Math 310 (35180), Fall 2015
 Instructor: Chris Skalit
 Quiz 12

Name: \qquad UIN: \qquad

1. (5 points) Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$. Find all least squares solutions to the (inconsistent) system $A \mathbf{x}=\mathbf{b}$.

Solution: A least squares solution $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ satisfies the equation $A^{T} A \mathbf{y}=A^{T} \mathbf{b}$, so we must solve

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

We therefore see that $y_{1}=1$ and $y_{2}=0$.
2. (5 points) Consider the points $(0,0),(1,1)$, and $(2,1)$ in \mathbb{R}^{2}. Find the equation $y=$ $a_{0}+a_{1} x$ of the best-fit line (in a least-squares sense) through these points.

Solution: By plugging in the coordinates into the equation $y=a_{0}+a_{1} x$, we get

$$
\begin{aligned}
& 0=a_{0}+a_{1}(0) \\
& 1=a_{0}+a_{1}(1) \\
& 1=a_{0}+a_{1}(2)
\end{aligned}
$$

Thus, to determine the coefficients a_{0} and a_{1}, we seek the least squares solutions to $A \mathbf{a}=\mathbf{y}$ where $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right], \mathbf{a}=\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. We solve

$$
A^{T} A \mathbf{a}=A^{T} \mathbf{y} \Longleftrightarrow\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

and get $a_{0}=1 / 6$ and $a_{1}=1 / 2$.

