Math 310 (35180), Fall 2015
 Instructor: Chris Skalit
 Quiz 10

Name: \qquad UIN: \qquad

1. Let $\mathbf{x}=\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{r}0 \\ 4 \\ -1\end{array}\right]$.
(a) (2 points) Compute $\mathbf{x} \cdot \mathbf{y}$.

Solution:

$$
\mathbf{x} \cdot \mathbf{y}=(1)(0)+(-2)(4)+(3)(-1)=-11
$$

(b) (2 points) If $\mathbf{v}=\left[\begin{array}{l}6 \\ 1 \\ 0\end{array}\right]$, are \mathbf{v} and $\mathbf{x}-\mathbf{y}$ orthogonal?

Solution:

$$
\mathbf{v} \cdot(\mathbf{x}-\mathbf{y})=6(1-0)+1(-2-4)+0(3-(-1))=0
$$

Hence, \mathbf{v} and $\mathbf{x}-\mathbf{y}$ are orthogonal.
(c) (2 points) Compute $\|\mathbf{x}+2 \mathbf{y}\|$.

Solution: $\mathbf{x}+2 \mathbf{y}=\left[\begin{array}{l}1 \\ 6 \\ 1\end{array}\right],\|\mathbf{x}+2 \mathbf{y}\|=\sqrt{1^{2}+6^{2}+1^{2}}=\sqrt{38}$.
(d) (2 points) Find the distance from \mathbf{x} to \mathbf{y}.

Solution: The distance from \mathbf{x} to \mathbf{y} is, by definition,
$\|\mathbf{x}-\mathbf{y}\|=\sqrt{(1-0)^{2}+(-2-4)^{2}+(3-(-1))^{2}}=\sqrt{53}$.
(e) (2 points) Find a unit vector \mathbf{u} that points in the same direction as $\mathbf{x}+\mathbf{y}$.

Solution: We renormalize $\mathbf{x}+\mathbf{y}$ by its length, so

$$
\mathbf{u}=\frac{\mathbf{x}+\mathbf{y}}{\|\mathbf{x}+\mathbf{y}\|}=\frac{1}{\sqrt{1+2^{2}+2^{2}}}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]
$$

