Math 310 (35180), Fall 2015 Instructor: Chris Skalit Quiz 12

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

We therefore see that $y_1 = 1$ and $y_2 = 0$.

2. (5 points) Consider the points (0,0), (1,1), and (2,1) in \mathbb{R}^2 . Find the equation $y = a_0 + a_1 x$ of the best-fit line (in a least-squares sense) through these points.

Solution: By plugging in the coordinates into the equation $y = a_0 + a_1 x$, we get

$$\begin{array}{rcl}
0 &=& a_0 + a_1(0) \\
1 &=& a_0 + a_1(1) \\
1 &=& a_0 + a_1(2)
\end{array}$$

Thus, to determine the coefficients a_0 and a_1 , we seek the least squares solutions to $A\mathbf{a} = \mathbf{y}$ where $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$, $\mathbf{a} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. We solve $A^T A \mathbf{a} = A^T \mathbf{y} \iff \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

and get $a_0 = 1/6$ and $a_1 = 1/2$.