Math 310 (35180), Fall 2015
 Instructor: Chris Skalit
 Quiz 11

Name: \qquad UIN: \qquad

1. Let U be the subspace of \mathbb{R}^{3} spanned by the vectors $\mathbf{u}_{1}=\left[\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Note that these vectors form an orthogonal basis for U.
(a) (5 points) If $\mathbf{y}=\left[\begin{array}{r}-3 \\ 1 \\ 1\end{array}\right]$, compute the orthogonal $\operatorname{projection}^{\operatorname{proj}_{U}}(\mathbf{y})$ of \mathbf{y} onto U.

Solution:

$$
\begin{aligned}
\operatorname{proj}_{U}(\mathbf{y}) & =\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} \\
& =\left(\frac{3}{3}\right)\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]+\left(\frac{2}{2}\right)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right]
\end{aligned}
$$

(b) (1 point) Using your answer from part (a), compute the distance from \mathbf{y} to U.

Solution: This distance is merely

$$
\left\|\mathbf{y}-\operatorname{proj}_{U}(\mathbf{y})\right\|=\sqrt{(-3-(-1))^{2}+(1-0)^{2}+(1-2)^{2}}=\sqrt{6}
$$

2. (4 points) Let W be the subspace of \mathbb{R}^{3} spanned by $\mathbf{w}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{w}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 5\end{array}\right]$. Use the Gram-Schmidt process to find an orthogonal basis for W.

Solution: We want to construct an orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. According to GramSchmidt, we can take

$$
\begin{gathered}
\mathbf{u}_{1}=\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { and } U_{1}=\operatorname{span}\left\{\mathbf{u}_{1}\right\} . \\
\mathbf{u}_{2}=\mathbf{w}_{2}-\operatorname{proj}_{U_{1}}\left(\mathbf{w}_{2}\right)=\mathbf{w}_{2}-\frac{\mathbf{w}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
5
\end{array}\right]-\frac{6}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-2 \\
3
\end{array}\right]
\end{gathered}
$$

