Math 310 (35180), Fall 2015
 Instructor: Chris Skalit
 Quiz 4

Name: \qquad UIN: \qquad

1. (2 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+x_{2}-x_{3} \\
2 x_{1}+x_{3}
\end{array}\right]
$$

You do not need to check that T is linear. Find the matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathrm{x} \in \mathbb{R}^{3}$.

Solution: We begin by computing $T\left(\mathbf{e}_{i}\right)$ for $i=1,2,3$:

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

whence we conclude that A, the matrix representing T, is given by

$$
A=\left[\begin{array}{lll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & T\left(\mathbf{e}_{3}\right)
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & -1 \\
2 & 0 & 1
\end{array}\right]
$$

2. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be defined by $T(\mathbf{x})=A \mathbf{x}$ where $A=\left[\begin{array}{rrrr}-1 & -2 & 1 & 1 \\ -2 & -4 & 1 & -2\end{array}\right]$.
(a) (2 points) Compute $\operatorname{rref}(A)$.

Solution: $\operatorname{rref}(A)=\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$
(b) (1 point) Based on your answer to (a), is T onto? Why or why not?

Solution: T is onto because every row of $\operatorname{rref}(A)$ contains a pivot. In other words, $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^{2}$, meaning that the range of T is all of \mathbb{R}^{2}.
(c) (1 point) Based on your answer to (a), is T one-to-one? Why or why not?

Solution: T is not one-to-one because not every column of $\operatorname{rref}(A)$ is a pivot column. Therefore, the homogeneous system $A \mathbf{x}=\mathbf{0}$ has free variables and hence infinitely many solutions.
3. (4 points) Let $A=\left[\begin{array}{rrr}2 & 0 & 0 \\ -3 & 1 & -1 \\ 3 & 0 & 1\end{array}\right]$. Compute A^{-1} (if it exists).

Solution: We let $B=\left[A \mid I_{3}\right]=\left[\begin{array}{rrr|rrr}2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 1 & -1 & 0 & 1 & 0 \\ 3 & 0 & 1 & 0 & 0 & 1\end{array}\right]$. Since we have that

$$
\operatorname{rref}(B)=\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & -3 / 2 & 0 & 1
\end{array}\right]
$$

we can read off $A^{-1}=\left[\begin{array}{rrr}1 / 2 & 0 & 0 \\ 0 & 1 & 1 \\ -3 / 2 & 0 & 1\end{array}\right]$.

