Math 310 (35180), Fall 2015
 Instructor: Chris Skalit Quiz 8

Name: \qquad UIN: \qquad

1. (4 points) Let V be a vector space with bases $\mathcal{A}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Suppose that

$$
\mathbf{u}_{1}=\mathbf{v}_{1}-\mathbf{v}_{2} \quad \mathbf{u}_{2}=\mathbf{v}_{1}-2 \mathbf{v}_{2}
$$

Find the change of coordinates matrix $P_{\mathcal{A} \rightarrow \mathcal{B}}$ from \mathcal{A} to \mathcal{B} and compute the change of coordinates matrix $P_{\mathcal{B} \rightarrow \mathcal{A}}$ from $\mathcal{B} \rightarrow \mathcal{A}$.

Solution: We have the basis vectors of \mathcal{A} written in terms of \mathcal{B}, so we can write down

The other change of coordinates matrix is just the inverse:

$$
P_{\mathcal{B} \rightarrow \mathcal{A}}=\left(P_{\mathcal{A} \rightarrow \mathcal{B}}\right)^{-1}=\left[\begin{array}{rr}
2 & 1 \\
-1 & -1
\end{array}\right]
$$

2. (3 points) Let $A=\left[\begin{array}{lll}2 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 3\end{array}\right]$. Compute the characteristic polynomial and find all eigenvalues of A.

Solution: $P_{A}(t)=\operatorname{det}(A-t I)=\operatorname{det}\left(\left[\begin{array}{rrr}2-t & 1 & 2 \\ 0 & 1-t & 0 \\ 1 & 1 & 3-t\end{array}\right]\right)$. By expanding the determinant along the second row, we have

$$
P_{A}(t)=(1-t)[(2-t)(3-t)-2]=(1-t)\left[t^{2}-5 t+4\right]=(1-t)(1-t)(4-t)
$$

Hence, our eigenvalues are 1 (with an algebraic multiplicity of two) and 4 (with an algebraic multiplicity of one).
3. (3 points) Let $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$. Compute the eigenspace E_{1} corresponding to the eigenvalue 1 .

Solution: $E_{1}=\operatorname{Nul}(A-1 I)=\operatorname{Nul}\left(\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\right)$. In other words, E_{1} is just the solution set of the homogeneous system

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

so $x_{1}=-x_{2}, x_{3}=0$, and x_{2} is free. Hence,

$$
E_{1}=\left\{\left[\begin{array}{c}
-x_{2} \\
x_{2} \\
0
\end{array}\right]: x_{2} \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

