Math 310, Fall 2015
Instructor: Chris Skalit Quiz 3

Name: \qquad UIN: \qquad

1. (6 points) Are the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
4 \\
1
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
3 \\
-4 \\
1
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{r}
2 \\
-3 \\
3 \\
1
\end{array}\right]
$$

linearly independent? Why or why not? Show all work.
Solution: Let $A=\left[\begin{array}{rrr}2 & -2 & 2 \\ 0 & 3 & -3 \\ 4 & -4 & 3 \\ 1 & 1 & 1\end{array}\right]$. After row reducing, we find that $\operatorname{rref}(A)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
Since every column of $\operatorname{rref}(A)$ is a pivot column, we conclude that the vectors are linearly independent.
2. (2 points) Without doing any computation, explain why the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
3 \\
-4
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right] \quad \mathbf{v}_{4}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

cannot be linearly independent.

Solution: If we let A be the matrix whose columns are the vectors \mathbf{v}_{i}, then we know that these vectors are linearly independent if and only if each of the four columns of $\operatorname{rref}(A)$ contains a pivot. On the other hand, A has only three rows and so $\operatorname{rref}(A)$ has at most three pivot points.
3. (2 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map. Suppose that \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{2} such that

$$
T(\mathbf{u})=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad T(\mathbf{v})=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Compute $T(2 \mathbf{u})$ and $T(\mathbf{u}-\mathbf{v})$.

Solution: Using the linearity of T, we compute:

$$
\begin{gathered}
T(2 \mathbf{u})=2 T(\mathbf{u})=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

