Math 310, Fall 2015
 Instructor: Chris Skalit
 Quiz 1

Name: \qquad UIN: \qquad

1. (3 points) Find the reduced row echelon form of the following matrix: $\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3\end{array}\right]$

Solution: We employ the following row operations:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
2 & 2 & 2 & 2 \\
0 & 0 & 3 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 3
\end{array}\right] \quad \text { add }(-2) \text { times Row } 1 \text { to Row } 2} \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \text { multiply Row } 2 \text { by } 1 / 2} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \quad \text { multiply Row } 3 \text { by } 1 / 3}
\end{aligned}
$$

2. (3 points) Consider the system of equations

$$
\begin{aligned}
& x+k y=1 \\
& 2 x-y=0
\end{aligned}
$$

For what value(s) of k is the system consistent? For what value(s) of k is the system inconsistent?

Solution: By adding (-2) times the first equation to the second, we obtain

$$
\begin{aligned}
x+k y & =1 \\
0-(2 k+1) y & =-2
\end{aligned}
$$

If $k=-\frac{1}{2}$, we obtain the contradictory relation $0=-2$ and thus have no solution. Otherwise, $2 k+1 \neq 0$, and we can solve the system explicitly.
3. (4 points) Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$. Does the vector $\mathbf{w}=\left[\begin{array}{c}5 \\ 8 \\ -1\end{array}\right]$ belong to $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$? If so, find scalars c_{i} such that $\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$.

Solution: Saying that \mathbf{w} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} is equivalent to saying that the system of equations

$$
\begin{aligned}
c_{1}+c_{2} & =5 \\
c_{1}+2 c_{2} & =8 \\
c_{1}-c_{2} & =-1
\end{aligned}
$$

has a solution. We can express this system via an augmented matrix $A=\left[\begin{array}{cc|c}1 & 1 & 5 \\ 1 & 2 & 8 \\ 1 & -1 & -1\end{array}\right]$. We compute $\operatorname{rref}(A)=\left[\begin{array}{ll|l}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$, so $c_{1}=2$ and $c_{2}=3$.

