Math 310 (35180), Fall 2015
 Instructor: Chris Skalit
 Quiz 6

Name: \qquad UIN: \qquad

1. (7 points) Let $A=\left[\begin{array}{rrrr}1 & 2 & 0 & 2 \\ 2 & 4 & 2 & 2 \\ 1 & 2 & -1 & 3\end{array}\right]$. Compute $\operatorname{rref}(A)$ and use this information to write down bases for the column space $\operatorname{Col}(A)$ and the null space $\operatorname{Nul}(A)$.

Solution: $\operatorname{rref}(A)=\left[\begin{array}{rrrr}1 & 2 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Since pivots occur in the first and third columns, we know that our column space has basis $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 2 \\ -1\end{array}\right]\right\}$.
The nullspace is just the solution set $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ to $A \mathbf{x}=\mathbf{0}$. From $\operatorname{rref}(A)$, we obtain relations $x_{1}=-2 x_{2}-2 x_{4}$ and $x_{3}=x_{4}$ where x_{2} and x_{4} are free. Hence

$$
\operatorname{Nul}(A)=\left\{\left[\begin{array}{r}
-2 x_{2}-2 x_{4} \\
x_{2} \\
x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-2 \\
0 \\
1 \\
1
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

Thus, $\operatorname{Nul}(A)$ has basis $\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$.
2. (3 points) Let S be the collection of vectors in \mathbb{R}^{2} defined by $S=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x= \pm y\right\}$. Show that S is not a subspace of \mathbb{R}^{2} by explicitly finding two vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in S$ whose sum lies outside of S.

Solution: Note that $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ belong to S. However $\mathbf{v}_{1}+\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$, which does not lie in S.

