Math 310 (35180), Fall 2015
 Instructor: Chris Skalit
 Quiz 7

Name: \qquad UIN: \qquad

1. Consider the vector space $V=\mathbb{R}^{3}$, equpped with the basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ where

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

(a) (1 point) Write the down the vector $\mathbf{x} \in \mathbb{R}^{3}$ whose coordinate vector with repsect to \mathcal{B} is $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]$.
Solution: Reading off the coordinates, we have

$$
\mathbf{x}=\mathbf{v}_{1}+2 \mathbf{v}_{2}-3 \mathbf{v}_{3}=\left[\begin{array}{r}
-5 \\
1 \\
-2
\end{array}\right]
$$

(b) (5 points) If $\mathbf{w}=\left[\begin{array}{r}-5 \\ 7 \\ 3\end{array}\right]$, what is the the coordinate vector $[\mathbf{w}]_{\mathcal{B}}$?

Solution: We need to find scalars a, b, c such that $\mathbf{w}=a \mathbf{v}_{1}+b \mathbf{v}_{2}+c \mathbf{v}_{3}$. In other words, we solve the system

$$
\left[\begin{array}{rrr}
-1 & -2 & 0 \\
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{r}
-5 \\
7 \\
3
\end{array}\right] \Rightarrow[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

2. Suppose that $A=\left[\begin{array}{rrrr}2 & 2 & 0 & 2 \\ -4 & -4 & 7 & 17 \\ 2 & 2 & 7 & 23\end{array}\right]$. Note that $\operatorname{rref} A=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(a) (1 point) Write down a basis for $\operatorname{Row}(A)$. What is the dimension of this space?

Solution: A and rref A have the same rowspace, so the basis is manifestly $\left\{\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & 3\end{array}\right]\right\}$. Hence $\operatorname{dim} \operatorname{Row}(A)=2$.
(b) (1 point) Write down a basis for $\operatorname{Col}(A)$. What is the dimension of this space?

Solution: Since there are pivots in the first and third rows, the column space has basis $\left\{\left[\begin{array}{r}2 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 7 \\ 7\end{array}\right]\right\}$ and $\operatorname{dim} \operatorname{Col}(A)=2$.
(c) (2 points) Write down a basis for $\operatorname{Nul}(A)$. What is the dimension of this space?

Solution: We solve $A \mathbf{x}=\mathbf{0}$ where $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$. From rref A, we see that $x_{1}+x_{2}+$ $x_{4}=0$ and $x_{3}+3 x_{4}=0$ where x_{2} and x_{4} are free. Hence,

$$
\operatorname{Nul}(A)=\left\{\left[\begin{array}{c}
-x_{2}-x_{4} \\
x_{2} \\
-3 x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-1 \\
0 \\
-3 \\
1
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

Hence, our basis is $\left\{\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ -3 \\ 1\end{array}\right]\right\}$ and $\operatorname{dim} \operatorname{Nul}(A)=2$.

