbf{E}_{1}=\operatorname{Nul}(E-I)=\operatorname{Nul}\left(\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right)
$$

Hence $\mathbf{E}_{1}=\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]\right\}$.
Moving on to the 2-eigenspace gives

$$
\mathbf{E}_{2}=\operatorname{Nul}(E-2 I)=\operatorname{Nul}\left(\left[\begin{array}{rrr}
-1 & 0 & 1 \\
1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)
$$

In other words, we have a system of linear equations in three variables with $x_{1}-x_{3}=$ 0 where x_{2} and x_{3} are free. Thus, $\mathbf{E}_{2}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
(c) (3 points) Is E diagonalizable? Why or why not?

Solution: We have found three linearly independent eigenvectors for A. Thus \mathbb{R}^{3} has a basis consisting of eigenvectors for A, so A is diagonalizable.
5. Let $H=\left[\begin{array}{rr}1 & 0 \\ 6 & -1\end{array}\right]$. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Observe that

$$
H \mathbf{v}_{1}=\mathbf{v}_{1} \quad H \mathbf{v}_{2}=(-1) \mathbf{v}_{2}
$$

so $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis of eigenvectors for H.
(a) (6 points) Diagonalize H. That is, find a factorization $H=S D S^{-1}$ where D is diagonal.

Solution: We let the columns of S be the eigenvectors of A (which have already been computed for us): $S=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right] . S^{-1}=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right] . D$ is a diagonal matrix whose diagonal entries are the eigenvalues which correspond to the eigenvectors in the columns of $S: D=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
(b) (6 points) Compute H^{1001}. Hint: Use part (a).

Solution: We know that $H^{1001}=S D^{1001} S^{-1}$. Since D is diagonal, we have $D^{1001}=$ $\left[\begin{array}{rr}1^{1001} & 0 \\ 0 & (-1)^{1001}\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. It then follows that

$$
H^{1001}=S D^{1001} S^{-1}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
6 & -1
\end{array}\right]
$$

Remark: For this example, it's actually possible to compute H^{1001} without explicitly knowing S^{-1}. We note that D^{1000} is just the identity matrix I, so $H^{1000}=$ $S I S^{-1}=I$, and $H^{1001}=H\left(H^{1000}\right)=H$.
(c) (8 points) Consider the system of differential equations $\frac{d \mathbf{x}}{d t}=H \mathbf{x}(t)$. Find the particular solution $\mathbf{x}(t)$ subject to the initial condition $\mathbf{x}(0)=\left[\begin{array}{l}5 \\ 3\end{array}\right]$.
Solution: Since our matrix is diagonalizable, our system of differential equations has the following general solution:

$$
\mathbf{x}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

To find the particular solutions (i.e. determine the unknown constants c_{1} and c_{2}, we solve

$$
\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\mathbf{x}(0)=c_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

From this it's easily seen that $c_{1}=5, c_{2}=-12$.

