Math 310 (35180), Fall 2015 Instructor: Chris Skalit Quiz 6

- _____ UIN: __ Name: _____ 1. (7 points) Let $A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 2 & 4 & 2 & 2 \\ 1 & 2 & -1 & 3 \end{bmatrix}$. Compute $\operatorname{rref}(A)$ and use this information to write down bases for the column space $\operatorname{Col}(A)$ and the null space $\operatorname{Nul}(A)$. Solution: $\operatorname{rref}(A) = \begin{vmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{vmatrix}$. Since pivots occur in the first and third columns, we know that our column space has basis $\left\{ \begin{array}{c} 1\\2\\1 \end{array}, \begin{bmatrix}0\\2\\-1 \end{array} \right\}$. The nullspace is just the solution set $\mathbf{x} = \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix}$ to $A\mathbf{x} = \mathbf{0}$. From $\operatorname{rref}(A)$, we obtain relations $x_1 = -2x_2 - 2x_4$ and $x_3 = x_4$ where x_2 and x_4 are free. Hence $\operatorname{Nul}(A) = \left\{ \begin{vmatrix} -2x_2 - 2x_4 \\ x_2 \\ x_4 \end{vmatrix} : x_2, x_4 \in \mathbb{R} \right\} = \left\{ x_2 \begin{vmatrix} -2 \\ 1 \\ 0 \\ 0 \end{vmatrix} + x_4 \begin{vmatrix} -2 \\ 0 \\ 1 \\ 1 \end{vmatrix} : x_2, x_4 \in \mathbb{R} \right\}$ Thus, Nul(A) has basis $\left\{ \begin{array}{c} -2 \\ 1 \\ 0 \\ 0 \end{array}, \begin{array}{c} -2 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} \right\}.$
 - 2. (3 points) Let S be the collection of vectors in \mathbb{R}^2 defined by $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x = \pm y \right\}$. Show that S is **not** a subspace of \mathbb{R}^2 by explicitly finding two vectors $\mathbf{v}_1, \mathbf{v}_2 \in S$ whose sum lies outside of S.

Solution: Note that $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ belong to S. However $\mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, which does not lie in S.